新型透明导电氧化物薄膜的设计与制备及其在有机光电器件中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
透明导电氧化物(TCO)薄膜是一种重要的宽禁带光电薄膜,它是当代微电子学、光电子学、磁电子学、太阳能电池、传感器、电子物理器件等新兴交叉学科和技术的材料基础,并广泛地渗透到当代科技的各个领域。随着薄膜科学与技术的迅速发展,各种新型的光电子器件也不断出现,特别是以有机电致发光与有机光伏为代表的新型器件的出现,为开发新型功能薄膜和更优异的器件性能开辟了许多新的研究方向,并取得了令人瞩目的应用成果。本论文主要针对当前TCO的研究工作的热点问题,利用真空热蒸发和末端离子源辅助沉积的电子束蒸发方法,通过合理的理论设计,对当前氧化铟锡(ITO)在有机光电器件中的应用存在的问题进行了探索性研究,首次制备出一系列的二元及三元的新型TCO材料,获得了一些初步的结果。主要创新性结果如下:
     (1)首次报导了两种新的TCO材料,掺钒的氧化铟薄膜(IVO)及掺铋的氧化铟薄膜(IBO)。在薄膜未进行过退火处理的情况下,通过各种表征手段研究了薄膜的光电特性及钒与铋掺杂对氧化铟的电学及光学性质的影响。结果表明,IVO及IBO都有着与商业ITO可比拟的电学及光学特性。基于它们制备的有机电致发光器件(OLED)都获得了比基于ITO阳极器件更好的性能。
     (2)首次报导了两种新型的高功函数的三元体系TCO材料,掺钛酸镁的氧化铟薄膜(IMTO)及掺钛酸镨的氧化铟薄膜(IPTO)。我们详细地研究了这两种TCO材料的光电特性。IMTO与IPTO都有着较为平坦及光滑的表面,两者都有着较高的可见光透过率(~80%)和较大的禁带宽度(4.65 eV与4.26 eV)。IMTO与IPTO都有着可与金的功函数媲美的表面功函数(> 5.1 eV),而且两种薄膜的表面功函数有着非常高的均一性及大气稳定性。基于这两种薄膜的OLED器件表现出比基于ITO器件更好的性能。与传统的三元制备方法相比,我们的方法不仅对设备的要求不高而且成本较低,便于今后的大规模商业应用。
     (3)首次报导了一种新型的三元体系的TCO材料,掺杂钛酸镧的TCO薄膜(ILTO)。ILTO除了有着优异的光电特性外,在室温下该材料还具有近紫外(386 nm)的PL特性。我们期望该材料在金属氧化物体系,特别是多重氧化物体系中能够做为一种功能层去实现近紫外的光致发光(PL)及电致发光(EL)器件。ILTO具有高达5.2 eV的表面有效功函数,而且该薄膜功函数的热稳定性非常好。利用ILTO阳极制备的OLED比ITO阳极器件获得了更好的电致发光性能;基于ILTO阳极的有机太阳能电池(OSC)也取得了比基于ITO阳极的OSC更好的光电转换性能。ILTO作为新型TCO阳极,在有机光电子器件中表现出了优异的性能。
Transparent conducting oxide (TCO) is an important wide band gap semiconductor and the basic material in the fields of microelectronics, optoelectronics, magnetoelectronics, solar cells, sensors and electrical physics devices. With quickly development of science and technology of thin films, many novel photoelectric devices are developed. Especially, the emergence of organic light-emitting diodes (OLEDs) and organic solar cells (OSCs) stimulates the deep investigation on novel functional thin films and device physics. In this thesis, we develop series of new binary and ternary TCO thin films by modified thermal evaporation deposition and double source reactive electron beam evaporation with End-Hall ion assisted deposited (EHIAD) technologies according to the investigation on the merit and shortcoming of indium tin oxide (ITO) in the application of OLED and OSC. The details are as follows:
     (1) Two new binary TCO thin films, vanadium and bismuth doped indium oxides (IVO and IBO), are developed by a modified thermal evaporation deposition method. Under unannealed treatment for samples, we investigate the optical and electrical characteristics, and the effects of vanadium and bismuth incorporation on the optical and electrical properties of samples by using Hall measurements, spectrophotometer, Scanning Electron Microscope (SEM), Energy-dispersive X-ray Spectroscopy (EDX) and so on. Our results show that the optical and electrical properties of IVO and IBO samples are comparable to that of commercial ITO. Furthermore, OLEDs based IVO and IBO anodes harvest better performance than the ITO control device.
     (2) EHIAD techonology is used to deposite two new high work-fucntion ternary TCO coatings, magnesium titanate (MgTiO_3) and praseodymium titanate (PrTiO3)-doped indium oxides (IMTO and IPTO, respectively). Comparing with conventional preparation methods of ternary compound, our technique has a lower cost and the method is beneficial for future industrial manufacture. The surface root-mean-square (RMS) roughnesses of IMTO and IPTO samples have very low values of 0.704 and 1.943 nm, respectively. They are smoother than commercial sputter-derived ITO, which has a RMS roughness of 2.514 nm. All samples demonstrate a high surface work function beyond 5.1 eV, which is comparable to the work function of Au, and much higher than that of commercial ITO. Moreover, the stability of work function of samples is investigated in air. We apply samples as contact anodes to replace ITO in OLEDs, significant improvements in electroluminescence performance for the IMTO and IPTO-anode OLEDs are achieved.
     (3) A novel high work-function TCO, lanthanum titanate (LaTiO_3)-doped indium oxide (ILTO), with notable electrical and optical features, synthesized by a double electron beam evaporation associated with EHIAD technology is introduced. Its room-temperature ultraviolet photoluminescence (PL) and thermally stable highly effective work function properties are determined. High performance OLEDs and OSCs based on ILTO anodes have been achieved and their effects are discussed in detail.
引文
[1] K. B?deker.über die elektrische Leitf?higkeit und die thermoelektrische Kraft einiger Schwermetallverbindungen[J]. Ann. Phys. (Leipzig) 1907, 22:749-766.
    [2] Shanthi S, Subramanian C and Ramasamy P.Investigations on the optical properties of undoped, fluorine doped and antimony doped tin oxide films. Cryst. Res. Technol., 1999, 34:1037-1046.
    [3] Ovadyahu Z, Ovryn B, Kraner H W.Microstructure and electro-optical properties of evaporated indium-oxide films[J].J.Electrochem.Soc., 1983, 130:917-921.
    [4] Szorenyi T, Lande L D, Bertoti I, et al.Excimer laser processing of indium-tin-oxide films: An optical investigation[J].J.Appl.Phys., 1995, 78:6211-6219.
    [5] Fan J C C, Bachner F J, Foley G H.Effect of O2 pressure during deposition on properties of rf-sputtered Sn-doped In2O3 films[J].Appl.Phys.Lett., 1977, 31:773-775.
    [6] Kulaszewiez S.Film preparation and etching by plasma technology[J]. Thin Solid Films, 1981, 76:89-92.
    [7] Lehmann H W, Wilmer R.Preparation and properties of reactively co-sputtered transparent conducting films[J]. Thin Solid Films, 1975, 27:359-363.
    [8] Vossen J L.RF Sputtered transparent conductor the system In2O3-SnO2[J]. RCA Rev. 1971, 32:289-295.
    [9] Agnihotri O P, Sharma A K, Gupta B K, et al.The effect of tin additions on indium oxide selective coatings[J].J.Phys.D:Appl.Phys., 1978, 11:643-647.
    [10] Chiou B S, Hsieh S T, Wu W F.Deposition of Indium Tin Oxide Films on Acrylic Substrates by Radiofrequency Magnetron Sputtering[J].J.Amer.Soc., 1994, 77:1740-1742.
    [11] Mizuhshi M.Electrical properties of vacuum-deposited indium oxide and indium tin oxide films[J].Thin Solid Films, 1980, 70:91-99.
    [12] Kumar C V R V, Mansingh A.Effect of target-substrate distance on the growth and properties of rf-sputtered indium tin oxide films[J].J.Appl.Phy., 1989, 65:1270-1280.
    [13] Yi C H, Yasui I and Shigesato Y Oriented tin-doped indium oxide films on <001> preferred oriented polycrystalline ZnO films[J].Jpn.J.Appl.Phys., 1995, 34:1638-1642.
    [14] Fan J C C and Goodenough J B.X-ray photoemission spectroscopy studies of Sn-doped indium-oxide films[J].J.Appl.Phys., 1977, 48:3524-3531.
    [15] Sreenivas K, Rao T S, Mansnigh A. Preparation and characterization of RF sputtered indium tin oxide films[J].J.Appl.Phys., 1985, 57: 384-392.
    [16]Wu W F and Chiou B S.Properties of RF magnetron sputtered ITO films without in-situ substrate heating and post-deposition annealing[J].Thin Solid Films, 1994, 247:201-207.
    [17] Hosono H, Ohta H, Orita M, et al.Frontier of transparent conductive oxide thin films[J].Vacuum, 2002, 66:419-425.
    [18] Higuchi M, Uekusa S, Nakano R, et al.Micrograin structure influence on electrical characteristics of sputtered indium tin oxide films[J].J.Appl.Phys., 1993, 74:6710-6713.
    [19] Shin S H, Shin J H, Park K J, et al.Low resistivity indium tin oxide films deposited by unbalanced DC magnetron sputtering[J].Thin Solid Film, 1999, 341:225-229.
    [20] Bender M, Trube J, Stollenwerk J.Deposition of transparent and conducting indium-tin-oxide films by the RF-superimposed DC sputtering technology[J]. Thin Solid Films, 1999, 354:100-105.
    [21] Balasubramanian N, Subrahmanyam A.Effect of substate temperature on the electrical and optical properties of reactively evaporated indium tin oxide films[J].Mat.Sci.Eng.B, 1988, 1:279-281.
    [22] Haitjema H and Elich J J Ph.Physical properties of pyrolytically sprayed tin-doped indium oxide coatings[J].Thin Solid Films, 1991, 205:93-100.
    [23] Kim D, Han Y, Cho J S, et al.Low temperature deposition of ITO thin films by ion beam sputtering[J].Thin Solid Films, 2000, 378:81-86.
    [24] Ryabova L A, Salun V S, Serbinov I A.Transparent conducting films of In2O3:Sn prepared by the pyrolysis method[J].Thin Solid Films, 1982, 92:327-331.
    [25] Sawada Y, Kobayashi C, Seki S, et al.Highly-conducting indium-tin-oxide transparent films fabricated by spray CVD using ethanol solution of indium (III) chiloride and tin (II) chloride[J].Thin Solid Films, 2002, 409:46-50.
    [26] Tahar R Bel Hadi, Ban T, Ohya Y, et al.Humidity-sensing Characteristics of divalent-metal-doped indium oxide thin films[J].J.Am.Ceram.Soc., 1998, 81:321-327.
    [27] Ni H Q, Lu Y F, and Ren Z M.Ab initio pseudopotential calculations of electronic structure of off-stoichiometric ZnO[J].Jpn.J.Appl.Phys., 2001, 40:4103-4108.
    [28] Minami T, Nato H, Takata S.Highly conductive and transparent zinc oxide films prepared by rf magnetron sputtering under an applied external magetic field[J].Appl.Phys.Lett., 1982, 41:958-960.
    [29] Vasu V, Subrahmanyam A.Electrical and optical properties of pyrolytically sprayed SnO2 film-dependence on subtrate temperature and substrate-nozzle distance[J].Thin Solid Films, 1990, 189:217-225.
    [30] Shanthi E, Dutta V, Banerjee A, et al.Electrical and optical properties of undoped and antimony-doped tin oxide film[J].J.Appl.Phy., 1980, 51:6243-6251.
    [31] Bruneaux J, Cachet H, Froment M, et al.Correlation between structural and electrical properties of sprayed tin oxide films with and without fluorine doping[J].Thin Solid Films, 1991, 197:129-142.
    [32] De A, Ray S.A study of the structural and electronic properties of magnetron sputtered tin oxide films[J].J.Phys.D:Appl.Phys., 1991, 24:719-726.
    [33] Demichelis F, Minetti-Mezzetti E, Smurro V, et al.Physical properties of chemically sprayed tin oxide and indium tin oxide transparent conductive films[J].J.Phys.D:Appl.Phys., 1985, 18:1825-1832.
    [34] Thangaraju B.Structural and electrical studies on highly conducting spray seposited sluorine and antimony doped SnO2 thin films from SnCl2 precursor[J].Thin Solid Films, 2002, 402:71-78.
    [35] Rakhshani A E, Makdisi Y, Ramazaniyan H A. Electrical and optical properties of tin oxide films[J].J.Appl.Phy., 1998, 83:1049-1057.
    [36] Hamberg, I.; Granqvist, C. G. Transparent Conductive Electrodes for Electrochromic Devices[J]. J. Appl. Phys. 1986, 60:123-152.
    [37] Haacke G..Transparent conducting coatings[J] Ann.Rev.Mater.Sci., 1977, 7:73-93.
    [38] a) Minami T, New N-type Transparent Conducting Oxides[J].MRS Bulletin, 2000, 25(8):38-44; b) Brian G. Lewis and David C. Paine. Applications and Processing of Transparent Conducting Oxides[J]. MRS BULLETIN, 2000, 25:22-27.
    [39] A.J. Freeman, K.R. Poeppelmeier, T.O. Mason, et al. Chemical and Thin-Film Strategies for New Transparent Conducting Oxides Chemical and Thin-Film Strategies for New Transparent Conducting Oxides[J]. MRS BULLETIN, 2000, 25:45-51.
    [40] a)Davis L.Properties of transparent conducting oxides deposited at room-temperature[J].Thin Solid Films, 1993, 236(1, 2):1-5; b) Roy G. Gordon. Criteria for Choosing Transparent Conductors[J] . MRS BULLETIN, 2000, 25:52-57.
    [41] Chirisian K D and Shatynski S R. Thin film passive solar windows produced by reactive evaporation of In-Sn[J]. Thin Solid Films, 1983, 13:1129-1133.
    [42] Holland L and Siddall G. [J]. Vacuum III (1955).
    [43] Nozik A J. U. S. Paent No. 3811953 (1974).
    [44] K. S. Shamala, L. C. S. Murthy and K. Narasimha Rao. Studies on tin oxide films prepared by electron beam evaporation and spray pyrolysis methods[J]. Bulletin of Materials Science, 2007, 27: 295-301.
    [45] McGraw J M.Film synthesis and growth using energetic beams[J]. Mater. Res. Soc. Symp. Proc. 388, Pittsburgh, 1995, p. 51.
    [46] D.H. Bao, A. Kuang, and H. Gu. Sol-gel-derived c-axis oriented ZnO thin films[J]. Thin Solid Films, 1998, 312:37-39
    [47] J. I. Pankove, Optical Processes in Semicounductor, Pretice-Hall, Englewood clifts, 1971.
    [48] L.J.van der Pauw. A method of measuring specific resistivity and hall effect of discs of arbitrary shape[J]. Philips Res. Repts 1958, 13:1-9.
    [49] M. Nonnenmacher, M. O'Boyle, and H.K. Wickramasinghe. Surface investigations with a Kelvin probe force microscope[J]. Ultramicroscopy, 1992, 42-44:268-273.
    [50] M Kato, K Homma, F Komura, et al. Scanning electron microscope U.S. Patent, 1989, 4, 803, 358.
    [51] Binnig G, Quate C F and Gerber Ch. Atomic force microscope[J]. Phys. Rev. Lett., 1986, 56:930-933.
    [52] Klug Harold P, Alexander Leroy E. X-Ray Diffraction Procedures: For Polycrystalline and Amorphous Materials, 2nd Edition[M]. 1974, p992.
    [53] J. N. Demas and G. A. Crosby. The measurement of photoluminescence quantum yields-A Review[J]. J. Phys. Chem. 1971, 75:991-1023.
    [54] a) Tang, C. W.; VanSlyke, S. Organic electroluminescent diodes[J]. Appl. Phys. Lett. 1987, 51:913-915; b) Tang, C. W. 2-layer organic photovoltaic cell[J]. Appl. Phys. Lett. 1986, 48:183-185.
    [55] S. Major, A. Banerjee, and K.L. Chopra. Annealing studies of undoped and indium-doped films of zinc oxide[J]. Thin Solid Films. 1984, 122:31-43.
    [56] Stjerna B, Olsson E and Granqvist C G.Optical and electrical properties of radio-frequency sputtered tin oxide films doped with oxygen vacancies, F, Sb, or Mo[J].J.Appl.Phys., 1994, 76:3797-3817.
    [57] D. D. Edwards, T. O. Mason, F. Goutenoire and K. R. Poeppelmeier. A new transparent conducting oxide in the Ga2O3–In2O3–SnO2 system[J]. Appl. Phys. Lett., 1997, 70:1706-1708.
    [58] G.J. Exarhos and X.D. Zhou. Discovery-based design of transparent conducting oxide films[J]. Thin solid films, 2007, 515:7025-7052.
    [59] R.B.H. Tahar, T. Ban, Y. Ohya, et al. Tin doped indium oxide thin films: Electrical properties[J]. J. Appl. Phys., 1998, 83:2631-2645
    [60] A.L. Dawar and J.C. Joshi. Semiconducting transparent thin films: their properties and applications[J]. J. Mater. Sci., 1984, 19:1-23.
    [61] B.G. Lewis and D.C. Paine. Applications and Processing of Transparent Conducting Oxides[J]. MRS Bulletin, 2000, 25:22-27.
    [62] Y. Park, V. Choong, Y. Gao, et al. Work function of indium tin oxide transparent conductor measured by photoelectron spectroscopy[J]. Appl. Phys. Lett., 1996, 68:2699-2701.
    [63] J. Kido, M. Kimura, and K. Nagai. Multilayer white light-emitting organic electroluminescent device[J]. Science, 1995, 267:1332-1334.
    [64] H. Kim, C. M. Gilmore, J. S. Horwitz, et al. Transparent conducting aluminum-doped zinc oxide thin films for organic light-emitting devices[J]. Appl. Phys. Lett., 2000, 76, 259-261.
    [65] W. Chen, C. Huang, X.Y. Gao, et al. Tuning the hole injection barrier at the organic/metal interface with self-assembled functionalized aromatic thiols[J]. J. Phys. Chem. B, 2006, 110:26075-26080.
    [66] S. Kato. Designing interfaces that function to facilitate charge injection in organic light-emitting diodes[J]. J. Am. Chem. Soc., 2005, 127:11538-11539.
    [67] Z.Z. You, and J.Y. Dong. Surface properties of treated ITO anodes for organic light-emitting devices[J]. Appl.Surf. Sci., 2005, 249, 271–276.
    [68] L.S. Hung, and C.H. Chen. Recent progress of molecular organic electroluminescent materials and devices[J]. Mater. Sci. and Eng. R, 2002, 39:143–222.
    [69] J. Li, M. Yahiro, K. Ishida, et al. Matsushige. Enhanced performance of organic light emitting device by insertion of conducting/insulating WO3 anodic buffer layer[J]. Synth. Met., 2005. 151:141–146.
    [70] J.J. Ho, C.Y. Chen, R.Y. Hsiao, et al. The work function improvement on indium-tin-oxide epitaxial layers by doping treatment for organic light-emitting device applications[J]. J. Phys. Chem. C, 2007, 111:8372-8376.
    [71] H. Kim, C. M. Gilmore, J. S. Horwitz, et al. Transparent conducting aluminum-doped zinc oxide thin films for organic light-emitting devices[J]. Appl. Phys. Lett., 2000, 76: 259-261.
    [72] Lewis B.G. and Paine D.C. Applications and Processing of Transparent Conducting Oxides [J]. MRS Bulletin 2000, 25:22-27.
    [73] Dawar A.L. Joshi J.C. Semiconducting transparent thin films: their properties and applications [J]. Mater. Sci. 1984, 19:1-23.
    [74] Huibin Li, Ning Wang, Xingyuan Liu. Optical and electrical properties of Vanadium doped Indium oxide thin films[J]. OPTICS EXPRESS, 2008, 16:194-199.
    [75] Vossen J L. Transparent conducting films [J]. Physics of thin films, 1977, 9:1-5.
    [76] Minami T. New n-type transparent conducting oxides [J]. MRS Bulletin 2000, 25:38-44.
    [77] a) Burstein, E. Anomalous optical absorption limit in InSb[J]. Phys. Rev. 1954, 93:632-633; b) Moss, T. S. [J]. Proc. Phys. Soc. Lond. Soc. B 1954, 67:775-780..
    [78] Vossen, J. L. Transparent conducting films[J]. Phys. Thin Films 1977, 9:1-5.
    [79] Tang, C. W.; VanSlyke, S. Organic electroluminescent diodes[J]. Appl. Phys. Lett. 1987, 51:913-915.
    [80] Coutts, T. J.; Young, D. L.; Li, X. N.Characterization of transparent conducting oxides[J]. MRS Bull. 2000, 25:58-65.
    [81] Edwards, P. P.; Porch, A.; Jones, et al. Basic materials physics of transparent conducting oxides[J]. Dalton Trans.2004,2995-4002.
    [82] Tang, C. W. 2-layer organic photovoltaic cell[J]. Appl. Phys. Lett. 1986, 48:183-185.
    [83] Wang, R. X.; Djurisic, A. B.; Beling, C. D., et al.[J]. Trends Semicond. Res. 2005, 137.
    [84] Ginsley, D. S.; Bright, C. transparent conducting oxides[J]. MRS Bull. 2000, 25:15-18.
    [85] Minami, T. Transparent conducting oxide semiconductors for transparent electrodes[J]. Semicond. Sci. Technol. 2005, 20:35-39.
    [86] Chen, W.; Huang, C.; Gao, X. Y., et al. Tuning the Hole Injection Barrier at the Organic/Metal Interface with Self-Assembled Functionalized Aromatic Thiols[J]. J. Phys. Chem. B, 2006, 110:26075-26080
    [87] Cacialli, F.; Kim, J. S.; Brown, T. M., et al.[J]. Syth. Met. 2000, 109:7-13.
    [88] Adamovich, V. I.; Cordero, S. R.; Djurovich, P. I., et al. New charge-carrier blocking materials for high efficiency OLEDs[J]. Org. Electron. 2003, 4:77-87.
    [89] Koch, N.; Duhm, S.; Rabe, J. P. Optimized hole injection with strong electron acceptors at organic-metal interfaces[J]. Phys. Rev. Lett. 2005, 95:237601-237604.
    [90] a) Ning Wang, Yi Fan, Haifeng Zhao, et al. Transparent Conducting MgTiO3 Doped Indium Oxide and Its Application for High Performance Organic Light-Emitting Diode[J]. J. Phys. Chem. C.,2010(revised); b) Ning Wang, Xingyuan Liu. A high-work-function multicomponent transparent conducting oxide[J]. Advanced Functional Materials(Submitted)
    [91] Milliron, D. J.; Hill, I. G.; Shen, C., et al. Surface oxidation activates indium tin oxide for hole injection[J]. J. Appl. Phys. 2000, 87:572-576.
    [92] Sugiyama, K.; Ishii, H.; Ouchi, Y., et al. Dependence of indium--tin--oxide work function on surface cleaning method as studied by ultraviolet and x-ray photoemission spectroscopies[J]. J. Appl. Phys. 2000, 87:295-302.
    [93] Nüesch, F.; Rothberg, L. J.; Forsythe, E. W., et al. A photoelectron spectroscopy study on the indium tin oxide treatment by acids and bases[J]. Appl. Phys. Lett. 1999, 74:880-882.
    [94] Khodabakhsh, S.; Poplavskyy, D.; Heutz, S., et al. Using Self-Assembling Dipole Molecules to Improve Hole Injection in Conjugated Polymers[J]. Adv. Funct. Mater. 2004, 14:1205-1210.
    [95] Jong, M. P.; Ijzendoom, L. J.; De Voigt, M. J. A. Stability of the interface between indium-tin-oxide and poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate) in polymer light-emitting diodes[J]. Appl. Phys. Lett. 2000, 77:2255-2257.
    [96] Kim, W. H.; M?kinen, A. J.; Nikolov, N., et al. Molecular organic light-emitting diodes using highly conducting polymers as anodes[J]. Appl. Phys. Lett. 2002, 80:3844-3846.
    [97] Yang, Y.; Huang, Q.; Metz, A. W., et al. High-performance organic light-emitting diodes using ITO anodes grown on plastic by room-temperature ion-assisted deposition[J]. Adv. Mater. 2004, 16:321-324.
    [98] Frank G, Faner E, Kostlin H.Transparent heat-reflecting coating based on highly doped semiconductors[J].Thin Solid Films, 1981, 77:107-118.
    [99] Pan C A. Ma T P. high quality transparent oxide thin films prepared by thermal evaporation [J]. Appl. Phys. Lett. 1980, 37:163-166.
    [100] Nonnenmacher, M.; O’Boyle, M. P.; Wickramasinghe, H. K. Kelvin probe force microscopy[J]. Appl. Phys. Lett. 1991, 58:2921-2923.
    [101] Park, Y. Choong, V.; Gao, Y.; Hsien, B. R., et al. Work function of indium tin oxide transparent conductor measured by photoelectron spectroscopy[J]. Appl. Phys. Lett. 1996, 68:2699-2701.
    [102] Yang, Y.; Westerweele, E.; Zhang, C.; Smith, P.; Heeger, A. J. Enhanced performance of polymer light-emitting diodes using high-surface area polyaniline network electrodes[J]. J. Appl. Phys. 1995, 77:694-697.
    [103] B. de Boer, A. Hadipour, M. M. Mandoc, et al. Tuning of metal work functions with self-assembled monolayers[J]. Adv. Mater. 2005, 17:621-625.
    [104] N. Koch, A. Elschner, J. P. Rabe, et al. Work Function Independent Hole-Injection Barriers Between Pentacene and Conducting Polymers[J]. Adv. Mater. 2005, 17:330-335.
    [105] D. Hohertz, J. Gao. How electrode work function affects doping and electroluminescence of polymer light-emitting electrochemical cells[J]. Adv. Mater. 2008, 20:3298-3302.
    [106] P. J. Hotchkiss, H. Li, P. B. Paramonov, S. A. Paniagua, et al. Modification of the Surface Properties of Indium Tin Oxide with Benzylphosphonic Acids: A Joint Experimental and Theoretical Study[J]. Adv. Mater. 2009, 21:446-4501
    [107] M. L. Sushko, A. L. Shluger. Rough and Fine Tuning of Metal Work Function via Chemisorbed Self-Assembled MONOLAYERS[J]. Adv. Mater. 2008, 21:1111-1114.
    [108] M. A. Baldo, D. F. O'Brien, Y. You, et al. Highly efficient phosphorescent emission from organic electroluminescent device[J].Nature 1998, 395:151-154.
    [109] G. Gustafsson, Y. Cao, G. M. Treacy, et al. Flexible light-emitting diodes made from soluble conducting polymers[J]. Nature 1992, 357:477-479.
    [110] J. S. Kim, J. H. Park, J. H. Lee,et al. Control of the electrode work function and active layer morphology via surface modification of indium tin oxide for high efficiency organic photovoltaics[J]. Appl. Phys. Lett. 2007, 91:112111-112113.
    [111] H. Ohta, H. Hosono. Transparent oxide optoelectronics[J]. Mater. Today 2004, 6:42-51.
    [112] R. H. Friend, R. W. Gymer, A. B. Holmes, et al. Electroluminescence in conjugated polymers[J]. Nature 1999, 397:121-128.
    [113] D. Zheng, Z. Gao, X. He, et al. Surface and interface analysis for copper phthalocyanine (CuPc) and indium-tin-oxide (ITO) using X-ray photoelectron spectroscopy (XPS)[J]. Appl. Surf. Sci. 2003, 211:24-30.
    [114] E. Elangovan, G. Gon?alves, R. Martins, et al. RF sputtered wide work function indium molybdenum oxide thin films for solar cell applications[J]. Solar Energy 2009, 83:726-731.
    [115] V. I. Adamovich, S. R. Cordero, P. I. Djurovich, et al. New charge-carrier blocking materials for high efficiency OLEDs[J]. Org. Electron. 2003, 4:77-87.
    [116] L. Chkoda, C. Heske, M. Sokolowski, et al.[J]. Synth. Met. 2000, 111:315-518.
    [117] D. J. Milliron, I. G. Hill, C. Shen, et al. Surface oxidation activates indium tin oxide for hole injection[J]. J. Appl. Phys. 2000, 87:572-576.
    [118] I. D. Parker. Carrier tunneling and device characteristics in polymer light-emitting diodes[J].J. Appl. Phys. 1994, 75:1656-1666.
    [119] G. G. Malliaras, J. C. Scott. The roles of injection and mobility in organic light emitting diodes[J].J. Appl. Phys. 1998, 83, 5399-5403.
    [120] N. Koch, A. Kahn, J. Ghijsen, et al. Conjugated organic molecules on metal versus polymer electrodes: Demonstration of a key energy level alignment mechanism[J]. Appl. Phys. Lett. 2003, 82:70-72.
    [121] P. K. H. Ho, J.-S. Kim, J. H. Burroughes, et al. Molecular-scale interface engineering for polymer light-emitting diodes[J].Nature, 2000, 404:481-485.
    [122] C. W. Tang, S. A. VanSlyke, C. H. Chen. Electroluminescence of doped organic thin films[J]. J. Appl. Phys. 1989, 65:3610-3612.
    [123] H. Peisert, M. Knupfer, F. Zhang, et al. Charge transfer and doping at organic/organic interfaces[J]. Appl. Phys. Lett. 2003, 83, 3930-3932.
    [124] M. P. de Jong, L. J. Van Ijzendoorn, M. J. A. De Voigt. Stability of the interface between indium-tin-oxide and poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate) in polymer light-emitting diodes[J]. Appl. Phys. Lett. 2000, 77:2255-2257.
    [125] W. H. Kim, A. J. M?kinen, N. Nikolov, et al. Molecular organic light-emitting diodes using highly conducting polymers as anodes[J]. Appl. Phys. Lett. 2002, 80:3844-3846.
    [126] D. Lin, H. Wu, W. Pan. Photoswitches and Memories Assembled by Electrospinning Aluminum-Doped Zinc Oxide Single Nanowires[J]. Adv. Mater. 2007, 19:3968-3972.
    [127] R. Castanedo-Pérez, O. Jiménez-Sandoval, S. Jiménez-Sandoval, et al. [J]. J. Vac. Sci. Technol. A 1999, 17, 1811-1815
    [128] H. Han, J. W. Mayer, T. L. Alford. Band gap shift in the indium-tin-oxide films on polyethylene napthalate after thermal annealing in air[J]. J. Appl. Phys. 2006, 100:083715-083719
    [129] G. Haacke. New figure of merit for transparent conductor[J]. J. Appl. Phys. 1976, 47:4086-4089.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700