发光有机金属配合物分子结构与光电性能关系的理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
有机电致发光器件具有驱动电压低、响应速度快、视角广、发光亮度和发光效率高以及易于调制颜色实现全色显示等优点,而且有机材料具有重量轻、柔性强、易于加工等特点,可用于制作超薄大面积平板显示、可折叠的“电子报纸”以及高效率的户外和室内照明器件,这些都是传统的无机电致发光器件和液晶显示器所无法比拟的。上述特点使得有机电致发光成为电致发光领域内一个新的研究热点,受到了化学、光学、材料学等相关学科领域的广泛重视。
     近年来,发光有机金属配合物因其在电致发光中的潜在应用而成为一个十分活跃的研究领域。人们对有机金属配合物光电性质的实验研究很多,但由于发光、载流子传输等微观过程的复杂性,其微观机制尚未探明,因此有机金属配合物发光、传输等性质的理论研究越来越受到重视。
     目前,量子化学计算方法已被广泛用于研究物质分子的结构、性能及其结构与性能之间的关系等问题,并获得了一些理想的结果。论文运用密度泛函理论(DFT),对有机电致发光领域中具有代表性的8-羟基喹啉金属配合物、席夫碱金属配合物的几何结构和电子结构进行了研究,分析结构对其性能的影响,进而为设计合成具有性能优良的有机电致发光材料提供理论指导。
     1、实验研究指出,8-羟基喹啉锂(Liq)可用作电致发光器件的发光层、电子传输层,也可以用作电子注入层。论文从分子设计的角度出发,采用密度泛函理论较为系统地研究了给/吸电子取代基对Liq光电性能的影响,获得了一些有价值的研究结果,为进一步改善Liq的性能提供理论指导。研究结果表明,不同取代基与母体形成不同的共轭,取代基-CN、-OCH3很好地参与了整个π体系共轭,对体系性质影响最大,而-CF3、-CH3CH2CH2、-CH3、-Cl与体系的共轭作用较弱,对体系性质影响相对较小。给电子基取代,加强了N和Li共价性和O与Li的静电作用,吸电子基取代减弱了N和Li共价性和O与Li的静电作用。吸电子基-CF3、-CN、-Cl在5位取代Liq都使其最高占据轨道(HOMO)、最低空轨道(LUMO)能级降低,但吸电子基的强弱对Liq的LUMO、HOMO及带隙的影响不具有规律性,-CF3、-CN使Liq带隙增大,而-Cl使Liq带隙减小,这里还需考虑取代基的共轭效应的协同作用。给电子基-CH3、-CH3CH2CH2、-OCH3在5位取代Liq都使LUMO、HOMO升高,带隙减小,给电子性越强,影响越显著。-CN在5取代,显著增加了Liq的电子亲和势,降低了分子轨道的简并度,使分子轨道能级展宽,电子更易于注入和传输。与Liq及其它衍生物相比,5-CN-Liq是一种更好的电子注入和传输材料。
     2、8-羟基喹啉铝作为一种重要的电子传输材料和理想的有机电致绿光材料,它的发光性质得到了广泛的研究。目前对Alq3的研究主要集中在如何通过分子剪裁和聚集态结构的调控来改变其发光光谱以及提高器件的效率和寿命。马东阁等设计合成了双核8-羟基喹啉铝(DAlq3),发现其电致发光性能优于同样器件结构下8-羟基喹啉铝(Alq3)的性能,他们认为由于DAlq3具有相对较高的电子迁移率,有利于电子和空穴的传输平衡。论文研究了分子的化学修饰对载流子传输性能的影响,从微观的角度解释了DAlq3比Alq3具有更高电子迁移率的本质原因。基于Marcus电子转移理论,利用DFT方法,对Alq3和DAlq3分子间及分子内的电子转移进行了理论计算,计算Alq3和DAlq3的重组能、电子亲和势(EA)和电离势(IP)。基于跳跃模型构建DAlq3和Alq3的电荷转移路径,计算DAlq3和Alq3的电荷耦合矩阵元。利用重组能及电荷耦合矩阵元计算Alq3和DAlq3的电子迁移率。结果表明,在氧化还原过程中,DAlq3分子几何结构扭曲变形小于Alq3,因此导致DAlq3的电子和空穴重组能均比Alq3的小。DAlq3的电子耦合矩阵元远大于Alq3的电子耦合矩阵元。据Marcus电子转移理论计算得出DAlq3的电子迁移率约为Alq3的2.7倍,这源于DAlq3较小的电子重组能λ(e)和较大的电子耦合矩阵元HAB(e),这就解释了为什么DAlq3比Alq3有更好的电子传输特性,与实验观测是一致的。在进行电荷迁移率计算时,对于DAlq3和Alq3,电荷耦合矩阵元是比重组能更为关键的参数。电子亲和势(EA)和电离势(IP)计算分析也表明,DAlq3比Alq3更有利于电子传输。
     3、席夫碱金属配合物由于其具有药物、催化、非线性光学、电致发光等性能而被广泛研究。水杨醛类双席夫碱金属配合物具有较大共轭体系的四齿含氮配体,是一类很好的发光化合物。在实验中发现水杨醛缩乙二胺锌Zn(salen)有着有趣的光致发光和电致发光性能。论文借助于密度泛函理论讨论分子结构及其聚集态结构对发光性能影响,对实验现象进行了合理的解释。首先根据实验研究结果,借鉴类似化合物的微观结构,构建了Zn(salen)三种可能的分子构型,即单体、二聚体和螺旋状体。利用DFT方法对三种不同构型Zn(salen)分子的几何和电子结构进行理论研究。三种Zn(salen)的稳定性顺序是螺旋状体>二聚体>单体,螺旋状体为热力学上最稳定的一种构型。三种构型Zn(salen)的前线分子轨道特征表明,相对于单体及二聚体,螺旋状体的LUMO更加离域,而且螺旋状体中平行的亚水杨基分子片段之间具有π-π相互作用,这表明螺旋状体拥有更好的电子传输特性。三种构型Zn(salen)的带隙大小次序是单体>二聚体>螺旋状体,对应的发光光谱依次红移。利用电子光谱对Zn(salen)的电子跃迁性质进行了分析,对三种构型Zn(salen)的紫外-可见吸收光谱的归属进行了详细指认。实验观察到的Zn(salen)可变的光致发光特性源于Zn(salen)不同的分子构型和电子结构,Zn(salen)可变的电致发光性能表明在电压驱动下,Zn(salen)的构型会发生转变,从而从理论上解释了水杨醛缩乙二胺锌可变的光致发光和电致发光性能
Organic electroluminescent devices have many merits, for example, lower drive voltage, quick response, broad visual angle, high luminescence brightness and efficiency, easy modulation of color for whole color display and so on. At the same time, organic materials have characteristics of lightweight, good flexibility and easy processibility. Therefore, organic electroluminescent materials can be applied to ultrathin and big area flat display, foldable "electronics newspaper" and high-efficiency outdoors and indoors illuminating apparatuses. At these aspects, all traditional inorganic electroluminescent devices and liquid crystal display are incomparable. So organic electroluminescence has become a new research hotspot in electroluminescence field and attached great attention of chemistry, optics, and materials science.
     In recent years, light-emitting organic metal complexes have become a very active research field because of their potential applications in electroluminescence. There are a lot of experimental studies on photoelectric properties of organic metal complexes, but because of the complexity of some microcosmic processes, such as luminescence and charge carrier transporting and so on, the microcosmic mechanism of these photoelectric properties has not been understood distinctly. So theoretical investigation on these properties for light-emitting organic metal complexes has attracted more and more attention.
     At present, the quantum chemistry calculation method has been widely used to study the material molecular structure, properties and the relationship between structure and properties, and obtained some satisfactory results. In this dissertation, the geometric structure, electronic structure, and the relationship between structure and properties for 8-hydroxyquinoline-metal complexes, Schiff base metal complexes which are representative in organic electroluminescence field were studied by density functional theory (DFT). These will provide theoretical guidance for design and synthesis of organic electroluminescent material with excellent performance.
     1. Experimental researchs indicated that 8-hydroxyquinoline lithium (Liq) can be applied as light-emitting, electron transport and electron injection layer in organic electroluminescent device (OELD). In this paper, from the point of view of molecular design, the influence of electron donating and withdrawing substituents on photoelectric properties of Liq are systematically studied by density functional theory (DFT), several significant research results were achieved to provide theoretical guidance for further improving the performance of Liq.
     The research results showed that the different substituents form different conjugate with the parent population. The substituents of -CN, -OCH3 participate in theπ-conjugated system properly, and have a great influence on the properties of the system. While the substituents of -CF3, -CH3, -CH3CH2CH2, -Cl have the weaker conjugated effects with the system, and have relatively a little influence on the properties of the system. The electron donating substituents enhance O-Li electrostatic interaction and N-Li covalency, and the electron withdrawing substituents weaken O-Li electrostatic interaction and N-Li covalency. The electron withdrawing groups of -CF3, -CN, -Cl attached to 5-position of Liq make LUMO and HOMO energy level lower, but the dependence of the LUMO, HOMO and band gap on their inductive effect strength lack regularity. The -CF3, -CN increase band gap of Liq, however the -Cl decreases band gap of Liq. Here the synergistic action of conjugated effects should be included. The electron donating groups of -CH3, -CH3CH2CH2, -OCH3 attached to 5- position of Liq make LUMO and HOMO energy level higher and band gap decrease, the stronger interaction between the substituent and the molecular orbital, the more remarkable the influence will be. The -CN substitution at 5-position of Liq make the electron affinity significant increase, the degeneracy of molecular orbital energy levels decrease, and the molecular orbital energy levels broaden, so that electron injection and transport become more easy. It can be concluded that 5-CN-Liq is a kind of better electron injection and transport materials than Liq and other derivatives of Liq.
     2. 8-hydroxyquinoline aluminum is an important electron transport and an ideal green light emitting material. Its luminescent properties had been studied extensively. Current research for Alq3 focuses on modulating its light-emitting wavelength and improving the efficiency and lifetime of OELD by tailoring molecule and controlling aggregation structure. A dinuclear aluminum 8-hydroxyquinoline complex (DAlq3) based on 8-hydroxyquinoline and 5, 5′-methylene-bis(8-hydroxyquinoline) ligand had been designed and synthesized by Ma Dong-ge et al. It was found that the electroluminescent performance of DAlq3 is better than that of Alq3 in the same structure devices. They thought that the DAlq3 possesses relatively higher electron mobility compared with Alq3, which balances transport of electron and hole in OELD.
     In this dissertation, the effects of the molecular chemical modification on the charge transport properties were investigated, it can be explained from the microcosmic aspect that DAlq3 has a higher electron mobility than Alq3. The theoretical calculation on intermolecular and intramolecular charge transfer for DAlq3 and Alq3 were carried out based on the Marcus electron transfer theory using DFT methods. The reorganization energy, electron affinities (EA) and ionization potentials (IP) of DAlq3 and Alq3 were obtained. The charge transfer pathways of DAlq3 and Alq3 were constructed based on intermolecular hopping model, and then charge coupling matrix elements for DAlq3 and Alq3 were calculated. Electron mobilities of DAlq3 and Alq3 were estimated ultimately using reorganization energy and charge coupling matrix element. The results showed, upon oxidation and reduction, the geometry structure distortion of DAlq3 is smaller than that of Alq3, consequently lead to smaller reorganization energy of DAlq3 both for electron and hole than that of Alq3. Electronic coupling matrix element of DAlq3 is much larger than that of Alq3. According to the Marcus electron transfer theory, we estimated that electron mobility of DAlq3 is about 2.7 times of that of Alq3. This is due to the smaller electron reorganization energyλ(e) and larger electronic coupling matrix element HAB(e) of DAlq3 than that of Alq3. This explains why DAlq3 has better electron transporting property and then higher EL efficiency than Alq3, which is agreement with experimental observations. The charge coupling matrix element is a more crucial parameter than the reorganization energy for DAlq3 and Alq3 for charge mobility calculation. Moreover, from the viewpoint of the electron affinity (EA) and ionization potential (IP), DAlq3 is more favorable for electron transport than Alq3.
     3. Schiff base metal complexes have been extensively studied because of their properties of drugs, catalysis, nonlinear optics, electroluminescent and so on. Salicylaldehyde bis-Schiff base metal complexes have quadridentate nitrogen-ligand with a larger conjugated system, are regarded as a class of very good light-emitting compounds. The experimental results revealed that N,N’-bis(salicylidene)-ethylenediamine)zinc(Zn(salen) exhibited very intersting photoluminescent and electroluminescent properties.
     In this thesis, the effects of molecular structure and aggregation structure on the light-emitting properties were discussed, and the experimental phenomena were explained reasonably by density functional theory (DFT). First of all, according to experimental results, and profitting from the microstructure of similar compounds, three possible molecular configurations of Zn(salen) were constructed, namely the monomer, the dimer and the helical. The theoretical studies on geometric and electronic structures for three different configurations of Zn(salen) were carried out by means of DFT method. The order of stabilization of three species of Zn(salen) is the helical structure > the dimer > the monomer. This suggest that the helical is the most favored conformation thermodynamically. The frontier molecular orbital characteristics of three species of Zn(salen) show that the LUMO of the helical has more delocalized character than that of the monomer and the dimer. In addition,π-πinteraction of the parallel salicylidene segments for the helical also provides an efficient pathway for electron transport. Therefore the helical has better electron transporting property than the monomer and the dimer. The order of energy band gap of three species of Zn(salen) is the monomer > the dimer > the helical, corresponding the PL and EL spectra exhibit red shift in turn. The properties of electronic transition for Zn(salen) were analyzed using electronic spectra, the attribution of UV-Vis absorption spectra peaks for three configurations of Zn(salen) are designated specially. The variability of photoluminescence properties observed in experiment result from diversity of different molecular structure and electronic structure of Zn(salen), the various electroluminescence properties of Zn(salen) shows that the configurations of Zn(salen) also is changed at driving-voltage. The changes on PL and EL properties of Zn(salen) can be clarified eventually in theory.
引文
[1] Pope M., Kallmanm H., Mangnante P. J. Electroluminesence in organic crystals [J]. J. Chem. Phys., 1963, 38(8): 2042-2043.
    [2] Helfrich W., Schneider W. G. Recombination radiation in anthracene crystals [J]. Phys. Rev. Lett., 1965, 14(7): 229-231.
    [3] Lohmann F., Mehl W. Injection and radiative recombination of electrons and holes in naphthalene crystals [J]. J. Chem. Phys., 1969, 50(1): 500.
    [4] Williams D. F., Schadt M. A. A simple electroluminescence diode [J]. Proc. IEEP, 1970, 58: 476.
    [5] Vincett P. S., Barlow W. A., Roberts G. G. Electronical conduction and low voltage blue electro-luminesence in vacuum-deposited organic films [J]. Thin Solid Film, 1982, 94(2): 171-183.
    [6] Tang C. W., Vanslkyke S. A. Organic electroluminesence diodes [J]. Appl. Phys. Lett., 1987, 51(12): 913.
    [7] Tang C. W., Vanslkyke S. A. Chen C. H. Electroluminesence of doped organic thin films [J]. J. Appl. Phys., 1989, 65(9): 3610-3616.
    [8] Burroughs J. H., Bradley D. D., Brown A. R., et al. Light-emitting diodes based on conjugated polymers [J]. Nature, 1990, 347(6293): 539-541.
    [9] Adachi C., Tsutsui T., Saito S. Organic electroluminescent device having a hole conductor as an emitting layer [J]. Appl. Phys. Lett., 1989, 55(15): 1489-1491.
    [10] Adachi C., Tokito S., Tsutsui T., et al. Organic electroluminesence device with three-layer structure [J]. Jpn. J. Appl. Phys., 1988, 27(4): L713-L715.
    [11] Chen B. J., Sun X. W., Wong K. S. Enhanced performance of tris-(8-hydroxyquinoline) aluminum-based organic light-emitting devices with LiF/Mg:Ag/Ag cathode [J]. Optics Express, 2005, 13(1): 26-31.
    [12] Vanslkyke S. A., Chen C. H., Tang C. W. Organic electroluminescent devices with improved stability [J]. Appl. Phys. Lett., 1996, 69(15): 2160-2162.
    [13] Ganzorig C., Fujihra M. A lithium carboxylate ultrathin film on an aluminum cathode for enhanced electron injection in organic electroluminescent devices [J]. Jpn. J. Appl. Phys., 1999, 38(11B): L1348-L1350.
    [14] Adamovich V., Shoustikov A. Thompson M. E. TiN as an anode material for organic light-emitting diodes [J]. Adv. Mater., 1999, 11(9): 727-730.
    [15]黄春辉,李富友,黄岩谊.光电功能超薄膜[M].北京:北京大学出版社, 2001: 34-45.
    [16]高观志,黄维.固体中的电输运[M].北京:科学出版社, 1991: 7-9, 547-560.
    [17] Kido J., Matsumoto T. Bright organic electroluminescent devices having a metal-doped electron-injecting layer [J]. Appl. Phys. Lett., 1998, 73(20): 2866-2868.
    [18] Brown T. M., Friend R. H., Millard I. S., et al. LiF/Al cathodes and the effect of LiF thickness on the device characteristics and built-in potential of polymer light-emitting diodes [J]. Appl. Phys. Lett., 2000, 77(19): 3096-3098.
    [19] Jabbour G. E., Kippelen B., Armstrong N. R., et al. Aluminum based cathode structure for enhanced electron injection in electroluminescent organic devices [J]. Appl. Phys.Lett., 1998, 73(9): 1185-1187.
    [20] Tang H., Li F., Shinar J. Bright high efficiency blue organic light-emitting diodes with Al2O3/Al cathodes [J]. Appl. Phys. Lett., 1997, 71(18): 2560-2562.
    [21] Gu G., Garbuzov D. Z., Burrows P. E., et al. High-external-quantum-efficiency organic light-emitting devices [J]. Opt. Lett., 1997, 22(6): 396-398.
    [22] Stolka M., Yanus J. F., Pai D. M. Hole transport in solid-solutions of a diamine in polycarbonate [J]. J. Phys. Chem., 1984, 88(20): 4707-4709.
    [23] Borsenbegrer P. M., Mey W., Chowdry A. Hole transport in binary solid solutions of triphenylamine and bisphenol-A-polycarbonate [J]. J. Appl. Phys., 1978, 49(1): 273-279.
    [24] Bettenhausen J., Strohriegl P. Efficient synthesis of starburst oxadiazole compounds [J]. Adv. Mater., 1996, 8(6): 507-511.
    [25] Chen C. H., Shi J., Tang C. W. Recent developments in molecular organic electroluminescent materials [J]. Macromol. Symp., 1997, 125: 1-48.
    [26] Noda T., Ogawa H., Shirota Y. A blue-emitting organic electroluminescent device using a novel emitting amorphous molecular material, 5,5’-bis(dimesitylboryl)- 2,2’-bithiophene [J]. Adv. Mater., 1999, 11(4): 283-285.
    [27] Noda T., Shirota Y. 5,5’-bis(dimesitylboryl)-2,2’-bithiophene and 5,5’’-bis (dimesityl boryl)-2,2’,5’,2’’-terthiophene as a novel family of electron transporting amorphous molecular materials [J]. J. Am. Chem. Soc., 1998, 120(37): 9714-9715.
    [28] Uchida M., Izumizawa T., Nakano T., et al. Structural optimization of 2,5-diarylsiloles as excellent electron-transporting materials for organic electroluminescent devices [J]. Chem. Mater., 2001, 13(8): 2680-2683.
    [29] Yamaguchi S., Endo T., Uchida M., et al. Toward new materials for organic electroluminescent devices: synthesis, structures, and properties of a series of 2,5-diaryl- 3,4-diphenylsiloles [J]. Chem. Eur., 2000, 6(9): 1683-1692.
    [30] Heidenhain S. B., Sakamoto Y., Suzuki T., et al. Perfluorinated oligo(p-phenylene)s: Efficient n-type semiconductors for organic light-emitting diodes [J]. J. Am. Chem. Soc., 2000, 122(41): 10240-10241.
    [31] Komatsu S., Sakamoto Y., Suzuki T., et al. Perfluoro-1,3,5-tris(p-oligophenyl) benzenes: amorphous electron-transport materials with high-glass-transition temperature and highelectron mobility [J]. J. Solid State Chem., 2002, 168(2): 470-473.
    [32] Yu W., Pei J., Cao Y., et al. Hole-injection enhancement by copper phthalocyanine(CuPc) in blue polymer light-emitting diodes [J]. J. Appl. Phys., 2001, 89(4): 2343-2350.
    [33] Hung L. S., Tang C. W., Mason M. G. Enhanced electron injection in organic electroluminescence devices using an Al/LiF electrode [J]. Appl. Phys. Lett., 1997, 70(2): 152-154.
    [34] Dyreklev P., Berggren M., Inganas O., et al. Polarized electroluminescence from an oriented substituted polythiophene in a light-emitting diode [J]. Adv. Mater., 1995, 7(1): 43-45.
    [35] Halls J. J. M., Baigent D. R., Cacialli F., et al. Light-emitting and photoconductive diodes fabricated with conjugated polymers [J]. Thin Solid Films, 1996, 276(1-2): 13-20.
    [36] Kanbara T., Inoue T., Sugiyama K., Yamamoto T. Preparation of poly(quinoxaline-5, 8-diyl)derivatives by using zero-valent nickel complexes:Electrical and optical properties and light-emitting diodes [J]. Synth. Met., 1995, 71(1-3): 2207-2208.
    [37] Fukuda T., Kanbara T., Yamamoto T., et al. Polyquinoxaline as an electron injecting material for electroluminescent device [J]. Synth. Met., 1997, 85(1-3): 1195-1196.
    [38] Fukuda T., Kanbara T., Yamamoto T., et al. Polyquinoxaline as an excellent electron injecting material for electroluminescent device [J]. Appl. Phys. Lett., 1996, 68(17): 2346-2348.
    [39] Pei Q. B., Yang Y. Efficient photoluminescence and electroluminescence from a soluble polyfluorene [J]. J. Am. Chem. Soc., 1996, 118(51): 7416-7417.
    [40] Friend R. H., Gymer R. W., Holmes A. B., et al. Electroluminescence in conjugated polymers [J]. Nature, 1999, 397(6715): 121-128.
    [41] Grice A. W., Bradley D. D. C., Bernius M. T., et al. High brightness and efficiency blue light-emitting polymer diodes [J]. Appl. Phys. Lett., 1998, 73(5): 629.
    [42] Park J. H., Yu H. Y., Park J. G., et al. Non-linear I-V characteristics of MEH-PPV patterned on sub-micrometer electrodes [J]. Thin Solid Films, 2001, 393(1-2): 129.
    [43] Greenham N. C., Moratti S. C., Bradley D. D. C., et al. Efficient light-emitting diodes based on polymers with high electron affinities [J]. Nature, 1993, 365(6447): 628-630.
    [44] Andersson, M. R., Yu, G., Heeger, A. J. Photoluminescence and electroluminescence offilms from soluble PPV-polymers [J]. Synth. Met., 1997, 85(1-3): 1275-1276.
    [45] Yang X. H., Kietzke T., Jaiser F., et al. Polymer light emitting diodes based on LiF/Al composite cathode [J]. Synth. Met., 2003, 137(1-3): 1503-1504.
    [46] Fahlman M., Salaneck W. R., Brédas J. L. Experimental and theoretical studies of theπ-electronic structure of conjugated polymers and the low work function metal/conjugated polymer interaction [J]. Synth. Met., 1996, 78(3): 237-246.
    [47] Chen C. H., Tang C. W., Shi J., et al. Recent developments in the synthesis of red dopants for Alq3 hosted electroluminescence [J]. Thin Solid Films, 2000, 363(1-2): 327-331.
    [48] Hou Y. B., Yang X. H., Li Y. B., et al. Electric-field-induced quenching of photoluminescence of poly(N-Vinylarbaole) (Pvk) doped with dyes [J]. Thin Solid Films, 2000, 363(1-2): 248-251.
    [49] Yutaka O., Makoto H., Hirotake K., et al. Organic electroluminescent diodes as a light source for polymeric waveguides-toward organic integrated optical devices [J]. Thin Solid Films, 2001, 393(1-2): 267-272.
    [50] Shi J. M., Tang C. W. Doped organic electroluminesent devices with improved stability [J]. Appl. Phys. Lett., 1997, 70(13): 1665-1667.
    [51] Sakuratani Y., Watanabe T., Miyata S. All-wet fabrication of an organic electroluminescent device [J]. Thin Solid Films, 2001, 388(1-2): 256-259.
    [52] Itoh E., Yamashita T., Miyairi K. Effect of ionic charge polarization on the efficiency of heat-treated molecularly doped poly (N-vinylcarbazole) light emitting diode [J]. Thin Solid Films, 2001, 393(1-2): 368-373.
    [53] Shi J. M., Tang C. W. Anthracene derivatives for stable blue-emitting organic electroluminesent devices [J]. Appl. Phys. Lett., 2002, 80(17): 3201-3203.
    [54] Shi J. M., Tang C. W. Blue organic electroluminesent devices [P]. US Patent: 5935721, 1999.
    [55] Hamada Y., Sano T., Fujita M., et al. Organic electroluminiescent devices with 8-hydroquinoline derivative-metal complexes as an emitter [J]. Jpn. J. Appl. Phys., 1993, 32(4A): L514-L515.
    [56] Hamada Y. Organic electroluminescent materials and devices [M]. Amsterdam: Gordon and Breach, 1997: 11-23.
    [57] Sapochak L. S., Benincasa F. E., Schofield R. S., et al. Electroluminiescent zinc (Ⅱ) bis(8-hydroxy-quinoline): Structure effects on electronic states and device performance [J]. J. Am. Chem. Soc., 2002, 124(21): 6119-6125.
    [58] Burrows P. E., Sapochak L. S., McCarty D. M., et al. Metal ion dependent luminescence effects in metal tris-quinolate organic heterojunction light emitting devices [J]. Appl. Phys. Lett., 1994, 64(20): 2718-2720.
    [59] Wang Y., Zhang W., Li Y., et al. X-ray crystal structure of gallium tris-(8- hydroxyquinoline): inter-molecularπ-πstacking interactions in the solid state [J]. Chem. Mater., 1999, 11(3): 530-532.
    [60] Wang L. J., Jiang X. Y., Zhang Z. L., et al. Organic thin film electroluminescent devices using Gaq3 as emitting layers [J]. Displays, 2000, 21(2): 47-49.
    [61] Hamada Y., Kanno H., Sano T., et al. Organic light-emitting diodes using a gallium complex [J]. Appl. Phys. Lett., 1998, 72(16): 1939-1941.
    [62] Khreis O. M., Gillin W. P., Somerton M., et al. 980nm electroluminescence from ytterbium tris(8- hydroxyquiniline) [J]. Organic Electronics, 2001, 2(1): 45-51.
    [63] Hamada Y., Sano T., Fujita M., et al. High luminance in organic electroluminescent devices with bis(10-hydroxyben zoquino-linato)beryllium as an emitter [J]. Chem. Lett., 1993, 35(5): 905-906.
    [64] Hamada Y., Sano T., Fujita M., et al. White light emitting material for electroluminescent devices [J]. Jpn. J. Appl. Phys., 1996, 35(10B): L1339-L1341.
    [65] Chen T. R. Luminescence electroluminescence of bis(2-(benzimidazol- 2-yl)quinolinato) zinc. Exciplex formation and energy transfer in mixed film of bis(2-(benzimidazol- 2-yl)quinolinato)zinc and N,N’-bis-(1-naphthyl)- N,N’-diphenyl-1,1’- biphenyl-4,4’- diamine [J]. J. Molecular Structure, 2005, 737(1): 35.
    [66] Hamada Y., Sano T., Fujita M., et al. Blue electroluminescence in thin films of azomethin-zinc complexes [J]. Jpn. J. Appl. Phys., 1993, 32(4A): L511-L513.
    [67] Tao X. T., Suzuki H., Watanabe T., et al. Metal complex polymer for second harmonic generation and electroluminescence applications [J]. Appl. Phys. Lett., 1997, 70(12): 1503-1505.
    [68] Shao Y., Qiu Y., Hu W. H., et al. A novel asymmetric complex for organicelectroluminescence [J]. Adv. Mater. Opt. Electron, 2000, 10(6): 285.
    [69] Qiao J., Qiu Y., Wang L. D., et al. Pure red electroluminescence form a novel host material of binuclear gallium complex [J]. Appl. Phys. Lett., 2002, 81(26): 4913-4915.
    [70]乔娟.新型有机电致发光材料的分子设计与性能研究[D].北京:清华大学, 2003.
    [71] Yu G., Liu Y. Q., Song Y. R., et al. A new blue light-emitting material [J]. Synth. Met., 2001, 117(1-3): 211-214.
    [72]刘云圻,于贵,武霞等.锌-席夫碱络合物的电致发光性能[J].发光学报, 2000, 21(增刊): 17.
    [73] Kim S. M., Kim J. S., Shin D. M., et al. Synthesis and application of the novel azomethine metal complexes for organic electroluminescent devices [J]. Bull. Korean. Chem. Soc., 2001, 22(7): 743-747.
    [74] Kido J., Hayase H., Okamoto Y., et al. Bright red light-emitting organic electroluminescent devices having a europium complex as an emitter [J]. Appl. Phys. Lett., 1994, 65(17): 2124-2126.
    [75] Gao D. Q., Bian Z. Q., Wang K. Z., et al. Synthesis and electroluminescence properties of an organic europium complex [J]. Journal of Alloys and Compounds, 2003, 358(1-2): 188-192.
    [76] Nigel A., Male H., Oleg V. S., et al. Enhanced electrluminescent efficiency from spin-coated europium organic light-emitting device [J]. Synth. Met., 2002, 126(1): 7-10.
    [77] Bian Z. Q., Gao D. Q., Wang K. Z., et al. Pure red organic electrluminescent devices using a novel europium complex as emitting layer [J]. Thin Solid Films, 2004, 460(1-2): 237-241.
    [78] Kido J., Nagai K., Ohashi Y. Electroluminescence in a terbium complex [J]. Chem. Lett., 1990, 66(21): 657-660.
    [79] Tao D. L., Xu Y. Z., Zhou F. S., et al. Spectroscopic and TEM studies on poly vinyl carbazoleyterbium complexand fabrication of organic electroluminescent device [J]. Thin Solid Films, 2003, 436(2): 281-285.
    [80] Zheng Y. X., Lin J., Liang Y. J., et al. Green electroluminescent device with a terbium b-diketonate complex as emissive center [J]. Optical Materials [J]. 2002, 20(4): 273-278.
    [81] Reyes R., Hering E. N., Cremona M., et al. Growth and characterization of OLED withsamarium complex as emitting and electron transporting layer [J]. Thin Solid Films, 2002, 420-421: 23-29.
    [82]李文连.有机电致发光的效率[J].液晶与显示, 2001, 16(2): 120-123.
    [83]杨延强,马於光,张厚玉等. Os(Ⅱ)配合物光致发光过程中能量转移过程的环境依赖特性[J].发光学报, 1998, 19(2): 143.
    [84] Baldo M. A., O'Brien D. F., You Y., et al. Highly efficient phosphorescent emission from organic electroluminescent devices [J]. Nature, 1998, 395(10): 151-154.
    [85] Chou P. T., Chi Y. Phosphorescent dyes for organic light-emitting diodes [J]. Chem. Eur. J., 2007, 13(2): 380-395.
    [86] Hsu F. C., Tung Y. L., Chi Y., et al. En route to the formation of high-efficiency, osmium(II)-based phosphorescent materials [J]. Inorg. Chem., 2006, 45(25): 10188- 10196.
    [87] Chang S. Y., Chen J. L., Chi Y., et al. Blue-emitting platinum(II) complexes bearing both pyridylpyrazolate chelate and bridging pyrazolate ligands: synthesis, structures, and photophysical properties [J]. Inorg. Chem., 2007, 46(26): 11202-11212.
    [88] Baldo M. A., Lamansky S., Burrows P. E., et al. LASERS, OPTICS, AND OPTOELECTRONICS--Very high-efficiency green organic light-emitting devices based on electrophosphorescence [J]. Appl. Phys. Lett., 1999, 75(1): 4-6.
    [89] Curioni A., Boero M., Andreoni W., et al. Alq3: ab initio calculations of its structural and electronic properties in neutral and charged states [J]. Chem. Phys. Lett., 1998, 294(5): 263-271.
    [90] Halls M. D., Schlegel H. B. Molecular orbital study of the first excited state of the OLED material tris(8-hydroxyquinoline)aluminum(III) [J]. Chem. Mater., 2001, 13(8): 2632- 2640.
    [91] Martin R. L., Kress J. D., Campbell I. H., et al. Molecular and solid-state properties of tris-(8-hydroxyquinolate)-aluminum [J]. Phys. Rev. B, 2000, 61(23): 15804-15811.
    [92] Amati M., Lelj F. Are UV-Vis and luminescence spectra of Alq3 [aluminum tris(8- hydroxy quinolinate)]δ-phase compatible with the presence of the fac-Alq3 isomer? A TD-DFT investigation [J]. Chem. Phys. Lett., 2002, 358(1-2): 144-150.
    [93] Amati M., Lelj F. Monomolecular isomerization processes of aluminum tris(8-hydroxyquinolinate) (Alq3): a DFT study of gas-phase reaction paths [J]. Chem. Phys. Lette., 2002, 363(5-6): 451-457.
    [94] Gahungu G., Zhang J. P.“CH”/N substituted mer-Gaq3 and mer-Alq3 derivatives: an effective approach for the tuning of emitting color [J]. J. Phys. Chem. B, 2005, 109(37): 17762-17767.
    [95] Zhang J. P., Frenking G. Quantum chemical analysis of the chemical bonds in tris(8-hydroxyquinolinato)aluminum as emitting material for OLED [J]. J. Phys. Chem. A, 2004, 108(46): 10296-10301.
    [96] Zhang J. P., Frenking G. Quantum chemical analysis of the chemical bonds in Mq3(M=Al(III), Ga(III)) as emitting material for OLED [J]. Chem. Phys. Lett., 2004, 394(1-3): 120-125.
    [97] Li H. X., Pan S. J., Wang X. F., et al. Theoretical Studies on the Ground State and Excited State of 2,7'-(Ethylene)-bis-8-hydroxyquinoline [J]. Chin. J. Chem. Phys., 2008, 21(3): 263-269.
    [98] Su Z. M., Gao H. Z., Cheng H., et al. Electronic property and molecule design for luminescent metal complexes of tris(8-hydroxyquinoline) gallium [J]. Science in China (Series B), 2000, 43(6): 657-669.
    [99]廖奕,苏忠民,陈亚光等. 8-羟基喹啉铍及其衍生物电子光谱性质的含时密度泛函理论研究[J].高等学校化学学报, 2003, 24(3): 477-480.
    [100]刘晓冬,任爱民,封继康等.氟取代三(8-羟基喹啉)铝衍生物电子结构、电子光谱的量子化学研究:实现蓝色发光的途径[J].高等化学学报, 2006, 27(11): 2156-2159.
    [101] Dong S., Wang W., Yin S. W., Li C.Y., et al. Theoretical studies on charge transport character and optional properties of Alq3 and its difluorinated derivatives [J]. Synthetic Metals, 2009, 159(5-6): 385-390.
    [102] Shi M. M., Lin J. J., Shi Y. W., et al. Achieving blue luminescence of Alq3 through the pull-push effect of the electron-withdrawing and electron-donating substituents [J]. Materials Chemistry and Physics, in Press.
    [103] Chen L., Qiao J., Xie J. F., et al. Substituted azomethine-zinc complexes: thermal stability, photophysical, electrochemical and electron transport properties [J]. Inorganica Chimica Acta, in Press.
    [104]蔺彬彬,仇永清,苏忠民等.水杨醛缩苯胺类席夫碱构象异构体的稳定性及其非线性光学性质的理论研究[J].高等学校化学学报, 2001, 22(9): 1551-1554.
    [105] Yu G., Yin S. W., Liu Y. Q., et al. Structures, electronic states, and electroluminescent properties of a zinc(II) 2-(2-hydroxyphenyl)benzothiazolate complex [J]. J. Am. Chem. Soc., 2003, 125(48): 14816-14824.
    [106] Sapochak L. S., Falkowitz A., Ferris K. F., et al. Supramolecular structure of zinc(II) (8-quinolinolato) chelates [J]. Phys. Chem. B, 2004, 108(25): 8558-8566.
    [107] Lin B. C., Cheng C. P., You Z. Q., et al. Charge transport properties of tris(8- hydroxyquinolinato)aluminum(III): why it is an electron transporter [J]. J. Am. Chem. Soc., 2005, 127(1): 66-67.
    [108] Yang G. C., Su T., Shi X. Q., et al.Theoretical Study on Photophysical Properties of Phenolpyridyl Boron Complexes [J]. J. Phys. Chem. A, 2007, 111(14): 2739-2744.
    [1] Schr?dinger, E. Quantisierung als eigenwert problem [J]. Annalen der Physik, 1926, 79(4): 361.
    [2] Schr?dinger, E. An undulatory theory of the mechanics of atoms and molecules [J]. Phys. Rev., 1926, 28(6): 1049.
    [3] Born M., Oppenheimer J. R. Zur quantentheorie der molekeln [J]. Annalen der Physik, 1927, 84(20): 457-484.
    [4] Hartree D. R. The Calculation of Atomic Structure [M]. New York: Wiley, 1957.
    [5] Pople J. A., Beveridge D. L.近似分子轨道理论方法[M].江元生译,北京:科学出版社, 1976.
    [6] Ridley J. E., Zerner M. C. Triplet states via intermediate neglect of differential overlap: benzene, pyridine and the diazines [J]. Theoret Chim. Acta., 1976, 42(3): 223-236.
    [7] Reynolds C. H. Semiempirical MO methods: The middle ground in molecular modeling [J]. J. Mol. Struct. (THEOCHEM), 1997, 401(3): 267-277.
    [8] Pople J. A., Santry D. P., Segal G. A. Approximate self-consistent molecular orbital theory: I. Invariant procedures [J]. J. Chem. Phys., 1965, 43(10): s129-s135.
    [9] Pople J. A., Beveridge D. L., Dobosh P. A. Approximate self-consistent molecular orbital theory: V. Intermediate neglect of differential overlap [J]. J. Chem. Phys., 1967, 47(6): 2026-2033.
    [10] Bingham R. C., Dewar M. J. S., Lo D. H. Ground states of molecules XXV. MINDO/3.An improved version of the MINDO semiempirical SCF-MO method [J]. J. Am. Chem. Soc., 1975, 97(6): 1285-1293.
    [11] Dewar M. J. S., Thiel W. Ground states of molecules. 38. The MNDO method. Approximations and parameters [J]. J. Am. Chem. Soc., 1977, 99(15): 4899-4907.
    [12] Thiel W., Voityuk A. A. Extension of MNDO to d orbitals: Parameters and results for silicon [J]. J. Mol. Struct. (THEOCHEM), 1994, 313(1): 141-154.
    [13] Dewar M. J. S., Zoebisch E. G., Healy F. E., et al. AM1: A new general purpose quantum mechanical molecular model [J]. J. Am. Chem. Soc., 1985, 107(12): 3902.
    [14] Stewart J. J. P. Optimization of parameters for semiempirical methods I. method [J]. J. Comput. Chem., 1989, 10(2): 209-220.
    [15] Stewart J. J. P. Optimization of parameters for semiempirical methods II. Applications [J]. J. Comput. Chem., 1989, 10(2): 221-264.
    [16] Ridley J. E., Zerner M. C. An intermediate neglect of differential overlap technique for spectroscopy: pirrole and the azines [J]. Theor. Chim. Acta., 1973, 32(2): 111-134.
    [17] Thomas L. H. The calculation of atomic fields [J]. Proc. Cambridge Philos. Soc., 1927, 23: 542-548.
    [18] Fermi E. Eine statistische methode zur bestimmung einiger eigenschaften des atoms und ihre anwendung auf die theories des periodischen systems der elemente [J]. Z. Phys., 1928, 48: 73-79.
    [19] Wang L. W., Teter M. P. Kinetic-energy functional of the electron density [J]. Phys. Rev. B, 1992, 45(23): 13196.
    [20]代兵,过渡金属化合物团簇激发态性质及过渡金属表面吸附系统的第一性原理研究[D].合肥:中国科学技术大学, 2004.
    [21]李震宇.新材料物性的第一性原理研究[D].合肥:中国科学技术大学, 2004.
    [22] Kohn W., Sham L. J. Self-consistent equations including exchange and correlation effects [J]. Phys. Rev. A, 1965, 140(4): 1133-1138.
    [23] Stowasser R., Hoffmann R. What do the Kohn-Sham orbitals and eigenvalues mean? [J]. J. Am. Chem. Soc., 1999, 121(14): 3414-3420.
    [24] Yang W. T., Ayers P. W., Wu Q. Potential functionals: Dual to density functionals and solution to the v-representability problem [J]. Phys. Rev. Lett., 2004, 92(14): 146404.
    [25] Hedin L., Lundqvist B. I. Explicit local exchange-correlation potentials [J]. J. Phys. C: Solid State Phys., 1971, 14(4): 2064-2083.
    [26] Ceperley D. M., Alder B. J. Ground state of the electron gas by a stochastic method [J]. Phys. Rev. Lett., 1980, 45(7): 566-569.
    [27] Janak J. F. Itinerant ferromagnetism in fcc cobalt [J]. Solid State Commun., 1978, 25(2): 53-55.
    [28] Perdew J. P., Wang Y. Accurate and simple analytic representation of the electron-gas correlation energy [J]. Phys. Rev. B, 1992, 45(23): 13244-13249.
    [29] Langreth D. C., Mehl M. J. Beyond the local-density approximation in calculations of ground-state electronic properties [J]. Phys. Rev. B, 1983, 28(4): 1809-1834.
    [30] Perdew J. P. Accurate density functional for the energy: Real-space cutoff of the gradient expansion for the exchange hole [J]. Phys. Rev. Lett., 1985, 55(16): 1665-1668.
    [31] Perdew J. P., Wang Y. Accurate and simple density functional for the electronic exchange energy: Generalized gradient approximation [J]. Phys. Rev B, 1986, 33(12): 8800-8802.
    [32] Becke A. D. Density functional calculations of molecular bond energies [J]. J. Chem. Phys., 1986, 84(8): 4524-4529.
    [33] Lee C., Yang W., Parr R. G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density [J]. Phys. Rev. B, 1988, 37(2): 785-789.
    [34] Perdew J. P., Chevary J. A., Vosko S. H., et al. Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation [J]. Phys. Rev. B, 1992, 46(11): 6671.
    [35] Perdew J. P., Burke K., Ernzerhof M. Generalized gradient approximation made simple [J]. Phys. Rev. Lett., 1996, 77(18): 3865-3868.
    [36] Becke A. D. A new mixing of Hartree-Fock and local density-functional theories [J]. J. Chem. Phys., 1993, 98(2): 1372-1377.
    [37] Becke A. D. Density-functional thermochemistry. III. The role of exact exchange [J]. J. Chem. Phys., 1993, 98(7): 5648-5652.
    [38] Anisimov V.I., Zaanen J., Andersen O. K. Band theory and Mott insulators: Hubbard U instead of Stoner I [J]. Phys. Rev. B, 1991, 44(3): 943-954.
    [39] Runge E., Gross E. K. U. Density-functional theory for time-dependent systems [J]. Phys.Rev. Lett., 1984, 52(12): 997.
    [40] Gross E. K. U., Kohn W. Local density-functional theory of frequency-dependent linear response [J]. Phys. Rev. Lett., 1985, 55(26): 2850-2852.
    [41] Louie S. G., Froyen S., Cohen M. L. Nonlinear ionic pseudopotentials in spin-density-functional calculations [J]. Phys. Rev. B, 1982, 26(4): 1738-1742.
    [42] Hamann D. R., Schluter M., Chiang C. Norm-conserving pseudopotentials [J]. Phys. Rev. Lett., 1979, 43(20): 1494-1497.
    [43] Delley B. Analytic energy derivatives in the numerical local-density-functional approach [J]. J. Chem. Phys., 1991, 94(11): 7245-7250.
    [44] Vosko S. J., Wilk L., Nusair M. Accurate spin-dependent electron liquid correlation energies for local spin density calculations: A critical analysis [J]. Can. J. Phys., 1980, 58(8): 1200-1211.
    [45] Perdew J. P., Burke K., Ernzerhof M. Generalized gradient approximation made simple [J]. Phys. Rev. Lett., 1996, 77(18): 3865-3868.
    [46] Becke A. D. A multicenter numerical integration scheme for polyatomic molecules [J]. J. Chem. Phys., 1988, 88(4): 2547-2553.
    [47] Lee C., Yang W., Parr R. G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density [J]. Phys. Rev. B, 1988, 37(2): 786.
    [48] Tsuneda T., Suzumura T. K., Hirao K. A new one-parameter progressive Colle-Salvetti-type correlation functional [J]. J. Chem. Phys., 1999, 110(22): 10664.
    [49] Boerrigter, P. M. te Velde G., Baerends E. J. Three-dimensional numerical integration for electronic structure calculations [J]. Int. J. Quantum Chem., 1988, 33(2): 87.
    [50] Hammer B., Hansen L. B., Norskov J. K. Improved adsorption energetics within density-functional theory using revised Per-dew-Burke-Ernzerhof functionals [J]. Phys. Rev. B, 1999, 59(11): 7413-7421.
    [51] Boese A. D., Handy N. C. A new parametrization of exchange-correlation generalized gradient approximation functionals [J]. J. Chem. Phys., 2001, 114(13): 5497-5503.
    [1] Tang C. W., VanSlyk S. A. Organic electroluminescent diodes [J]. Appl. Phys. Lett., 1987, 51(12): 913-915.
    [2] Tang C. W., VanSlyk S. A., Chen C. H. Electroluminescence of doped organic thin films [J]. J. Appl. Phys., 1989, 65(9): 3610.
    [3] Hamada Y., Sano T., Fujita M., et al. Organic electroluminescent devices with 8-hydroxyquinoline derivative-metal complexes as an emitter [J]. Jpn. J. Appl. Phys. Part 2, 1993, 32(4A): L514.
    [4] Sugimoto M., Sakaki S., Sakanoue K., et al. Theory of emission state of tris(8-quinolinolato)aluminum and its related compounds [J]. J. Appl. Phys., 2001, 90(12): 6092-6097.
    [5] Burrows P. E., Sapochak L. S., McCarty D. M., et al. Metal ion dependent luminescence effects in metal tris-quinolate organic heterojunction light emitting devices [J]. Appl. Phys. Lett., 1994, 64(20), 2718-2720.
    [6] Chen B. J., Sun X. W., Li Y. K. Influences of central metal ions on the electroluminescene and transport properties of tris-(8-hydroxyquinoline) metal chelates [J]. Appl. Phys. Lett., 2003, 82(18): 3017-3019.
    [7] DonzéN., Péchy P., Gr?tzel M., et al. Quinolinate zinc complexes as electron transporting layers in organic light-emitting diodes [J]. Chem. Phys. Lett., 1999, 315(5,6): 405-410.
    [8]赵婷,丁洪流,施国跃等. 2-对联苯-8-羟基喹啉锌的合成及其应用于新型白光OLED [J].化学学报, 2008, 66(10), 1209-1214.
    [9] Niu J. H., Li W. L., Wei H. Z., et al. White organic light-emitting diodes based on bis(2-methyl-8-quinolinolato) (para-phenylphenolato)aluminium(III) doped with tiny red dopant [J]. J. Phys. D: Appl. Phys., 2005, 38(8): 1136-1139.
    [10] Lim J. T., Jeong C. H., Lee J. H., et al. Synthesis and characteristics of bis(2,4-dimethyl- 8-quinolinolato)-(triphenylsilanolato) aluminum(III): A potential hole-blocking material for the organic light-emitting diodes [J]. Journal of Organometallic Chemistry, 2006, 691(12): 2701-2707.
    [11] Lee J. H., Wu C. I., Liu S. W., et al. Mixed host organic light-emitting devices with low driving voltage and long lifetime [J]. Appl. Phys. Lett., 2005, 86(10): 103506.
    [12] Ryu D. W., Kim K. S., Choi C. K., et al. Synthesis and luminescence properties of tris(4-tridecyl-8-quinolinolato)aluminum [J]. Curr. Appl. Phys., 2007, 7(4): 396-399.
    [13] Sapochak L. S., Padmaperuma A., Washton N., et al. Effects of systematic methyl substitution of metal(III) tris(n-methyl-8-quinolinolato) chelates on material properties for optimum electroluminescence device performance [J]. J. Am. Chem. Soc., 2001, 123(26): 6300-6307.
    [14] Tan S. T., Zhao B., Zou Y. P., et al. Synthesis and electroluminescent properties of substituted benzoate bis (8-hydroxyquinaldine) gallium(III) complexes [J]. Journal of Materials Science, 2004, 39(4): 1405-1406.
    [15] Kido J., Lizumi Y. Fabrication of highly efficient organic electrolum inescent devices [J]. Appl. Phys. Lett., 1998, 73(19): 2721.
    [16] Zhang R., Li Y., Duan L., et al. Efficient organic light-emitting diode using lithium tetra-(8-hydroxy-quinolinato) boron as the electron injection Layer [J]. Acta Physico-Chimica Sinica, 2007, 23(04): 455-458.
    [17] Tao X. T., Suzuki H., Wada T., et al. Lithium tetra-(8-hydroxy-quinolinato) boron for blue electroluminescent applications [J]. Appl. Phys. Lett., 1999, 75(12): 1655-1657.
    [18] Chen C. H., Shi J. Metal chelates as emitting materials for organic electroluminescence [J]. Coord. Chem. Rev., 1998, 171(4): 161-174.
    [19] Halls M. D., Schlegel H. B. Molecular orbital study of the first excited state of the OLED material tris(8-hydroxyquinoline)aluminum(III) [J]. Chem. Mater., 2001, 13(8): 2632- 2640.
    [20] Han Y. K., Lee S. U. Molecular orbital study on the ground and excited states of methyl substituted tris(8-hydroxyquinoline)aluminum(III) [J]. Chem. Phys. Lett., 2002, 366(1): 9-16.
    [21] Kan Y. H., Zhu Y. L., Hou L. M., et al. Electronic structure and optical spectra of tris(8-hydroxyquinolinato)aluminum derivative with mixed ligand containing chlorine: A TD-DFT study [J]. Acta Chimica Sinica, 2005, 63(14): 1263-1268.
    [22] Gao H. Z., Su Z. M. Theoretical studies of ground and excited electronic states of OLED material bis(2-methyl-8-quinolinolato)gallium(III) chlorine [J]. J. Mol. Struct. (THEOCHEM), 2005, 722(1-3): 161-168.
    [23] Zhang J. P., Frenking G. Quantum chemical analysis of the chemical bonds in tris(8-hydroxyquinolinato)aluminum as a key emitting material for OLED [J]. J. Phys. Chem. A, 2004, 108(46): 102961-0301.
    [24] Hao Y. Y., Wang H., Hao H. T., et al. Synthesis, Charaeterization, and photoluminescent property of lithium complex with 8-hydorxyquinoline [J]. Chin. J. Lumin., 2004, 25(4): 419-424.
    [25]吴有余,土克旭,李海蓉等.以Liq:Rubrene为发光层的白色有机电致发光器件的研制[J].半导体学报, 2007, 28(10): 1603-1606.
    [26] Du N. Y., Tian R. Y., Peng J. B., et al. Enhanced performance in organic light-emittingdiodes with copolymers containing both tris(8-hydroxyquinoline) aluminum and 8-hydroxyquinoline lithium groups [J]. Journal of Applied Polymer Science, 2006, 102(5): 4404.
    [27] Chen Z. J., Yu J. S., Ogino K. J., et al. Blue emission from light-emitting diodes based on lithium complex [J]. J. Phys. D: Appl. Phys., 2002, 35(11): 1099-1102.
    [28]朱文清,赵伟明,张步新等. 8-羟基喹啉锂蓝色有机电致发光器件[J].半导体光电, 2001, 22(4): 279-284.
    [29] Schmitz C., Schmidt H. W. Thelakat M. Lithium-quinolate complexes as emitter and interface materials in organic light-emitting diodes [J]. J. Chem. Mater., 2000, 12(10): 3012-3019.
    [30]赵伟明,朱文清,张步新等. 8-羟基喹啉锂的蓝色有机发光二极管[J].光学学报, 2000, 20(2): 288.
    [31]吴有智,郑新友,朱文清等.锂喹啉配合物作为电子注入层对有机电致发光器件性能的影响[J].光学学报, 2004, 24(4): 553-557.
    [32] Zheng X. Y., Wu Y. Z., Sun R. G., et al. Efficiency improvement of organic light- emitting diodes using 8-hydroxy-quinolinato lithium as an electron injection layer [J]. Thin Solid Films, 2005, 478(1-2): 252-255.
    [33] Hopkins T. A., Meerholz K., Shaheen S., et al. Substituted aluminum and zinc quinolates with blue-shifted absorbance/luminescence bands: synthesis and spectroscopic, photoluminescence, and electroluminescence characterization [J]. Chem. Mater., 1996, 8(2): 344-351.
    [34] Burrows P. E., Shen Z., Bulovic V., et al. Relationship between electroluminescence and current transport in organic heterojunction light-emitting devices [J]. J. Appl. Phys., 1996, 79(10): 7991-8006.
    [35] Kido J., Iizumi Y. Efficient electroluminescence from tris(4-methyl-8-quinolinolato) aluminum(III) [J]. Chem. Lett., 1997, 26(10): 963.
    [36] Yin S. G., Hua Y. L., Chen X. H., et al. Improved efficiency of molecular organic EL devices basedon super-molecular structure [J]. Synth. Met., 2000, 111-112(1): 109-112.
    [37] Zhang J. P., Wang L., Wang R. S., et al. The effective position of radical substitution on pyridine ligands for the exchange interaction in 1:2 complexes of paramagnetic ion andorganic radicals: a DFT study [J]. Synth. Met., 2003, 137(1-3): 1355-1356.
    [38] Gahungu G., Zhang J. P. Molecular geometry, electronic structure and optical properties study of meridianal tris(8-hydroxyquinolinato)gallium(III) with ab initio and DFT methods [J]. J. Mol. Struct. (THEOCHEM), 2005, 755(1-3): 19-30.
    [39] Gao H. Z., Su Z. M., Qin C. S., et al. Electronic structure and molecular orbital study of the first excited state of the high-efficiency blue OLED material bis(2-methyl-8-quinolinolato)aluminum(III) hydroxide complex from ab initio and TD-B3LYP [J]. Int. J. Quantum Chem., 2004, 97(6): 992-1001.
    [40] Gahungu G., Zhang J. P.“CH”/N substituted mer-Gaq3 and mer-Alq3 derivatives: an effective approach for the tuning of emitting color [J]. J. Phys. Chem. B, 2005, 109(37): 17762-17767.
    [41]苏忠民,程红,高洪泽等. 8-羟基喹啉铝光电性质的Ab initio和DFT研究[J].高等学校化学学报, 2000, 21(9): 1416-1421.
    [42]廖奕,苏忠民,陈亚光等. 8-羟基喹啉铍及其衍生物电子光谱性质的含时密度泛函理论研究[J].高等学校化学学报, 2003, 24(3): 477-480.
    [43] Su Z. M., Gao H. Z., Cheng H., et al. Electronic property and molecule design for luminescent metal complexes of tris(8-hydroxyquinoline) gallium [J]. Science in China (Series B), 2000, 43(6): 657-669.
    [44] Curioni A., Boero M., Andreoni W. Alq3: ab initio calculations of its structural and electronic properties in neutral and charged states [J]. Chem. Phys. Lett., 1998, 294(5): 263-271.
    [45] Matsumura M., Akai T. Organic electroluminiescent devices with derivatives of aluminum-hydroxy-quinoline complex as light emitting materials [J]. Jpn. J. Appl. Phys., 1996, 35(10): 5357-5360.
    [46] Pohl R., Anzenbacher P. Emission color tuning in Alq3 complexes with extended conjugated chromophores [J]. Org. Lett., 2003, 5(16): 2769-2772.
    [47] Osorio-Guillen J. M., Holm B., Ahuja R., et al. A theoretical study of olivine LiMPO4 cathodes [J]. Solid State Ionics, 2004, 167(3-4): 221-227.
    [1]陈金鑫,黄孝文. OLED有机电致发光材料与器件[M].北京:清华大学出版社, 2007: 52-56.
    [2]黄春辉,李富友,黄岩谊.有机电致发光材料与器件导论[M].上海:复旦大学出版社, 2005: 238-243.
    [3] Garbuzov D. Z., Bulovi V., Burrows P. E. Photoluminescence efficiency and absorption of aluminum-tris-quinolate(Alq3) thin films [J]. Chem. Phys. Lett., 1996, 249(5,6): 433-437.
    [4] Tang C. W., VanSlyke S. A. Organic electroluminescent diodes [J]. Appl. Phys. Lett., 1987, 51(12): 913-915.
    [5] Kepler R. G., Beeson P. M., Jacobs S. J., et al. Electron and hole mobility in tris(8- hydroxyquinolinolato-N1,O8) aluminum [J]. Appl. Phys. Lett., 1995, 66(26): 3618-3620.
    [6] Yin S. G., Hua Y. L., Chen X. H., et al. Improved efficiency of molecular organic EL devices basedon super-molecular structure [J]. Synth. Met., 2000, 111-112(1): 109-112.
    [7] Jang H., Do L. M., Kim Y. Synthesis and luminescence behaviors of aluminum complex with mixed ligands [J]. Synth. Met., 2001, 121(1-3): 1669-1670.
    [8] Matsumura M., Akai T. Organic electroluminiescent devices with derivatives of aluminum-hydroxy-quinoline complex as light emitting materials [J]. Jpn. J. Appl. Phys., 1996, 35(10): 5357-5360.
    [9] Hopkins T. A., Meerholz K., Shaheen S. Substituted aluminum and zinc quinolates with blue-shifted absorbance/luminescence bands: synthesis and spectroscopic, photoluminescence, and electroluminiescence characterization [J]. Chem. Mater., 1996, 8(2): 344-351.
    [10] Yu J. S., Chen Z. J., Sakuratani Y. A novel blue light emitting diode using tris(2,3- methyl-8-hydroxyquinoline)aluminum as emitter [J]. Jpn. J. Appl. Phys., 1999, 38(12A): 6762.
    [11] Kido J., Lizumi Y. Efficient electroluminiescence from tris(4-methyl-8-quinolinolato) aluminum (Ⅲ) [J]. Chem. Lett., 1997, 26(10): 963-964.
    [12] Chen Z. J., Yu J. S., Sone M, et al. Blue and yellow emission from derivates of tris(8- hydroxy- quinoline)aluminum light-emitting diodes [J]. J. Phys. D: Appl. Phys., 2001, 34(17): 2679-2682.
    [13] Hamada Y., Sano T., Fujita M. Organic electroluminiescent devices with derivative-metal complexes as an emitter [J]. Jpn. J. Appl. Phys., 1993, 32(4A): L514-L515.
    [14] Byran P. S., Lovecchio F. V. Mixed ligand 8-quinolinolato aluminum chelate luminophors [P]. US Patent: 5141671, 1992.
    [15] Vanslyke S. A. Blue Emitting Internal Junction Organic Electroluminescent Device(I) [P]. US Patent: 5151629, 1992.
    [16] Leung L. M., Lo W. Y., So S. K., et al. A high-efficiency blue emitter for small molecule-basedorganic light-emitting diode [J]. J. Am. Chem. Soc., 2000, 122(23): 5640-5641.
    [17] Giro C., Cocchi M., Marco P. D. et al. Organic light-emitting device with a mixed ligand 8-quinolinolato aluminium chelate as emiting and electron transporting material [J].Synth. Met., 2001, 123(3): 529-533.
    [18] Shao Y, Qiu Y, Hu N. X., et al. A high thermal stable light-emitting complex based on a tridentate ligand [J]. Chem. Lett., 2000, 29(9): 1068-1072.
    [19] Uchida M., Ohmori Y., Noguchi T., et al. Color-variable light-emiting diode utilizing conducting polymerc ontaining fluorescentdye [J]. Jpn. J. Appl. Phys., 1993, 32(7A): L921-924.
    [20] Lu J., Hill A. R., Meng Y. Synthesis and characterization of a novel Alq3-containing polymer [J]. J. Polym. Sci. Part A: Polym. Chem., 2000, 38(16): 2887-2892.
    [21] Meyers A., Week M. Design and synthesis of Alq3-functionalized Polymers [J]. Macromolecules, 2003, 36(6): 1766-1768.
    [22] Meyers A., Week M. Solution and solid-state characterization of Alq3-functionalized polymers [J]. Chem. Mater., 2004, 16(7): 1183-1188.
    [23] Meyers A., South C., Week M. Design, synthesis, characterization, and fluorescent studies of the first zinc-quinolate polymer [J]. Chem. Commun., 2004, 10: 1176-1177.
    [24] Takayama T., Kitamura M., Kobayashi Y. Soluble polymer complexes having Alq3-type pendent groups [J]. Macromol Rapid. Commun., 2004, 25(12): 1171-1174.
    [25] Hancock J. M., Giford A. P., Tonzala C. J., et al. High-efficiency electroluminescence from new blue-emitting oligoquinolines bearing pyrenyl or triphenyl endgroups [J]. J. Phys. Chem. C , 2007, 111(18), 6875-6882.
    [26] Montes V. A., Perez-Bolivar C., Agarwal N., et al. Molecular-wire behavior of OLED materials: exciton dynamics in multichromophoric Alq3-Oligofluorene-Pt(II) porphyrin triads [J]. J. Am. Chem. Soc., (2006), 128(38): 12436-12438.
    [27] Fan L., Zhu W., Li L. Novel red-light emiting metal complex based on asymmetric perylene bisimide and 8–hydroxyquinoline dyads [J]. Synth. Met., 2004, 145(2-3): 203.
    [28] Ma D. G., Wang G., Hu Y. F. A dinuclear aluminum 8-hydroxyquinoline complex with high electron mobility for organic light-emitting diodes [J]. Appl. Phys. Lett., 2003, 82(24): 1296.
    [29] Brinkmann M., Gadret G., Muccini M.,. et al. Correlation between molecular packing and optical properties in different crystalline polymorphs and amorphous thin films of mer-tris(8-hydroxyquinoline)aluminum(III) [J]. J. Am. Chem. Soc., 2000, 122(21):5147-5157.
    [30] Chen C. H., Shi J. M. Metal chelates as emitting materials for organic electroluminescence [J]. Coord. Chem. Rev., 1998, 171(1): 161-174.
    [31] C?lle M., Brütting W. Thermal, structural and photophysical properties of the organic semiconductor Alq3 [J]. Phys. Stat. Sol. (A), 2004, 201(6): 1095~1115.
    [32] Muccini M., Loi M. A., Kenevey K., et al. Blue luminescence of facial tris(quinolin- 8-olato)aluminum(III) in solution, crystals, and thin films [J]. Adv. Mater., 2004, 16(11): 861-864.
    [33] C?lle M., Gmeiner J., Milius W., et al. Preparation and characterization of blue- luminescent tris(8-hydroxyquinoline)aluminum(Alq3) [J]. Adv. Funct. Mater., 2003, 13(2): 108-112.
    [34] C?lle M., Garditz C., Muckl A. G. Phosphorescence and electrophosphorescence in thin films of tris-(8-hydoxyquinoline)aluminum(III)( Alq3) [J]. Synth. Met., 2004, 147(1-3): 97-100.
    [35] Burrows H. D., Fernandes M., Seixas de Melo J., et al. Characterization of the triplet state of tris(8-hydroxyquinoline)aluminium(Ⅲ) in benzene solution [J]. J. Am. Chem. Soc., 2003, 125(50): 15310-15311.
    [36] Chen C. T. Evolution of red organic light-emitting diodes: materials and devices [J]. Chem. Mater., 2004, 16(23): 4389-4400.
    [37] Burrows P. E., Shen Z., Bulovic V., et al. Relationship between electroluminescence and current transport in organic heterojunction light-emitting devices [J]. J. Appl. Phys., 1996, 79(10): 7991-8006.
    [38] Curioni A., Boero M., Andreoni W. Alq3: ab initio calculations of its structural and electronic properties in neutral and charged states [J]. Chem. Phys. Lett., 1998, 294(5-6): 263-271.
    [39] Curioni A., Andreoni W., Treusch R. Atom-resolved electronic spectra for Alq3 from theory and experiment [J]. Appl. Phys. Lett., 1998, 72(13): 1575-1577.
    [40] Martin R. L., Kress J. D., Campbell I. H., et al. Molecular and solid-state properties of tris-(8-hydroxyquinolate)-aluminum [J]. Phys. Rev. B, 2000, 61(23): 15804-15811.
    [41] Lin B. C., Cheng C. P., You Z. Q., et al. Charge transport properties of tris(8-hydroxyquinolinato)aluminum(III): why it is an electron transporter [J]. J. Am. Chem. Soc., 2005, 127(1): 66-67.
    [42] Halls M. D., Schlegel H. B. Molecular orbital study of the first excited state of the OLED material tris(8-hydroxyquinoline)aluminum(III) [J]. Chem. Mater., 2001, 13(8): 2632- 2640.
    [43] Amati M., Lelj F. Are UV-Vis and luminescence spectra of Alq3 [aluminum tris(8-hydroxy quinolinate)]δ-phase compatible with the presence of the fac-Alq3 isomer? A TD-DFT investigation [J]. Chem. Phys. Lett., 2002, 358(1-2): 144-150.
    [44] Amati M., Lelj F. Luminescent compounds fac- and mer-aluminum tris(quinolin-8-olate), a pure and hybrid density functional theory and time-dependent density functional theory investigation of their electronic and spectroscopic properties [J]. J. Phys. Chem. A, 2003, 107(14): 2560-2569.
    [45] Barbara P. F., Meyer T. J., Ratner M. A. Contemporary issues in electron transfer research [J]. J. Phys. Chem., 1996, 100(31): 13148-13168.
    [46] Marcus R. A. Electron transfer reactions in chemistry: theory and experiment [J]. Rev. Mod. Phys., 1993, 65(3): 599-610.
    [47] Marcus R. A. On the theory of oxidation-reduction reactions involving electron transfer. V. Comparison and properties of electrochemical and chemical rate constants [J]. J. Phys. Chem., 1963, 67(4): 853.
    [48] Kestner N. R., Logan J., Jortner J. Thermal electron transfer reactions in polar solvents [J]. J. Phys. Chem., 1974, 78(21): 2148-2166.
    [49] Efrima S., Bixon M. On the role of vibrational excita-tion in electron transfer reactions with large negative free energies [J]. Chem. Phys. Lett., 1974, 25(1): 34.
    [50] Efrima S., Bixon. M. Vibrational effects in outer-sphere electron-transfer reactions in polar media [J]. Chem. Phys., 1976, 13(2): 447.
    [51] Duyne R. P., Fischer S. F. A nonadiabatic description of electron transfer reactions involving large free energy changes [J]. Chem. Phys., 1974, 5(1): 183-197.
    [52] Kochi J. K. Inner-sphere electron transfer in organic chemistry. Relevance to electrophilic aromatic nitration [J]. Acc. Chem. Res., 1992, 25(1): 39.
    [53] Brunschwig B. S., Logan J., Newton M. D., et al. A semiclassical treatment of electron-exchange reactions. Application to the hexaaquoiron(II)-hexaaquoiron(III) system [J]. J. Am. Chem. Soc., 1980, 102(18): 5798.
    [54] Barbara P. F., Meyer T. J., Ratner M. A. Contemporary issues in electron transfer research [J]. J. Phys. Chem., 1996, 100(31): 13148.
    [55] Siddarth P., Marcus R. A. Electron-transfer reactions in proteins: electronic coupling in myoglobin [J]. J. Phys. Chem., 1993, 97(23): 6111.
    [56] Balzani V., Juris A., Venturi M., et al. Luminescent and redox-active polynuclear transition metal complexes [J]. Chem. Rev., 1996, 96(2): 759.
    [57] Sakanoue K., Motoda M., Sugimoto M., et al. A molecular orbital study on the hole transport property of organic amine compounds [J]. J. Phys. Chem. A, 1999, 103(28): 5551-5556.
    [58]高观志,黄维.固体中的电输运[M].北京:科学出版社, 1991: 547-560.
    [59] Morin F. J. Electrical properties ofα-Fe2O3 [J]. Phys. Rev., 1954, 93(6): 1195.
    [60] Bosman A. J., Van Daal H. J. Small-polaron versus band conduction in some transition- metal oxides [J]. Adv. Phys., 1970, 19(77): 1.
    [61] Marcus R. A. On the theory of electron-transfer reactions. VI. Unified treatment for homogeneous and electrode reactions [J]. J. Chem. Phys., 1965, 43(2): 679-701.
    [62] Lencent V., Filho D. A., Coropceanu V., et al. Charge transport properties in discotic liquid crystals: a quantum-chemical insight into tructure-property relationships [J]. J. Am. Chem. Soc., 2004, 126(10): 3271-3279.
    [63] Cornil J., Lemaur V., Calbert J. P., et al. Charge transport in discotic liquid crystals: a molecular scale description [J]. Adv. Mater., 2002, 14(10): 726-729.
    [64]施敏敏,陈红征,汪茫.不同氟取代基对苝酰亚胺电子迁移率的影响[J].化学学报, 2006, 64(8): 721.
    [65]佟静,李象远.酪氨酸与色氨酸间电子转移-氧化还原活性及电子跃迁能的从头算研究[J].化学学报, 2002, 60 (6): 1029.
    [66] Emil J., Prakash C. J., Hans A. Density functional study of triazole and thiadiazole systems as electron transporting materials [J]. Chem. Phys., 2006, 330(1-2): 166-171.
    [67]张冬菊,宋其圣,刘成卜.吩噻嗪与四甲基哌啶氧铵正离子的电子转移反应动力学研究[J].结构化学, 2002, 21(3): 325-330.
    [68] Koelling D. D., Harmon B. N. A technique for relativistic spin-polarized calculations [J]. J. Phys. C: Solid State Phys., 1977, 10(16): 3107-3114.
    [69] Wang J. F., Feng J. K., Ren A. M., et al. Quantum chemical studies of absorption and emission spectroscopic properties for oglimeric fluorenes and its derivatives [J]. Chem. J. Chin. Univ., 2004, 25(4): 676-680.
    [1] Schiff H. The syntheses and characterization of Schiff base [J]. Ann. Suppl., 1864, 3: 343.
    [2] Katsuki T. Catalytic asymmetric oxidations using optically active (salen)manganese(III) complexes as catalysts [J]. Coord. Chem. Rev., 1995, 140: 189-214.
    [3]陈新斌,胡新娟,孙咏芬等. Schiff碱双核配合物的磁性及催化性能的研究[J].无机化学学报, 2005, 21(8): 104.
    [4] Masteri-Farahani M., Farzaneh F., Ghandi M. Synthesis of tetradentate N4 Schiff base dioxomolybdenum(VI) complex within MCM-41 as selective catalyst for epoxidation of olefins [J]. Catal. Commun., 2007, 8(1): 6.
    [5]冯辉霞,王毅,王荣民等.分子筛固载席夫碱金属配合物的催化氧化性能研究[J].化学试剂, (2004), 26(1), 1.
    [6] Yang Z .Y., Yang R. D., Yu K. B. Synthesis and crystal structure of a barium complex with pyruvic acid isonicotinoyl hydrazone [J]. Ployhedron, (1996), 15(21): 3749-3753.
    [7] Ranford J. D., Vittal J. J., Wang Y. M. Di-copper(II) complexes of the antitumor analogues acylbis(salicylaldehyde hydrazones) and the crystal structures of monomeric [Cu2(1,3- propanedioyl bis(salicylaldehyde hydrazone))(H2O)2]·(ClO4)2·3H2O and polymeric [{Cu2 (1,6-hexanedioyl bis(salicylaldehyde hydrazone))(C2H5OH)2}m]·(ClO4)2m·m (C2H5OH) [J]. Inorg. chem., 1998, 37(6): 1226-1231.
    [8] Tian Y. P., Duan C. Y., Lu Z. L., et al. Crystal structure and spectroscopic studies on metal complexes containing ns donor ligands derived from S-benzyldithiocarbazate and p-dimethylaminobenzaldehyde [J]. Ployhedron, 1996, 15(13): 2263-2271.
    [9] Averseng F., Lacroix P. G., Malfant I., et al. Synthesis, crystal structure and solid state NLO properties of a new chiral bis(salicyldiaminato)nickel(II) Schiff-base complex in a nearly optimized solid state environment [J]. J. Mater. Chem., 2000, 10: 1013-1018.
    [10] Collman J. P., Hegedus L. S., Norton J. R., et al. Principles and applications of organo- transition metal chemistry, University science books [M]. California: Mill Valley, 1987: 420.
    [11] Honeychuck R. V., Bonnesen P. V., Farahi J., et al. Catalysis of diene polymerization and Diels-Alder reactions by an octahedral tungsten nitrosyl Lewis acid. X-ray crystal structure of theη1-acrolein complex (cis-Me3P)(traps-NO)(CO)3W-O=C(H)-C(H)=CH2 [J]. Org. Chem., 1987, 52(23): 5293.
    [12]俞天智,丁宪生,赵玉玲等.开链冠醚Schiff碱配体与过渡金属离子相互作用研究[J].影像科学与光化学, 2008, 2: 109-115.
    [13]金黎霞,刘峥,夏金虹.水杨醛及其衍生物席夫碱配合物制备、性能研究现状[J].人工晶体学报, 2007, 36(3): 705.
    [14]钟凡,应少明,许亚平等.牛磺酸缩5-溴水杨醛席夫碱合镍(Ⅱ)配合物的合成及晶体结构[J].无机化学学报, 2007, 23(5): 854-856.
    [15]史卫良,陈德余,陈士明等.水杨醛天冬氨酸过渡金属配合物的ESR波谱及抗O2性能[J].无机化学学报, 2001, 17(2): 239.
    [16]梁芳珍,李晓明.水杨醛双酰胺Cu(Ⅱ)配合物的合成,表征与抑菌活性[J].化学通报, 1999, 8: 37.
    [17] Hodnett E. M., Dunn W. J. Structure-antitumor activity correlation of some Schiff bases [J]. J. Med. Chem., 1970, 13(4): 768-770.
    [18] Hodnett E. M., Dunn W. J. Cobalt derivatives of Schiff bases of aliphatic amines as antitumor agents [J]. J. Med. Chem., 1972, 15(2): 339.
    [19]柳翠英,赵全芹.郭秀英. 5-氯,N-(2-羟基乙基)水杨醛亚胺Schiff碱的合成与表征[J].化学试剂, 1998, 20(1): 42.
    [20]余宝源,孙逸芳,傅本秋等.含硫Schiff碱配合物的研究(Ⅶ) -钻与邻氯苯甲醛和亚卞基丙酮Schiff碱的配合物[J].高等学校化学学报, 1989, 10(1): 17.
    [21] Hodnet E. M., Dunn W. J. Cobalt derivatives of Schiff bases of aliphatic amines as antitumor agents [J]. J. Med. Chem., 1972, 15(3): 339.
    [22]陈德余,江银枝.过渡金属L-丙氦酸席夫碱配合物的合成及抗O2性能[J].应用化学, 1997, 14(3): 5-8.
    [23]刘国发,刘晓勋.香兰素与对甲苯胺的席夫碱稀土络合物的制备和表征[J].科学通报, 1989, 34(2): 111.
    [24]刘敏,袁文兵,张岐等.新型三足席夫碱稀土配合物的合成,表征及与DNA的作用[J].应用化学, 2008, 25(10): 1193.
    [25]徐汉江,朱传芳.席夫碱及其络合物的可逆热致变色材料[J].化学通报, 2000, 8(1): 15.
    [26] Tang C. W., VanSlyk S. A. organic electroluminescent diodes [J]. Appl. Phys. Lett., 1987, 51(12): 913-915.
    [27] Hamada Y., Sano T., Fujita M., et al. Organic electroluminescent devices with 8-hydroxyquinoline derivative-metal complexes as an emitter [J]. Jpn. J. Appl. Phys. Part2, 1993, 32(4A): L514-L515.
    [28] Hamada Y., Sano T., Fujita M., et al. Blue electroluminescence in thin films of azomethin-zinc complexes [J]. Jpn. J. Appl. Phys., 1993, 32(4A): L511-L513.
    [29] Hamada Y. The development of chelate metal complexes as an organic electroluminescent material [J]. IEEE Transaction on electron device, 1997, 44(8): 1208- 1211.
    [30] Tao X. T., Suzuki H., Watanabe T., et al. Metal complex polymer for second harmonic generation and electroluminescence applications [J]. Appl. Phys. Lett., 1997, 70(12): 1503-1505.
    [31] Shao Y., Qiu Y., Hu W. H., et al. A novel asymmetric complex for organic electroluminescence [J]. Adv. Mater. Opt. Electron, 2000, 10(6): 285-288.
    [32] Yu G., Liu Y. Q., Song Y. R., et al. A new blue light-emitting material [J]. Synth. Met., 2001, 117(1-3): 211-214.
    [33] Liu Y. Q., Yu G., Wu X., et al. Electroluminescence of an azomethine zinc complex [J]. Chinese Journal of Luminescence. 2000, 21(supplement), 17.
    [34] Kim S. M., Kim J. S., Shin D. M., et al. Synthesis and application of the novel azomethine metal complexes for organic electroluminescent devices [J]. Bull. Korean. Chem. Soc., 2001, 22(7): 743-747.
    [35] Singer A. L., Atwood D. A. Five-coordinate Salen(tBu) complexes of zinc [J]. Inorg. Chem. Act., 1998, 277(2): 157-162.
    [36] Sapochak L. S., Benincasa F. E., Schofield R. S., et al. Effects on electronic states and device performance [J]. J. Am. Chem. Soc., 2002, 124(21): 6119-6125.
    [37] Yu G., Yin S. W., Liu Y. Q., et al. Structures, electronic states, and electroluminescent properties of a zinc(II) 2-(2-hydroxyphenyl)benzothiazolate complex [J]. J. Am. Chem. Soc., 2003, 125(48): 14816-14824.
    [38] Kim T. S., Okubo T., Mitani T. Synthesis, polymorphs, and luminescent properties of oligomeric Zn3ppo6 [J]. Chem. Mater., 2003, 15(26): 4949-4955.
    [39] Hall D., Moore F. H. The crystal structure of NN’-disalicylidene-ethylenediamine zinc(II) monohydrate [J]. J. Chem. Soc. A, 1966, 1822-1824.
    [40] Mizukami S., Houjou H., Nagawa Y., et al. First helical zinc(II) complex with a saleneligand [J]. Chem. Commun., 2003, 10: 1148-1149.
    [41] Reglinski J., Morris S., Stevenson D. E. Supporting conformational change at metal centres. Part 2: four and five coordinate geometry [J]. Polyhedron, 2002, 21(21): 2175-2182.
    [42] Dolg M., Liu W., Kalvoda S. Performance of relativistic density functional and ab initio pseudopotential approaches for systems with high-spin multiplicities: Gadolinium diatomics GdX (X=H, N, O, F, P, S, Cl, Gd) [J]. Int. Quant. Chem., 2000, 76(3): 359-370.
    [43] Jeffrey P., Wadt W. R. Ab initio effective core potentials for molecular calculations, Potentials for the transition metal atoms Sc to Hg [J]. J. Chem. phys., 1985, 82(1): 270.
    [44] Jeffrey P., Wadt W. R. Ab initio effective core potentials for molecular calculations, Potentials for K to Au including the outmost core orbitals [J]. J. Chem. Phys., 1985, 82(1): 299-310.
    [45] Tu X. Y., Wang D. W., Ceng X. M. DFT study on the geometry and energy level distribution of metal clusters run (n = 2~8) [J]. Chinese J. Struct. Chem., 2004, 23(8): 940-942.
    [46] Gu K. C., Yang G. Zhang W. P., et al. Mechanistic studies on Michael type addition by NMR technique and DFT methods: (CO)5W=C(OEt)C2Ph as the substrate [J]. Chinese Journal of Inorganic Chemistry, 2006, 25(6): 1044.
    [47] Sapochak L. S., Falkowitz A., Ferris K. F., et al. Supramolecular structures of zinc(II) (8-quinolinolato) chelates [J]. Phys. Chem. B, 2004, 108(25): 8558-8566.
    [48] Xu B. S., Hao Y. Y., Wang H., et al. The effects of crystal structure on optical absorption/photoluminescence of bis(8-hydroxyquinoiline)zinc [J]. Solid States Communications, 2005, 136(6): 318-322.
    [49] Khaorapapong N., Ogawa M. In situ formation of bis(8-hydroxyquinoline) zinc(II) complex in the interlayer spaces of smectites by solid–solid reactions [J]. Journal of Physics and Chemistry of Solids, 2008, 69(4): 941-948.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700