联吡啶钌结合纳米材料构建信号增强型及多组分检测型电致化学发光免疫传感器研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电致化学发光免疫传感器是一种将电致化学发光技术与免疫学分析方法相结合而发展起来的具有高灵敏度、高选择性、低背景等特点的生物传感器。免疫生物传感器敏感界面上生物识别系统的构建是将生物识别事件转化为可检测物理化学信号的关键。利用化学、材料及生物等多种技术放大并特异性转化与免疫反应有关的检测信号,是实现传感器超灵敏检测的有效方法。本文针对电致化学发光信号探针联吡啶钌因水溶性强、分子结构无官能团可共价交联而难于固载标记的缺点,以复合纳米材料为载体,用掺杂、吸附或包埋联吡啶钌的方法增加联吡啶钌固载量,并标记抗体;采用不同的信号放大策略及巧妙的检测策略构建信号增强型及多组分检测型电致化学发光药物及免疫传感器。研究工作分为以下几个部分:
     1.多壁碳纳米管和联吡啶钉/纳米金复合纳米球为有效基质自组装构建新型固相电致化学发光药物传感器研究
     利用纳米金及多壁碳纳米管等纳米材料比表面积大、导电性好,可增加联吡啶钉固载量并有效增加单位时间内光量子激发态数量,放大Ru(bpy)32+ -TPrA体系电致化学发光强度的特点,我们新制备了联吡啶钌掺杂纳米金的纳米球颗粒用于固相电致化学发光传感器构建,并将该传感器用于对苦参碱药物的定量测定。该部分研究工作,成功通过定量计算对比不同纳米颗粒修饰电极的电活性比表面积,探讨不同纳米颗粒对电致化学发光传感器性能的贡献,实现了电致化学发光性能的定量分析。实验结果表明多壁碳纳米管与纳米金相比,多壁碳纳米管能为修饰电极提供更大的电活性比表面积,更有利于联吡啶钌固相电致化学发光。将多壁碳纳米管与纳米金结合构建的固相电致化学发光传感器具有更高的灵敏度,其对苦参碱线性响应范围为2.0 X 10-6-6.0X 10-3 mol·L-1,最低检测限为0.7μmol·L-1。
     2.联吡啶钌掺杂二氧化钛纳米颗粒标记抗体构建超灵敏电致化学发光免疫传感器研究
     该部分研究工作,以TiO2纳米颗粒作为免疫标记载体,利用TiO2半导体纳米材料比表面积大,能降低光量子激发态能垒,有助于增强电致化学发光的优点,制备了Nafion包裹的TiO2复合纳米颗粒,将联吡啶钉分子通过阳离子交换作用固载在纳米颗粒表面,并利用Nafion嵌套抗体,将信号探针联吡啶钌标记到抗体上。该方法巧妙的运用联吡啶钌掺杂TiO2复合纳米颗粒既固载探针又标记抗体,解决了联吡啶钉无官能团可交联标记的缺陷,同时利用纳米颗粒大比表面积增加了联吡啶钉的标记量,从而放大检测信号,提高免疫传感器灵敏度。实验结果表明目标ECL免疫传感器对HCG抗原有较灵敏的分析表现,线性范围是0.02-25 mIU·mL-1,最低检测下限是0.007 mlU·mL-1 (S/N=3).
     3.基于电位控制小麦状银颗粒高效催化联吡啶钌发光构建信号增强型电致化学发光免疫传感器的研究
     我们用循环伏安扫描法制得一种新的小麦状银颗粒,并发现该颗粒在-0.4-1.25 V电位下,当发生Ag+/Ag氧化还原时,对联吡啶钌的电致化学发光有明显增强作用,我们将此作为信号放大步骤之一用于构建ECL免疫传感器。同时,利用Pt纳米颗粒掺杂及亲和素/生物素多位点耦联技术增加联吡啶钌分子在二抗上的标记量作为又一信号放大步骤。二者联用以多级放大免疫检测信号,提高传感器灵敏度。实验结果表明该免疫传感器在0.01-20 ng-mL-1范围内对IgG抗原有较好的线性响应,检测限为3 pg-mL-1 (S/N=3)。在这一没有共反应试剂的ECL体系中,Ru(bpy)32+发光信号通过DpAg纳米颗粒催化,Pt纳米材料掺杂及亲和素/生物素多位点耦联得以充分放大。
     4.脂质体包裹增强信号小分子做为传感和放大平台结合适配体传感器用于超灵敏电致化学发光免疫测定
     我们成功地合成了包裹可卡因分子的脂质体纳米颗粒,联合免疫脂质体可放大水溶性信号物标记量,适体链可特异结合识别小分子的特点,将这两种高灵敏高特异的生物分析技术相结合通过多级放大用于电致化学发光免疫分析。实验选择对联吡啶钉发光有增强作用的小分子-可卡因作为信号报告物,利用包裹可卡因分子的免疫脂质体建立与可卡因浓度相关的免疫检测平台,然后利用可卡因对联吡啶钉发光信号的增强作用,通过新设计的特异识别可卡因的适配体传感器检测从免疫脂质体释放的可卡因浓度,从而间接实现对免疫抗原的定量检测。该检测策略避免了水溶性联吡啶钌的固载,通过脂质体放大信号报告分子可卡因的量,再通过可卡因对联吡啶钉的共反应试剂作用增强联吡啶钌发光,实现免疫检测信号的特异性多重放大。该多种放大技术联用的超灵敏免疫检测策略用于心衰标志物NT-proBNP检测,检测限可达0.77pg-mL-1。
     5.基于多组分肿瘤标志物同时检测的电致化学发光免疫传感器研究
     我们最新的研究发现过硫酸根S2O82-除了文献报道的可以增强联吡啶钌阴极发光外,其本身在电位-1.4 V也有电致化学发光。我们成功地将S2O82-的阴极发光与联吡啶钌的阳极发光相结合,以脂质体为免疫标记载体,将联吡啶钌和过硫酸钾分别用脂质体包裹并分别标记到两种不同肿瘤标志物上,按夹心反应模式构建多种肿瘤标志物同时检测的电致化学发光免疫传感器,初步探索用电致化学发光技术在同一敏感界面实现多组分的同时组装同时检测。实验结果表明S2O82-标记抗体对应的AFP抗原检测线性响应范围为20-250 ng-mL-1,检测限为6.7ng·mL-1 (S/N=3), Ru(bpy)32+标记抗体对应的CEA抗原检测线性响应范围为5~150 ng·mL-1,检测限为1.6 ng-mL-1 (S/N=3)。由于溶解氧及联吡啶钌对S2O82-阴极发光的影响,S2O82-标记抗体对应的检测信号更大,故得到的对应AFP抗原检测限更低。
Electrochemiluminescence (ECL) immunosensors combined the merits of ECL technology and immunoassay, are valuable tools for monitoring the antibody or antigen due to the advantages of high sensitivity, high selectivity and low background. The biological recognition system on an immunosensor is pivotal for the trancduction between the biorecognition event and detected signal. In the system, using the material and biological amplificatory technology to specifically transduce and amplify the signal is an effective approach for improving the sensitivity. This research focuses on the preparation of the multi-functionalized nanomaterials, the construction of the immunoreaction interface, the strategy of sensitivity enhancement and the multiplexed assay by Ru(bpy)32+ -based ECL immunosensors. The detail contents are as follows:
     1. Multi-walled carbon nanotubes and Ru(bpy)32+/nano-Au nano-sphere as efficient matrixes for a novel solid-state electrochemiluminescence sensor.
     As the large surface area and conductivity of gold nanoparticles, it was employed to prepare the Ru(bpy)32+/nano-Au nano-sphere (abbreviate as Ru-AuNPs) via the electrostatic interactions. And an effective method for immobilization of Ru(bpy)32+ is developed by using the Ru-AuNPs and MWCNTs-Nafion composite nanoparticles for a novel ECL sensor. The experiment confirms that the enhancement of the ECL intensity on the sensor is attributed to following reasons. One hand, the employment of MWCNTs in the Nafion film enlarged the electro-active surface areas to benefit the contact between the signal probe on the composite film and co-reactant used as reinforcing agent. On the other hand, the nano-materials of MWCNTs and nano-Au also improve the conductivity of the self-assembled film so as to increase the quantity of excited state of Ru(bpy)32+ in the unit time and finally cause better properties in luminescence. The ECL sensor was used to detect a kind of alkaloid medicine, Matrine. It showed the good response to the concentration of the Matrine from 2.0×10-6 mol·L-1 to 6.0×10-3 mol·L-1. Furthermore, this work innovatively employs the quantificational count of electro-active surface area to explain the contribution of nanomaterial for ECL response, which brings the new approach into the ECL research region of nanomaterial.
     2. A new electrochemiluminescence immunosensor based on Ru(bpy)32+ -doped TiO2 nanoparticles labeling for ultrasensitive detection of human chorionic gonadotrophin.
     As the large surface area and low protons excited energy of TiO2 nanoparticles, a sensitive ECL immunosensor was constructed on the basis of sandwich type immunoreaction with Nafion functionalized TiO2 composite nanoparticles as label. The composite nanoparticles labeled antibody were synthesized by successively loading the antibody and large amounts of Ru(bpy)32+ molecules onto the Nafion coated TiO2 nanoparticles, which is named as Ru-Nafion@TiO2 labeled secondary antibody. They together with the electro-deposited gold nanoparticles (DpAu) were employed to assemble the ECL immunosensor. The capability of the immunosensor was evaluated by detecting the ECL responses of immunosensor on different concentrations of human chorionic gonadotrophin (HCG). Comparing with other immunoassays, the sandwich-type ECL immunosensor assembled with DpAu and Ru-Nafion@TiO2 nanoparticles can perform the ultrasensitive detection to HCG with a low detection limit 0.007 mIU·mL-1.
     3. Potential controlling highly-efficient catalysis of wheat-like silver particles for electrochemiluminescence immunosensor labeled by nano-Pt@Ru and multi-sites biotin/streptavidin affinity.
     The potential controlling silver catalysis for Ru(bpy)32+ ECL signal at a special potential-0.4-1.25 V was newly developed as the ECL signal amplification strategy for ultrasensitive protein detection. In the proposed Ru(bpy)32+ ECL immune system without any co-reactant, the detected ECL signal was amplified due to the following multiple amplification strategies:(1) the ECL catalysis for Ru(bpy)32+ were performed by electro-inducing the DpAg particles to generate Ag+ ion and controlled by the special potential. The catalyzer Ag+ produced near the electrode surface and reproduced by cyclic potential scan, which improved the catalytical efficiency. (2) The amount of the ECL signal probes linked to secondary antibodies were amplified by the adsorption of Pt nanoparticles and the multiple sites bridge linkage of biotin/SA. These new multiple signal amplification strategies made the proposed ECL immunosensor achieve ultrasensitive detection for model protein human IgG with the detection limit down to 3 pg·mL-1.
     4. Signal-enhancer molecules encapsulated liposome as a valuable sensing and amplification platform combining the aptasensor for ultrasensitive ECL immunoassay.
     Based on the associated signal amplificatory technology, an innovatory ECL immunoassay strategy was proposed to detect the newly-developing heart failure biomarker N-terminal pro-brain natriuretic peptide (NT-proBNP). Firstly, this strategy used small molecules encapsulated liposome as immune label to construct a sandwich immune sensing platform for NT-proBNP. Then the ECL aptasensor was prepared to collect and detect the small molecules released from the liposome. Finally, based on the ECL signal changes caused by the small molecules, the ECL signal indirectly reflected the level of NT-proBNP antigen. In this experiment, the cocaine was chosen as the proper small molecule that can act as signal-enhancer to enhance the ECL of Ru(bpy)32+ The quantificational calculation proved the -5.3x103 cocaine molecules per liposome enough to perform the assignment of signal amplification. The cocaine-binding ECL aptasensor further promoted the work aimed at amplifying signal. The performance of NT-proBNP assay by the proposed strategy exhibited high sensitivity and high specificities with a linear relationship over 0.01-500 ng-mL-1 range, and a detection limit down to 0.77 pg·mL-1.
     5. The study on the electrochemiluminescence immunosensor based on the simultaneous multiplexed immunoassay.
     A new discovery that the cathodal ECL of S2O82- anion appears at -1.4 V promotes the multiplexed assay by ECL immunosensor. The K2S2O8 and Ru(bpy)32+ were chosen as the ECL signal probe and respectively encapsulated in liposome as immune label. Relative to the Ru(bpy)32+ -encapsulated liposome as the label of anti-CEA, the K2S2O8-encapsulated liposome was used to label the anti-AFP. Then they were orderly subjected the sandwich immunoassay on one electrode surface. Finally, these ECL probes were released by the lysing and adsorbed on the electrode suface for the detection. The cathodal and anodic ECL scans were executed synchronously at the potential scope of -1.6 V-1.25 V. And the ECL reponses appeared at -1.4 V for the AFP antigen and at 1.2 V for the CEA. Due to the enhancement of the dissolved oxygen, the ECL response with the S2O82- anion label is larger than that with the Ru(bpy)32+ label. The immunosensor showed linear ranges of 20-250 ng·mL-1 for AFP and 5-150 ng·mL-1 for CEA. This result testifies that the multiplexed assay can be realized in the ECL.
引文
[1]王兰兰.临床免疫学和免疫检验.第3版.北京:人民卫生出版社,2004,14-19.
    [2]Engvall E., Perlman P. Enzyme-linked immunosorbent assay (ELISA). Quantitative assay of immunoglobulin G. Immunochemistry,1971,8:871-874.
    [3]Wu A.H.B. A selected history and future of immunoassay development and applications in clinical chemistry. Clin. Chim. Acta,2006,369:119-124.
    [4]Gooding J. J. Biosensor technology for detecting biological warfare agents:Recent progress and future trends. Anal. Chim. Acta,2006,559:137-151.
    [5]Thevenot D.R., Toth K., Durst R.A., et al. Electrochemical biosensors:recommended definitions and classification. Biosens. Bioelectron.,2001,16:121-131.
    [6]Hage D. S. Immunoassays. Anal.Chem.,1999,71:294-304.
    [7]Xue Y.D., Ding L., Lei J.P., Ju H.X. A simple electrochemical lectinprobe for in situ homogeneous cytosensing and facile evaluation of cell surface glycan, Biosens. Bioelectron., 2010,26:169-174.
    [8]Wang J. Electroanalysis and Biosensors. Anal. Chem.,1993,65:450-453.
    [9]Han E., Ding L., Jin S., Ju H.X. Electrochemiluminescent biosensing of carbohydrate functionalized CdS nanocomposites for in situ label-free analysis of cell surface carbohydrate, Biosens. Bioelectron.,2011,2:2500-2505.
    [10]吴双双,滕召胜等.基于压电免疫传感器的日本血吸虫病诊断仪.测控技术,2010,29:1-4.
    [11]Zhang B., Mao Q.G., Zhang X., Jiang T.L., Chen M., Yu F. Fu W.L. A novel piezoelectric quartz micro-array immunosensor based on self-assembled monolayer for determination of human chorionic gonadotropin. Biosens. Bioelectron.,2004,19:711-720.
    [12]钟桐生,刘国东,沈国励,俞汝勤.电化学免疫传感器研究进展.化学传感器,2002,22:1-12.
    [13]缪璐,刘仲明等.电化学免疫传感器的研究进展.中国医学物理学杂志,2006,23:132-134.
    [14]付志英,李朝辉,何晓晓,王柯敏等.水溶性量子点荧光探针用于胃癌细胞相关抗原CA242的检测.分析化学,2006,34:1669-1673.
    [15]杨秀荣.等离子体共振免疫传感器的进展.化学传感膨器,2001,21:21-22.
    [16]Salle A.L.G.L., Limoges B., Rapicault S., Degrand, C., Brossier P. New immunoassay techniques using Nafion-modified electrodes and cationic redox labels or enzyme labels. Anal. Chim. Acta,1995,311:301-308.
    [17]Choi H.N., Cho S.H., Park Y.J., Lee D.W., Lee W.Y. Sol-gel immobilized Tris(2,2'-bipyridyl) ruthenium(II) electrogenerated chemiluminescence sensor for high-performance liquid chromato-graphy. Anal. Chim. Acta,2005,541:49-56.
    [18]Ngeh-Ngwainbi J., Foley P. H., Kuan S. S., et al. Parathion antibodies on piezoelectric crystals. J. Am. Chem. Soc.,1986,108:5444-5447.
    [19]Zhang X., Chen H., Zhang H. Layer-by-layer assembly:from conventional to unconventional methods. Chem. Commun.,2007,14:1395-1400.
    [20]王晓英.基于电致化学发光技术的纳米生传感器的设计与研究:[博士学位论文].上海:华东师范大学,2008,1-2.
    [21]Miao W.J. Electrogenerated Chemiluminescence and Its Biorelated Applications. Chem. Rev., 2008.108:2506-2553.
    [22]Richter M.M. Electrochemiluminescence (ECL). Chem. Rev.,2004.104:3003-3036.
    [23]Tokel N., Bard A.J. Electrogenerated chemiluminescence. IX. Electrochemistry and emission from systems containing tris(2,2'-bipyridine)ruthenium(Ⅱ) dichloride. J. Am. Chem. Soc.,1972, 94:2862-2863.
    [24]Richter M.M., Debad J.D., StriPlin D.R., Crosby G.A., Bard A.J. Electrogenerated Chemiluminescence.59. Rhenium Complexes. Anal. Chem.,1996,68:4370-4376.
    [25]Abruna H.D. Electrogenerated Chemiluminescence of Bipyridine and Phenauthroline Complexes of Osmium. J. Electroanal. Chem.,1984,175:321-326.
    [26]Kim B.H., Lee D.N., Park H.J., Min J.H., Jun Y.M., Park S.J., Lee W.-Y. Synthesis and characterization of electrochemiluminescent ruthenium(Ⅱ) complexes containing o-phenanth roline and various a-diimine ligands.Talanta,2004,62:595-602.
    [27]Li M., Liu J., Zhao C., Sun L. Aryl-diamide bridged binuclear ruthenium (Ⅱ) tris(bipyridine) complexes:Synthesis, photophysical, electrochemical and electrochemiluminescence properties. J. Organomet. Chem.,2006,691:4189-4195.
    [28]Ketter J. B., Wightman R.M. Tuning Emissive States in Electrogenerated Chemiluminescence. J.Am. Chem. Soc.,2004,126:10183-10189.
    [29]Lai R.Y., Fleming J.J., Memer B.L.. Vermeij R.J., Bodwell G.J., Bard A.J. Electrogenerated Chemiluminescence.74. Photophysical, Electrochemical, and Electrogenerated Chemilumine-scent Studies of Selected Nonplanar Pyrenophanes. J. Phys. Chem. A,2004,108:376-383.
    [30]Miao W.J., Choi J.P., Bard A.J. Electrogenerated Chemiluminescence 69:The Tris(2,2'-bipyri-dine) ruthenium (Ⅱ), (Ru(bpy)32+)/Tri-n-propylamine (TPrA) System RevisitedsA New Route Involving TPrA+Cation Radicals. J. Am. Chem. Soc.,2002,124:14478-14485.
    [31]Zu Y.B., Bard A.J. Electrogenerated Chemiluminescence.66. The Role of Direct Coreactant Oxidation in the Ruthenium Tris(2,2')bipyridyl/Tripropylamine System and the Effect of Halide Ions on the Emission Intensity. Anal. Chem.,2000,72:3223-3232.
    [32]Li F., Zu Y.B. Effect of Nonionic Fluorosurfactant on the Electrogenerated Chemiluminescence of the Tris(2.2'-bipyridine)ruthenium(Ⅱ)/Tri-n-propylamine System: Lower Oxidation Potential and Higher Emission Intensity. Anal. Chem.,2004,76:1768-1772.
    [33]Xu Y.H.. Gao Y., Wei H., Du Y., Wang E.K.. Field-amplified sample stacking capillary electro-phoresis with electrochemiluminescence applied to the determination of illicit drugs on banknotes. J. Chromatogr. A,2006,1115:260-266.
    [34]Chovin A., Garrigue P., Sojic N. Remote NADH imaging through an ordered array of electro-chemiluminescent nanoapertures. Bioelectrochemistry,2006,69:25-33.
    [35]Noffsinger J.B., Danielson N.D. Generation of Chemiluminescence upon Reaction of Aliphatic. Amines witb Tris(2,2'-bipyridine)ruthenium (Ⅲ). Anal. Chem.,1987,59:865-868.
    [36]Leland J.K., Powell M.J. Electrogenerated chemiluminescence:An oxidative-reduction type ECL reaction sequence using tripropyl amine. J. Electrochem. Soc.,1990,137:3127-3131.
    [37]Rubinstein I., Martin C.R., Bard A.J. Electrogenerated chemiluminescence determination of oxalate. Anal. Chem.,1983,55:1580-1582.
    [38]Ege D., Becker W.G., Bard A.J. Electrogenerated Chemiluminescent Determination of Ru(bpy)32+ at low levels. Anal. Chem.,1984,56:2413-2417.
    [39]Chen X., Sato M., Lin Y.J. Study of the electrochemiluminescence based on tris(2,2'-bipyridine) ruthenium(II) and alcohols in a flow injection system. Microchem. J.,1998,58:13-20.
    [40]Zheng H.Z., Zu Y.B. Emission of Tris(2,2'-bipyridine)ruthenium(II) by Coreactant Electro-generated Chemiluminescence:From O2-Insensitive to Highly O2-Sensitive. J. Phys.Chem.B, 2005,109:12049-12053.
    [41]Chi Y.W., Dong Y.Q., Chen G.N. Inhibited Ru(bpy)32+ electrochemiluminescence related to electrochemical oxidation activity of inhibitors. Anal. Chem.,2007,79:4521-4528.
    [42]Cao W.D., Ferrance J.P., Demas J.. Landers J.P., Quenching of the Electrochemiluminescence of Tris(2,2'-bipyridine)ruthenium(II) by Ferrocene and Its Potential Application to Quantitative DNA Detection. J. Am. Chem. Soc.,2006.128:7572-7578.
    [43]Richards T.C., Bard A.J. Electrogenerated chemiluminescence.57. Emission from sodium 9,10-diphenylanthracene-2-sulfonate, thianthrenecarboxylic acids, and chlorpromazine in aqueous media. Anal. Chem.,1995,67:3140-3147.
    [44]Haapakka K.E., Kankare J.J. Electrogenerated chemiluminescence of lucigenin in aqueous alkaline solutions at a platinum electrode. Anal. Chim. Acta,1981,130:415-418.
    [45]Zhang C., Qi H. Highly sensitive determination of riboflavin based on the enhanced electro-generated chemiluminescence of lucigenin at a platinum electrode in a neutral aqueous solution. Anal. Sci.,2002,18:819-822.
    [46]Lin J.M., Yamada M. Electrogenerated Chemiluminescence of Methyl-9-(p-formylphenyl) Acridinium Carboxylate Fluorosulfonate and Its Applications to Immunoassay. Microchem,J., 1998,58:105-116.
    [47]Chen G.N., Zhang L., Lin R.E., Yang Z.C., Duan J.P., Chen H.Q., Hibbert D.B. The electrogenerated chemiluminescence behavior of hemin and its catalytical activity for the electrogenerated chemiluminescence of lucigenin. Talanta,2000,50:1275-1281.
    [48]Haapakka K.E., Kankare J.J. Apparatus for mechanistic and analytical studies of the electrogenerated chemiluminescence of luminol. Anal. Chim. Acta,1982,138:253-262.
    [49]Zhu L.D., Li Y.X., Zhu G.Y. A novel flow through optical fiber biosensor for glucose based on luminol electrochemiluminescence. Sensor. Actuat.B-chem.,2002,86:209-214.
    [50]Tsafack V.C., Marquette C.A., Leca B., Blum L.J. An electrochemiluminescence-based fibre optic biosensor for choline flow injection analysis. Analyst,2000,125:151-155.
    [51]Zhang G.F., Chen H.Y., Studies of polyluminol modified electrode and its application in electrochemiluminescence analysis with flow system. Anal. Chim. Acta,2000,419:25-31.
    [52]Zhang L., Zhou J.M., Hao Y.H., He P.C., Fang Y.Z., Determination of Co2+ based on the cobalt(II)-catalyzed electrochemiluminescence of luminol in acidic solution. Electrochim. Acta, 2005,50:3414-3419.
    [53]Sun Y.C., Cui H., Lin X.Q., Li Y.H., Zhao H.Z., Flow injection analysis of pyrogallol with enhanced electrochemiluminescent detection. Anal. Chem. Acta.2000,423:247-253.
    [54]Sun Y.C., Cui H., Li Y.H., Determination of some catechol derivatives by a flow injection electrochemiluminescent inhibition method. Talanta,2000.53:661-666.
    [55]Elangovan A., Chen T.-Y, Chen, C.-Y., Ho. T.-I. First Synthesis and electrogenerated Chemiluminescence of para substituted phenylquinolinyl-ethynes. Chem. Commun.,2003,17: 2146-2147.
    [56]Elangovan A., Lin J.-H., Yang S.-W., Hsu H.-Y., Ho T.-I. Synthesis and Electrogenerated Chemiluminescence of Donor-Substituted Phenylethynylcoumarins. J. Org. Chem.,2004,69: 8086-8092.
    [57]Elangovan A., Lin J.-H., Yang S.-W., Hsu H.-Y, Ho T.-I. Synthesis and Electrogenerated Chemiluminescence of Donor-Substituted Phenylethynylcoumarins. J. Org. Chem.,2005,70: 1104-1104.
    [58]Elangovan A., Kao K.-M., Yang S.-W., Chen Y.-L., Ho T.-I.. Su Y.O. Synthesis, Electronic Properties, and Electrochemiluminescence of Donor-Substituted Phenylethynylanthronitriles. J. Org. Chem.,2005,70:4460-4469.
    [59]Elangovan A., Chiu H.-H., Yang S.-W., Ho T.-I. Arylethynylacridines:electrochemilumine-scence and photophysical properties. Org. Biomol. Chem,.2004.2:3113-3118..
    [60]Elangovan A., Yang S.-W., Lin J.-H., Kao K.-M., Ho T.-I. Synthesis and electrogenerated chemiluminescence of donor-substituted phenylquinolinylethynes and phenylisoquinolinyl-ethynes:effect of positional isomerism. Org. Biomol. Chem.,2004,2:1597-1602.
    [61]Kapturkiewicz A. Electrochemical generation of the excited TICT states Part III. Aryl derivatives of N,N-dimethylaniline. J. Electroanal. Chem. Interfacial Electrochem.,1991,302: 131-144.
    [62]Chandross E.A., Longworth J.W., Visco R.E. Excimer Formation and Emission via the Annihilation of Electrogenerated Aromatic Hydrocarbon Radical Cations and Anions. J. Am. Chem. Soc.,1965,87:3259-3260.
    [63]Ding Z., Quinn B.M.. Haram S.K.. Pell L.E., Korgel B.A., Bard A.J. Electrochemistry and Electrogenerated Chemiluminescence from Silicon Nanocrystal Quantum Dots. Science,2002, 296:1293-1297.
    [64]Bard A.J., Ding Z., Myung N. Electrochemistry and Electrogenerated Chemiluminescence of Semiconductor Nanocrystals in Solutions and in Films. Struct. Bonding (Berlin, Germany), 2005,118:1-57.
    [65]Myung N., Bae Y., Bard A.J. Effect of Surface Passivation on the Electrogenerated Chemiluminescence of CdSe/ZnSe Nanocrystals. Nano Lett.,2003,3:1053-1055.
    [66]游子涵.水溶性CdSe量子点的合成及其化学/电致化学发光性质研究:[硕士毕业论文].武汉:华中农业大学,2007,44-45.
    [67]Jie G.F, Liu B., Miao J.J., Zhu J.J. Electrogenerated chemiluminescence from CdS nanotubes and its sensing application in aqueous solution. Talanta,2007,71:1476-1480.
    [68]Bae Y., Myung N., Bard A.J. Electrochemistry and Electrogenerated Chemiluminescence of CdTe Nanoparticles. Nano Lett.,2004,4:1153-1161.
    [69]Bae Y., Lee D.C., Rhogojina E.V., Jurbergs D.C., Korgel B.A.. Bard A.J. Electrochemistry and Electrogenerated Chemiluminescence of Films of Silicon Nanoparticles in Aqueous Solution. Nanotechnology,2006,17:3791-3797.
    [70]Wehrenberg B.L., Guyot-Sionnest P. Electron and hole injection in PbSe quantum dot films. J. Am. Chem. Soc.,2003,125:7806-7807.
    [71]Guyot-Sionnest P.; Wang C., Light emission and amplification in charged CdSe quantum dots. J. Phys. Chem. B,2003,107:7355-7359.
    [72]Hikmet R.A.M., Talapin D.V., Weller H. Study of conduction mechanism and electrolumine-scence in CdSe/ZnS quantum dot composites. J. Appl. Phys.,2003,93:3509-3514.
    [73]Poznyak S.K., Talapin D.V., Shevchenko E.V., Weller H. Quantum Dot Chemiluminescence. Nano Lett.,2004,4:693-698.
    [74]Haese A., Dworschack R.T., Piccoli S.P., Sokoll L.J., Partin A.W., Chan D.W., Clinical Evaluation of the Elecsys Total Prostate-specific Antigen Assay on the Elecsys 1010 and 2010 Systems. Clin. Chem.,2002,48:944-947.
    [75]Seghaye M.-C., Qing M, Bernuth G. Systemic inflammatory response to cardiac surgery:does female sex really protect. Crit. Care.,2001,5:280-282.
    [76]Kulmala S., Hakansson M., Spehar A.-M., Nyman A., Kankare J., Loikas K., Ala-Kleme T., Eskola J. Heterogeneous and homogeneous electrochemiluminoimmunoassays of hTSH at disposable oxide-covered aluminum electrodes. Anal. Chim. Acta,2002,458:271-280.
    [77]Collinson P.O., Jorgensen B., Sylven C., Haass M., Chwallek F., Katus H.S., Muller-Bardorff M., Derhaschnig U., Hirschl M.M., Zerback R. Recalibration of the point-of-care test for CARDIAC T Quantitative with Elecsys Troponin T 3rd generation. Clin. Chim. Acta,2001, 307:197-203.
    [78]Olsvik O., Popovic T., Skjerve E., Cudjoe K.S., Homes E., Ugelstad J., Uhlen M. Magnetic separation techniques in diagnostic microbiology. Clin. Microbiol. Rev.,1994,7:43-54.
    [79]Namba Y., Usami M., Suzuki O. Electrochemiluminescence immunoassay using the ruthenium chelate-labeled antibody bound on the magnetic micro beads. Anal. Sci.,1999,15:1087-1093.
    [80]Deiss F., LaFratta C.N., Symer M., Blicharz T.M., Sojic N., Walt D.R. Multiplexed sandwich immunoassays using electrochemiluminescence imaging resolved at the single bead level. J. Am. Chem. Soc.,2009,131:6088-6089.
    [81]Miao W.J., Bard A.J. Electrogenerated chemiluminescence 80. C-reactive protein determination at high amplification with [Ru(bpy)3]2+ -Containing microspheres. Anal. Chem., 2004,76:7109-7113.
    [82]Miao W.J., Bard A.J. Electrogenerated Chemiluminescence.72. Determination of Immobilized DNA and C-Reactive Protein on Au(Ⅲ) Electrodes Using Tris(2,2'-bipyridyl)ruthenium(II) Labels. Anal. Chem.,2003,75:5825-5834.
    [83]Yilmaz N., Erbagci A.B., Aynacioglu A.S. Cytochrome P4502C9 genotype in Southeast Anatolia and possible relation with some serum tumour markers and cytokines. Acta Biochim. Pol.,2001,48:775-782.
    [84]Yamaguchi K., Sawada T., Yamane S., Haga S., Ikeda K., Igata-Yi R., Yoshiki K., Matsuoka M., Okabe H., Horii Y., Nawa Y., Waltrip R.W., Carbone K.M. Synthetic peptide-based electro-chemiluminescence immunoassay for anti-Borna disease virus p40 and p24 antibodies in rat and horse serum. Ann. Clin. Biochem.,2001,38:348-355.
    [85]Stiebler P., Molina R., Chan D.W., Fritsche H.A., Beyrau R., Bonfrer J.M.G., Filella X., Gornet T.G., Hoff T., Inger W., Van Kamp G.J., Nagel D., Peisker K., Sokoll L.J., Troalen E, Untch M., Domke I. Evaluation of the Analytical and Clinical Performance of the Elecsys CA 15-3 Immun-oassay. Clin. Chem.,2001,47:2162-2164.
    [86]Bruno J.G., Kiel J.L. Use of Magnetic Beads in Selection and Detection of Biotoxin Aptamers by Electrochemiluminescence and Enzymatic Methods. Biotechniques,2002,32:178-183.
    [87]Hubl W., Chan D.W., Van Ingen H.E., Miyachi H., Molina R., Filella X., Pitzel L., Ruibal A., Rymer J.C., Bagnard G., Domke I. Multicenter evaluation of the Elecsys CA 125 II assay. AnticancerRes.,1999,19:2727-2733.
    [88]Ohlin M., Silvestri M., Sundqvist V.A., Borrebaeck C.A. Cytomegalovirus glycoprotein B-specific antibody analysis using electrochemiluminescence detection-based techniques. Clin. Diag. Lab. Immunol.,1997,4:107-111.
    [89]Gassler N., Peuschel T., Pankau R. Pediatric reference values of estradiol, testosterone, lutropin, follitropin and prolactin. Clin. Lab.,2000,46:553-560.
    [90]Ehrhardt V, Assman G., Baetz O., Bieglmayer C., Mueller C., Neumeier D., Roth H.J., Veys A., Yvert J.P. Results of the multicentre evaluation of an electrochemiluminescence immunoassay for HCG on Elecsys 2010.Wien. Klin. Wochenschr.,1998,110:61-67.
    [91]Weber B., Bayer A., Kirch P., Schluter V., Schlieper D., Melchior W. Improved detection of hepatitis B virus surface antigen by a new rapid automated assay. J. Clin. Microbiol.,1999,37: 2639-2647.
    [92]de Baar M.P., vanderHorn K.H.M., Goudsmit J., de Ronde A., de Wolf F. Detection of human immunodeficiency virus type I nucleocapsid protein p7 in vitro and in vivo. J. Clin. Microbiol., 1999,37:63-67.
    [93]Kobrynski L., Tanimune L., Pawlowski N.A., Douglas S.D., Campbell D.E. A comparison of electrochemiluminescence and flow cytometry for the detection of natural latex-specific human immunoglobulin E. Clin. Diag. Lab. Immunol.,1996,3:42-46.
    [94]Yoon C.H., Cho J.-H.. Oh H.-L, Kim M.-J., Lee C.-W., Choi J.-W., Paek S.-H. Development of a membrane strip immunosensor utilizing ruthenium as an electro-chemiluminescent signal generator. Biosens. Bioelectron.,2003,19:289-296.
    [95]Yin X.B., Qi B., Sun X.P., Yang X.R., Wang E.K.4-(Dimethylamino)butyric acid labeling for electrochemiluminescence detection of biological substances by increasing sensitivity with gold nanoparticle amplification, Anal. Chem.,2005,77:3525-3530.
    [961 Rubinstein I., Bard A.J. Polymer films on electrodes.4. Nafion-Coated Electrodes and Electro-generated Chemiluminescence of Surface Attached Ru(bpy)32+. J. Am. Chem. Soc.,1980,102: 6641-6642.
    [97]Tao Y., Lin Z.J., Chen X.M., Chen X., Wang X.R. Tris(2,2'-bipyridyl)ruthenium(Ⅱ) electro-chemiluminescence sensor based on carbon nanotube/organically modified silicate films. Anal. Chim. Acta,2007,594:169-174.
    [98]Greenway G. M., Greenwood A.. Watts P., Wiles C. Solid-supported chemiluminescence and electrogenerated chemiluminescence based on a tris(2,2-bipyridyl)ruthenium(Ⅱ) derivative. Chem. Commun..2006,42:85-87.
    [99]Ding S.N., Xu J.J., Zhang W.J., Chen H.Y. Tris(2.2'-bipyridyl)ruthenium(Ⅱ)-Zirconia-Nafion composite modified electrode applied as solid-state electrochemiluminescence detector on electrophoretic microchip for detection of pharmaceuticals of tramadol, lidocaine and ofloxacin. Talanta,2006,70:572-577.
    [100]Wei H., Du Y., Kang J., Wang E.K. Label free electrochemiluminescence protocol for sensitive DNA detection with a tris(2,2'-bipyridyl)ruthenium(Ⅱ) modified electrode based on nucleic acid oxidation. Electrochem. Commun.,2007,9:1474-1479.
    [101]Shi L.H., Liu X.Q., Li H.J., Xu G.B. Electrochemiluminescent Detection Based on Solid-Phase Extraction at Tris(2,2'-bipyridyl)ruthenium(Ⅱ)-Modified Ceramic Carbon Electrode.Anal. Chem.,2006,78:7330-7334.
    [102]Du Y., Qi B., Yang X., Wang E.K. Synthesis of PtNPs/AQ/Ru(bpy)32+ colloid and its application as a sensitive solid-state electrochemiluminescence sensor material. J. Phys. Chem. B,2006,110:21662-21666.
    [103]Guo Z.H., Shen Y., Zhao F., Wang M.K., Dong S.J. Electrochemical and electrogenerated chemiluminescence of clay nanoparticles/Ru(bpy)32+ multilayer films on ITO electrodes. Analyst,2004,129:657-663.
    [104]Zhang L., Xu Z., Sun X.P., Dong S.J. A novel alcohol dehydrogenase biosensor based on
    solid-state electrogenerated chemiluminescence by assembling dehydrogenase to Ru(bpy)32+-Au nanoparticles aggregates. Biosens. Bioelectron.,2007,22:1097-1100.
    [105]Dennany L., Hogan C.F., Keyes T.E., Forster R.J. Effect of Surface Immobilization on the Electrochemiluminescence of Ruthenium-Containing Metallopolymers. Anal. Chem.,2006, 78:1412-1417.
    [106]Lowry R.B., Williams C.E., Braven J. Initial studies of an immobilised, regenerable chemi-luminescent sensor. Talanta,2004.63:961-966.
    [107]Wei H.. Wang E.K. Solid-state electrochemiluminescence of tris(2,2'-bipyridyl) ruthenium. TrAC:Trends Anal. Chem.,2008,27:447-459.
    [108]Marquette C.A., Blum L.J. Electrochemiluminescence of luminol for 2,4-D optical immuno-sensing in a flow injection analysis system. Sensor. Actuat.B-chem.,1998,51:100-106.
    [109]Qi H.L., Zhang C.X. Homogeneous electrogenerated chemiluminescence immunoassay for the determination of digoxin. Anal. Chim. Acta,2004,501:31-35.
    [110]张毅.纳米粒子组装电化学发光免疫分析研究:[硕士学位论文].西安:陕西师范大学,2005,30-32.
    [111]Zhang C.X., Zhang H.H., Feng M.L. Homogeneous electrogenerated chemiluminescence immunoassay using a luminol-labeled digoxin hapten. Anal. Lett.,2003,36:1103-1114.
    [112]Arai K., Takahashi K., Kusu F. An electrochemiluminescence flow-through cell and its applications to sensitive immunoassay using N-(aminobutyl)-N-ethylisoluminol. Anal. Chem., 1999,71:2237-2240.
    [113]Qi H.L., Zhang Y., Peng Y.G., Zhang C.X. Homogenous electrogenerated chemiluminescence immunoassay for human immunoglobulin G using N-(aminobutyl)-N-ethyliso-luminol as luminescence label at gold nanoparticles modified paraffin-impregnated graphite electrode. Talanta,2008,75:684-690.
    [114]Dai H., Chi Y.W., Wu X.P., Wang Y.M., Wei M.D., Chen G.N.. Biocompatible electrochemi-luminescent biosensor for choline based on enzyme/titanate nanotubes/chitosan composite modified electrode. Biosens. Bioelectron.,2010,25:1414-1419.
    [115]Algar W.R., Tavares A.J., Krull U.J. Beyond labels:A review of the application of quantum dots as integrated components of assays, bioprobes, and biosensors utilizing optical transduction. Anal. Chim. Acta,2010,673:1-25.
    [116]Zou G.Z., Ju H.X. Electrogenerated chemiluminescence from a CdSe nanocrystal film and its sensing application in aqueous solution. Anal. Chem.,2004,76:6871-6876.
    [117]Jie G.F., Liu B., Pan H.C., Zhu J.J., Chen H.Y. CdS Nanocrystal-Based Electrochemilumine-scence Biosensor for the Detection of Low-Density Lipoprotein by Increasing Sensitivity with Gold Nanoparticle Amplification. Anal. Chem.,2007,79:5574-5581.
    [118]Jie G.F., Huang H.P., Sun X.L., Zhu J.J. Electrochemiluminescence of CdSe quantum dots for immunosensing of human prealbumin, Biosens. Bioelectron.,2008,23:1896-1899.
    [119]Jie G.F., Zhang J.J., Wang.D.C., Chao C., Chen H.Y., Zhu J.J. Electrochemiluminescence Immunosensor Based on CdSe Nanocomposites, Anal. Chem.,2008,80:4033-4039.
    [120]Jie G.F., Li L.L., Chao C., Xuan J., Zhu J.J. Enhanced electrochemiluminescence of CdSe quantum dots composited with CNTs and PDDA for sensitive immunoassay. Biosens. Bioelectron.,2009,24:3352-3358.
    [121]Jie G.F., Liu P., Wang L., Zhang S.S. Electrochemiluminescence immunosensor based on nanocomposite film of CdS quantum dots-carbon nanotubes combined with gold nanoparticles-chitosan. Electrochem. Commun.,2010,12:22-26.
    [122]Liu X., Huang X.J. Coreactant Enhanced Anodic Electrochemiluminescence of CdTe Quantum Dots at Low Potential for Sensitive Biosensing Amplified by Enzymatic Cycle. Anal. Chem.,2008,80:5377-5382.
    [123]Bertoncello F., J.R., Forster. Nanostructured materials for electrochemiluminescence (ECL)-based detection methods:Recent advances and future perspectives. Biosens. Bioelectron.,2009,24:3191-3200.
    [124]Slowing I.I., Trewyn B.G., Giri S., Lin V.S.Y. Mesoporous Silica Nanoparticles for Drug Delivery and Biosensing Applications. Adv. Funct. Mater.,2007,17:1225-1236.
    [125]Nann T., Mulvaney P. Single Quantum Dots in Spherical Silica Particles. Angew. Chem. Int. Ed.,2004,43:5393-5396.
    [126]Guo S.J., Wang E.K. A novel sensitive solid-state electrochemiluminescence sensor material: Ru(bpy)32+ doped SiO2@MWNTs coaxial nanocable. Electrochem. Commun..2007,9: 1252-1257.
    [127]Wei H., Liu J.F., Zhou L.L., Li J., Jiang X., Kang J.Z, Yang X.R., Dong S.J., Wang E.K. [Ru(bpy)3]2+ -Doped Silica Nanoparticles within Layer-by-Layer Biomolecular Coatings and Their Application as a Biocompatible Electrochemiluminescent Tag Material. Chem. Eur. J., 2008,14:3687-3693.
    [128]Qian J., Zhou Z.X., Cao X.D., Liu S.Q. Electrochemiluminescence immunosensor for ultrasensitive detection of biomarker using Ru(bpy)32+ -encapsulated silica nanosphere labels. Anal. Chim. Acta,2010,665:32-38.
    [129]Yang X., Yuan R., Chai Y.Q., Zhuo Y., Mao L., Yuan S.R. Ru(bpy)32+-doped silica nanoparticles labeling for a sandwich-type electrochemiluminescence immunosensor. Biosens. Bioelectron.,2010.25:1851-1855.
    [130]Lin Z.Y., Liu Y., Chen G.N. TiO2/Nafion film based electrochemiluminescence for detection of dissolved oxygen. Electrochem. Commun.,2008,10:1629-1632.
    [131]Hun X., Zhang Z.J. A Novel Electrogenerated Chemiluminescence (ECL) Sensor Based on Ru(bpy)32+ -Doped Titania Nanoparticles Dispersed in Nafion on Glassy Carbon Electrode. Electroanal.,2008,20:874-880.
    [132]Wang, J., Lin, Y. Functionalized carbon nanotubes and nanofibers for biosensing applications. TrAC:Trends Anal. Chem.,2008.27:619-626.
    [133]Sun X.P.. Du Y., Dong S.J.. Wang E.K. Method for Effective Immobilization of Ru(bpy)32+ on an Electrode Surface for Solid-State Electrochemiluminescene Detection. Anal. Chem., 2005,77:8166-8169.
    [134]Sun X.P., Du Y., Zhang L.X., Dong S.J., Wang E.K. Pt Nanoparticles:Heat Treatment-Based Preparation and Ru(bpy)32+-Mediated Formation of Aggregates That Can Form Stable Films on Bare Solid Electrode Surfaces for Solid-State Electrochemiluminescence Detection. Anal. Chem.,2006,78:6674-6677.
    [135]Gao L., Fan L.Z., Zhang J. Selective Growth of Ag Nanodewdrops on Au Nanostructures:A New type of Bimetallic Heterostructure. Langmuir,2009,25:11844-11848.
    [136]Qian L., Yang X.R. Silver(Ⅰ) ions-enhanced electrochemiluminescence of tris(2,2'-bipyridyl) ruthenium(Ⅱ). Talanta,2007,73:189-193.
    [137]Fang L.Y., Lu Z.Z., Wei H., Wang E.K. Quantitative electrochemiluminescence detection of proteins:Avidin-based sensor and tris(2,2'-bipyridine) ruthenium(Ⅱ) label. Biosens. Bioelectron.,2008,23:1645-1651.
    [138]Ho J.A., Hung C.H. Using Liposomal Fluorescent Biolabels to Develop an Immunoaffinity Chromatographic Biosensing System for Biotin. Anal. Chem.,2008,80:6405-6409.
    [139]Viswanathan S., Wu L.C., Huang M.R., Ho J.A. Electrochemical Immunosensor for Cholera Toxin Using Liposomes and Poly(3,4-ethylenedioxythiophene)-Coated Carbon Nanotubes. Anal. Chem.,2006,78:1115-1121.
    [140]Ho J.A., Wu L.C., Huang M.R., Lin Y.J., Baeumner A.J., Durst R.A.. Application of Ganglioside-Sensitized Liposomes in a Flow Injection Immunoanalytical System for the Determination of Cholera Toxin. Anal. Chem.,2007,79:246-250.
    [141]Egashira N., Morita S., Hifumi E., Mitoma Y., Uda T. Attomole Detection of Hemagglutinin Molecule of Influenza Virus by Combining an Electrochemilumine -scence Sensor with an Immunoliposome That Encapsulates a Ru Complex. Anal. Chem.,2008,80:4020-4025.
    [142]Mason J.T., Xu L.X., Sheng Z.M., Leary T. A liposome-PCR assay for the ultrasensitive detection of biological toxins. Nat. Biotechnol.,2006,24:555-557.
    [143]Ou L.J., Liu S.J.,Chu X., Shen G.L., Yu R.Q. DNA Encapsulating Liposome Based Rolling Circle Amplification Immunoassay as a Versatile Platform for Ultrasensitive Detection of Protein. Anal. Chem.,2009,81:9664-9673.
    [144]Zhan W., Bard A.J. Electrogenerated Chemiluminescence.83. Immunoassay of Human
    C-Reactive Protein by Using Ru(bpy)32+ -Encapsulated Liposomes as Labels. Anal. Chem., 2007,79:459-463.
    [145]Zheng G.F., Patolsky F., Cui Y., Wang W.U., Lieber C.M. Multiplexed electrical detection of cancer markers with nanowire sensor arrays. Nat. Biotechnol.,2005,23:1294-1301.
    [146]Wu J., Fu Z.F., Yan F., Ju H.X. Biomedical and clinical applications of immunoassays and immunosensors for tumor markers. TrAC:Trends Anal. Chem.,2007,26:679-688.
    [147]Lai G.S., Yan F., Ju H.X. Dual Signal Amplification of Glucose Oxidase-Functionalized Nano-composites as a Trace Label for Ultrasensitive Simultaneous Multiplexed Electrochemical Detection of Tumor Markers, Anal. Chem.,2009.81:9730-9736
    [148]Hansen J.A., Wang J., Kawde A.N., Xiang Y., Gothelf K.V., Greg CollinsQuantum-Dot/ Aptamer-Based Ultrasensitive Multi-Analyte Electrochemical Biosensor. J. Am. Chem. Soc., 2006,128:2228-2229.
    [149]Liu G.D., Wang J., Kim J. Electrochemical coding for multiplexed immunoassays of proteins. Anal. Chem.,2004,76:7126-7130.
    [150]Song Z.J., Yuan R., Chai Y.Q., Zhuo Y.,Jiang W., Su H.L., Che X., Li J.J. Horseradish peroxidase-functionalized Pt hollow nanospheres and multiple redox probes as trace labels for a sensitive simultaneous multianalyte electrochemical immunoassay. Chem. Commun., 2010,46:6750-6752.
    [151]Rubinstein I., Bard A.J. Polymer films on electrodes.5. Electrochemistry and chemi-luminescence at Nafion-coated electrodes. J. Am. Chem. Soc.,1981,103:5007-5013.
    [152]Fahnrich K.A., Pravda M., Guilbault G.G. Recent applications of electrogenerated chemiluminescence in chemical analysis. Talanta,2001.54:531-559.
    [153]Miller C.J., McCord P., Bard A.J. Study of Langmuir monolayers of ruthenium complexes and their aggregation by electrogenerated chemiluminescence. Langmuir,1991,7: 2781-2787.
    [154]Yun W., Xu Y., Dong P., Ma X.X.. He P.G., Fang Y.Z. Solid-state electrochemiluminescence sensor through the electrodeposition of Ru(bpy)32+/AuNPs/chitosan composite film onto electrode. Anal. Chim. Acta,2009,635:58-62.
    [155]Kalimuthu P., John S.A. Size dependent electrocatalytic activity of gold nanoparticles immobilized onto three dimensional sol-gel networks. J. Electroanal. Chem.,2008,617: 164-170.
    [156]Tsunoyama H., Sakurai H., Negishi Y., Tsukuda T. Size-Specific Catalytic Activity of Polymer-Stabilized Gold Nanoclusters for Aerobic Alcohol Oxidation in Water. J. Am. Chem. Soc,2005,127:9374-9375.
    [157]Tang D.P., Yuan R., Chai Y.Q. Magnetic Core-Shell Fe3O4@Ag Nanoparticles Coated Carbon Paste Interface for Studies of Carcinoembryonic Antigen in Clinical Immunoassay. J. Phys. Chem. B,2006,110:11640-11646.
    [158]Choi H.N., Cho S.H., Lee W.Y. Electrogenerated Chemiluminescence from Tris(2,2'-bipyridyl) ruthenium(Ⅱ) Immobilized in Titania-Perfluorosulfonated Ionomer Composite Films. Anal. Chem.,2003,75:4250-4256.
    [159]Ding S.N., Xu J.J., Chen H.Y. Tris(2,2'-bipyridyl) ruthenium(Ⅱ)-zirconia-Nafion composite films applied as solid-state electrochemiluminescence detector for capillary electrophoresis. Electrophoresis,2005,26:1737-1744.
    [160]Khramov A.N., Collinson M.M. Electrogenerated Chemiluminescence of Tris(2,2'-bipyridyl) ruthenium(II) Ion-Exchanged in Nafion-Silica Composite Films. Anal. Chem.,2000,72: 2943-2948.
    [161]Shipway A.N., Lahav M., Gabai R., Willner I. Investigations into the Electrostatically Induced Aggregation of Au Nanoparticles. Langmuir,2000,16:8789-8795.
    [162]Lee P.C., Meisel D. Luminescence quenching in the cluster network of perfluorosulfonate membrane. J. Am. Chem. Soc.,1980,102:5477-5481.
    [163]Guo Z.H., Dong S.J. Electrogenerated Chemiluminescence from Ru(bpy)32+ Ion- Exchanged in Carbon Nanotube/Perfluorosulfonated Ionomer Composite Films. Anal. Chem.,2004,76: 2683-2688.
    [164]Gao W., Xia X.H., Xu J.J., Chen H.Y. Three-Dimensionally Ordered Macroporous Gold Structure as an Efficient Matrix for Solid-State Electrochemiluminescence of Ru(bpy)32+/TPA System with High Sensitivity. J. Phys. Chem. C,2007,111:12213-12219.
    [165]Wang J., Musameh M., Lin Y.H. Solubilization of Carbon Nanotubes by Nafion toward the Preparation of Amperometric Biosensors. J. Am. Chem. Soc.,2003,125:2408-2409.
    [166]Zu Y.B., Bard A.J. Electrogenerated Chemiluminescence.66. The Role of Direct Coreactant Oxidation in the Ruthenium Tris (2,2')bipyridyl/Tripropylamine System and the Effect of Halide Ions on the Emission Intensity. Anal. Chem.,2000,72:3223-3232.
    [167]Guo M.L., Chen J.H., Nie L.H., Yao S.Z. Electrostatic assembly of calf thymus DNA on multi-walled carbon nanotube modified gold electrode and its interaction with chlorpromazine hydrochloride. Electrochim. Acta,2004,49:2637-2643.
    [168]Zhuo Y. Yuan R., Chai Y.Q., Zhang Y., Li X.L., Wang N., Zhu Q. Amperometric enzyme immunosensors based on layer-by-layer assembly of gold nanoparticles and thionine on Nafion modified electrode surface for α-1-fetoprotein determinations. Sensor. Actuat.B-chem., 2006,114:631-639.
    [169]Zhao L.Y.. Liu H.Y, Hu N.F. Electroactive films of heme protein-coated multiwalled carbon nanotubes. J. Colloid Interface Sci.,2006,296:204-211.
    [170]Myung N., Ding Z.F., Bard A.J. Electrogenerated Chemiluminescence of CdSe Nanocrystals. Nano Lett.,2002,2:1315-1319.
    [171]Ding Z.F., Quinn B.M., Haram S.K., Pell L.E., Korgel B.A., Bard A.J. Electrochemistry and Electrogenerated Chemiluminescence from Silicon Nanocrystal Quantum Dots. Science. 2002,296:1293-1297.
    [172]Bard A.J., Faulkner L.R. Electrochemical methods fundamentals and applications.2nd ed. 2001, Wiley, New York,1980, p231.
    [173]Lee W.Y., Nieman T.A. Evaluation of Use of Tris(2,2'-bipyridyl)ruthenium(Ⅲ) as a Chemi-luminescent Reagent for Quantitation in Flowing Streams. Anal. Chem.,1995,67: 1789-1796.
    [174]Zhang L.J., Wang T.T., Wen X.M., Wei Y., Peng X.C., Li H., Wei L. Effect of matrine on HeLa cell adhesion and migration. Eur. J. Pharmacol.,2007,563:69-76.
    [175]Sanvicens N., Marco M.P. Multifunctional nanoparticles-properties and prospects for their use in human medicine. Trends Biotechnol.,2008,26:425-433.
    [176]Zhou M., Rooves J., Robertson G.P., Grover C.P. Multilabeling biomolecules at a single site. 1. Synthesis and characterization of a dendritic label for electrochemiluminescence assays. Anal. Chem.,2003,75:6708-6717.
    [177]Zhou M., Rooves J. Dendritic supramolecular assembly with multiple Ru(Ⅱ) tris(bipyridine) units at the periphery:synthesis, spectroscopic, and electrochemical study. Macromolecules, 2001,34:244-252.
    [178]Basabe-Desmonts L., Reinhoudt D.N., Crego-Calama M. Design of fluorescent materials for chemical sensing. Chem. Soc. Rev.,2007,36:993-1017.
    [179]Pumera M., Sanchez S., Ichinose I., Tang J. Electrochemical nanobiosensors. Sensor. Actuat.B-chem.,2007,123:1195-1205.
    [180]Choi H.N., Cho S.H., Lee W.Y. Electrogenerated chemiluminescence from tris(2,2'-bipyridyl) ruthenium(Ⅱ) immobilized in titania-perfluorosulfonated ionomer composite films. Anal. Chem.,2003,75:4250-4256.
    [181]Malmsten M. Protein adsorption at the solid-liquid interface. In Protein Architecture: Interfacing Molecular Assemblies and Immobilization Biotechnology. Y. Lvov and H. Mohwald. editors. Marcel Dekker, New York,2000,1-23.
    [182]Liu H., Yang T., Sun K., Li H., Qi D. Reagentless amperometric biosensors highly sensitive to hydrogen peroxide, glucose and lactose based on N-methyl phenazine methosulfate incorporated in a Nafion film as an electron transfer mediator between horseradish peroxidase and an electrode. Anal. Chim. Acta,1997,344:187-199.
    [183]Albert F.C., Danny K.Y., Wong C.S., Margaret. An indirect perfluorosulfonated ionomer coated electrochemical immunosensor for the detection of the protein human chorionic gonadotrophin. Anal. Chem.,1999,71:4088-4094.
    [184]Liu T., Tang J., Zhao H.Q., Deng Y.P., Jiang L. Particle size effect of the DNA sensor amplified with gold nanoparticles. Langmuir,2002,18:5624-5626.
    [185]Sunol,J.J., Bonneau M.E., Roue L., Guay D., Schulz R. XPS surface study of nanocrystalline Ti-Ru-Fe materials. Appl. Surf. Sci.,2000,158:252-262.
    [186]Susac D., Kono M., Wong K.C., Mitchell K.A.R. XPS study of interfaces in a twolayer light
    -emitting diode made from PPV and Nafion with ionically exchanged Ru(bpy)32+. Appl. Surf. Sci.,2001,174:43-50.
    [187]Ishida T., Terada K., Hasegawa K.. Kuwahata H., Kusama K.. Sato R.. Nakano M., Naitoh Y., Haga M.A. Self-assembled monolayer and multilayer formation using redox-active Ru complex with phosphonic acids on silicon oxide surface. Appl. Surf. Sci.,2009,255: 8824-8830.
    [188]Margarida M.L., Vareiro M., Liu J., Knoll W.G., Zak K., Williams D., Jenkins A. Surface plasmon fluorescence measurements of human chorionic gonadotrophin:role of antibody orientation in obtaining enhanced sensitivity and limit of detection. Anal. Chem.,2005,77: 2426-2431.
    [189]Yu F., Knoll W.G. Immunosensor with self-referencing based on surface Plasmon diffraction. Anal. Chem.,2004,76:1971-1975.
    [190]Chen J., Tang J.H., Yan F., Ju H.X. A gold nanoparticles/sol-gel composite architecture for encapsulation of immunoconjugate for reagentless electrochemical immunoassay. Biomaterials,2006,27:2313-2321.
    [191]Lubin A.A., Plaxco K.W. Folding-Based Electrochemical Biosensors:The Case for Responsive Nucleic Acid Architectures. Acc. Chem. Res.,2010,43:496-505.
    [192]Du D., Zou Z.X., Shin Y.S., Wang J., Wu H.; Engelhard, M. H., Liu J., Aksay I.A., Lin Y.H. Sensitive Immunosensor for Cancer Biomarker Based on Dual Signal Amplification Strategy of Graphene Sheets and Multienzyme Functionalized Carbon Nanospheres. Anal. Chem., 2010,82:2989-2995.
    [193]Wilson R., Clavering C., Hutchinson A. Electrochemiluminescence Enzyme Immunoassays for TNT and Pentaerythritol Tetranitrate. Anal. Chem.,2003,75:4244-4249.
    [194]Li M.J., Chen Z.F., Yam W.W.V., Zu Y.B. Multifunctional Ruthenium (Ⅱ) Polypyridine Complex-Based Core-Shell Magnetic Silica Nanocomposites:Magnetism, Luminescence, and Electrochemiluminescence. ACS Nano,2008,2:905-912.
    [195]Kalele S. A., Kundu A. A., Gosavi S. W., Deobagkar D. N., Deobagkar D. D., Kulkarni S. K. Rapid Detection of Escherichia coli by Using Antibody-Conjugated Silver Nanoshells. Small, 2006,2:335-338.
    [196]Pumera M., Sanchez S., Ichinose I., Tang J. Review:Electrochemical nanobiosensors. Sensor. Actuat.B-chem.,2007,123:1195-1205.
    [197]Slim M., Sleiman H.F. Ruthenium (II) Phenanthroline-Biotin Complexes:Synthesis and Luminescence Enhancement upon Binding to Avidin. Bioconjugate Chem.,2004,15: 949-953.
    [198]Encarnacao J.M., Baltazar R., Stallinga P., Ferreira G.N.M. Electroacoustic Impedance Spectroscopy:a Tool for Accurate Quantitative Molecular Recognition Analysis. J. Mol. Recognit.,2009,22:129-137.
    [199]Riskin M., Basnar B., Chegel V.I., Katz E., Wi.llner I., Shi F., Zhang X. Switchable Surface Properties through the Electrochemical or Biocatalytic Generation of AgO Nanoclusters on Monolayer-Functionalized Electrodes. J. Am. Chem. Soc.,2006,128:1253-1260.
    [200]Cao W., Jia J., Yang X., Dong S.J., Wang E.K. Capillary electrophoresis with solid-state electro-chemiluminescence detector. Electrophoresis,2002,23:3692-3698.
    [201]Drawdy E.J., Hoflund GB., Gardner D.G, Yngvadottir E., Schryer D.R. Effect of pretreatment on a platinized tin oxide catalyst used for low-temperature Co oxidation. Surf. Interface Anal.,1990,16:369-372.
    [202]Yang D.Q., Hennequin B., Sacher E. XPS Demonstration of π-π Interaction between Benzyl Mercaptan and Multiwalled Carbon Nanotubes and Their Use in the Adhesion of Pt Nanoparticles. Chem. Mater.,2006.18:5033-5038.
    [203]Vermette P., Gengenbach T., Divisekera U., Kambouris P.A., Griesser H.J., Meagher L. Immobilization and surface characterization of NeutrAvidin biotin-binding protein on different hydrogel interlayers. J. Colloid Interface Sci.,2003,259:13-26.
    [204]Masson S., Vago T., Baldi G., Salio M., De Angelis N., Nicolis E. Comparative measurement of N-terminal pro-brain natriuretic peptide and brain natriuretic peptide in ambulatory patients with heart failure. Clin. Chem. Lab. Med.,2002,40:761-763.
    [205]Yeo K.T., Wu A.H., Apple F.S., Krolld M.H., Christenson R.H., Lewandrowski K.B.. Sedor F.A., Butch A.W. Multicenter evaluation of the Roche NT-proBNP assay and comparison to the Biosite Triage BNP assay. Clin. Chim. Acta,2003,338:107-115.
    [206]Murtagh G., Canniffe C., Mahgoub M., Blake L., McCarroll N., Crowley V., Kathleen B., Silke B. Introduction of an NT-proBNP assay to an acute admission unit-A 2-year audit. Eur. J. Int. Med.,2009,20:58-62.
    [207]Lee-Lewandrowski E., Januzzi J.L., Green S.M., Tannous B., Wu H.B.A., Smith A., Wong A., Murakami M.M., Kaczmarek J. Apple F.S., Miller W.L., Hartman K., Jaff A.S. Multicenter validation of the Response Biomedical Corporation RAMP NT-proBNP assay with comparison to the Roche Diagnostics GmBH Elecsys proBNP assay. Clin. Chim. Acta,2007, 386:20-24.
    [208]Edwards K.A., Baeumner A.J. DNA-Oligonucleotide Encapsulating Liposomes as a Secondary Signal Amplification Means. Anal. Chem.,2007,79:1806-1815.
    [209]Schweitzer B., Roberts S., Grimwade B., Shao W., Wang M., Fu Q., Shu Q., Laroche I., Zhou Z., Tchernev V.T., Christiansen J., Velleca M., Kingsmore S.F. Multiplexed protein profiling on microarrays by rolling-circle amplification. Nat. Biotechnol.,2002,20:359-365.
    [210]Liu J., Lu Y. Fast Colorimetric Sensing of Adenosine and Cocaine Based on a General Sensor Design Involving Aptamers and Nanoparticles. Angew. Chem., Int. Ed.,2006,45:90-94.
    [211]Shlyahovsky B., Li D., Weizmann Y., Nowarski R., Kotler M., Willner I. Spotlighting of Cocaine by an Autonomous Aptamer-Based Machine. J. Am. Chem. Soc.,2007,129: 3814-3815.
    [212]Wu Z.S., Guo M.M., Zhang S.B., Chen C.R., Jiang J.H., Shen G.L., Yu R.Q. Reusable Electro-chemical Sensing Platform for Highly Sensitive Detection of Small Molecules Based on Structure-Switching Signaling Aptamers. Anal. Chem.,2007,79:2933-2939.
    [213]Stojanovic M.N., Landry D.W. Aptamer-Based Colorimetric Probe for Cocaine. J. Am. Chem. Soc.,2002,124:9678-9679.
    [214]Stojanovic M.N., Prada P.D., Landry D.W. Aptamer-Based Folding Fluorescent Sensor for Cocaine. J. Am. Chem. Soc.,2001,123:4928-4931.
    [215]Scheynius A., Holmdahl R. Effects on murine T helper cell proliferation by DTH activated syngeneic epidermal cells. Immunology,1986,59:379-382.
    [216]Skinner M.A., Wedlock D.N., de Lisle G.W., Cooke M.M., Tascon R.E., Ferraz J.C., Lowrie D.B., Vordermeier H.M.,3 R. Hewinson G., Buddle B.M. The Order of Prime-Boost Vaccination of Neonatal Calves with Mycobacterium bovis BCG and a DNA Vaccine Encoding Myco -bacterial Proteins Hsp65, Hsp70, and Apa Is Not Critical for Enhancing Protection against Bovine Tuberculosis. Infect. Immun.,2005,73:4441-4444.
    [217]Ferraz J.C., Stavropoulos E., Yang M., Coade S., Espitia C., Lowrie D.B., Colston M.J., Tascon R.E. A Heterologous DNA Priming-Mycobacterium bovis BCG Boosting Immunization Strategy Using Mycobacterial Hsp70, Hsp65, and Apa Antigens Improves Protection against Tuberculosis in Mice. Infect. Immun.,2004,72:6945-6950.
    [218]Yoon S.A., DeCory T.R., Baeumner A.J., Durst R.A. Ganglioside-Liposome Immunoassay for the Ultrasensitive Detection of Cholera Toxin. Anal. Chem.,2003,75:2256-2261.
    [219]Ho J.A.A., Hsu H.W. Procedures for Preparing Escherichia coli O157:H7 Immunoliposome and Its Application in Liposome Immunoassay. Anal. Chem.,2003,75:4330-4334.
    [220]Zuo X.L., Xiao Y., Plaxco K.W. High Specificity, Electrochemical Sandwich Assays Based on Single Aptamer Sequences and Suitable for the Direct Detection of Small-Molecule Targets in Blood and Other Complex Matrices. J. Am. Chem. Soc.,2009,131:6944-6945.
    [221]Golub E., Pelossof G., Freeman R., Zhang H., Willner I. Electrochemical, Photoelectrochemical, and Surface Plasmon Resonance Detection of Cocaine Using Supramolecular Aptamer Complexes and Metallic or Semiconductor Nanoparticles. Anal. Chem.,2009.81:9291-9298.
    [222]Singh A.K., Kilpatrick P.K., Carbonell R.G. Application of Antibody and Fluorophore-Derivatized Liposomes to Heterogeneous Immunoassays for D-Dimer. Biotechnol. Prog., 1996,12:272-280.
    [223]Li Y., Qi H.L., Peng Y.G., Yang J., Zhang C.X. Electrogenerated chemiluminescence aptamer-based biosensor for the determination of cocaine. Electrochem. Commun.,2007,9: 2571-2575.
    [224]Zhang H.X., Jiang B.Y., Xiang Y., Zhang Y.Y., Chai Y.Q., Yuan R. Aptamer/quantum dot-based simultaneous electrochemical detection of multiple smallmolecules. Anal. Chim. Acta,2011,688:99-103.
    [225]Zhuo Y., Yi W.J., Liang W.B., Yuan R., Chai Y.Q., Chen A., Hu C.M. Ultrasensitive electrochemical strategy for NT-proBNP detection with gold nanochains and horseradish peroxidase complex amplification. Biosens. Bioelectron.,2011,26:2188-2193.
    [226]李玉林.病理学(第七版).北京:人民卫生出版社,2008,83-84.
    [227]Niu H., Yuan R., Chai Y.Q., Mao L., Yuan Y.L., Zhuo Y., Yuan S.R., Yang X. Electrochemi-luminescence of peroxydisulfate enhanced by 1-cysteine film for sensitive immunoassay. Biosens. Bioelectron.,2011,26:3175-3180.
    [228]Jie G.F., Li L.L., Chen C., Xuan J., Zhu J.J. Enhanced electrochemiluminescence of CdSe quantum dots composited with CNTs and PDDA for sensitive immunoassay. Biosens. Bioelectron.,2009,24:3352-3358.
    [229]Kang J.Z., Wei H., Guo W.W., Wang E.K. Electrochemiluminescence in the S2O82- system:Pt-Cd electrodes. Electrochem. Commun.,2007,9:465-468.
    [230]Yao W., Wang L., Wang H.Y., Zhang X.L. Cathodic electrochemiluminescence behavior of norfloxacin/peroxydisulfate system in purely aqueous solution. Electrochim. Adta,2008,54: 733-737.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700