半导体量子阱和一维光晶格中的量子输运
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文利用散射矩阵和传输矩阵等方法研究了半导体异质结量子阱和一维光晶格体系中的量子输运特性,为设计和实现具有优良性能的量子过滤器件提供理论依据。主要研究内容有:
     首先,利用有效质量近似和Floquet理论,研究了空间均匀振荡场作用下,存在自旋轨道耦合的单个半导体异质结量子阱的电子输运特性。数值计算结果表明Dresselhaus自旋轨道耦合不仅可以消除自旋简并,而且可以导致不对称Fano共振电导峰的劈裂。我们可以利用此性质,通过调节振荡场的频率和振幅来控制Fano共振峰的位置及其线性形状,从而实现一个可调的自旋过滤器件。
     其次,在上述工作基础上,研究了应用在双量子阱上的两个空间均匀振荡场的相位差对其输运特性的影响。与单势阱情况不同,在双量子阱中,由于束缚能级发生劈裂和Dresselhaus自旋轨道耦合作用,电子透射谱分成两组,且每一组都包含两个不对称的共振峰。我们可以通过调节外加振荡场的相位差,有选择性的压制某一个共振峰,因而对于某一个能量范围,可以通过调节其相位差来实现一个可调的自旋过滤器件。另外,当相位差从0到π变化时,共振谷从不对称共振峰的一侧移到另一侧;并且存在一个临界相位差,此时,不对称的Fano共振峰简并成一个对称的Breit-Wigner共振峰。
     再次,由于在实验装置上,偶极振荡场比空间均匀振荡场更容易实现,因而实验上通常采用偶极振荡场。鉴于上述原因,我们研究了这两种类型的外场对存在Dresselhaus自旋轨道耦合作用的单个半导体异质结量子阱中输运特性的影响。我们发现当外场振幅满足某一特定关系时,偶极振荡场和空间均匀振荡场对电子输运特性的调制是等价的,因而可以利用偶极振荡场及Fano共振峰的劈裂,实现更接近实验条件的可调自旋过滤器件。
     最后,对于附有缺陷势的一维光晶格系统,我们研究了原子通过该缺陷势中局域BEC的Fano共振输运特性。由于缺陷势和局域BEC的非线性参数可以由激光和磁场来调控,因而,可以通过它们来调节Fano共振峰的大小和阻塞点(投射率为零)的位置,从而实现对透射原子束的控制,为设计可调原子过滤器提供理论依据。
In this thesis the quantum transport through semiconductor heterostructures quantum-well structure and one-dimensional optical lattice system are investigated by means of the scattering matrix and transfer-matrix techniques. Our arm is to explore the physical mechanisms of the effects, and to supply physical models and make theoretical validity in designing novel quantum filtering devices with better properties.
     First, using the effective-mass approximation and Floquet theory, we study the electron transmission over a quantum well in semiconductor heterostructures with Dresselhaus spin-orbit coupling and an applied oscillation field. It is demonstrated by the numerical evaluations that Dresselhaus spin-orbit coupling eliminates the spin degeneracy and leads to the splitting of asymmetric Fano-type resonance peaks in the conductivity. In turn, the splitting of Fano-type resonance induces the spin-polarization-dependent electron current. The location and line shape of Fano-type resonance can be controlled by adjusting the oscillation frequency and the amplitude of the external field as well. These interesting features may be a very useful basis for devising tunable spin filters.
     Secondly, we have investigated theoretically the field-driven electron transport through a double-quantum-well semiconductor-heterostructure with spin-orbit coupling. The numerical results demonstrate that the transmission spectrums are divided into two sets due to the bound-state level-splitting and each set contains two asymmetric resonance peaks which may be selectively suppressed by altering the phase difference between two driving fields. When the phase difference changes from 0 toπ, the dip of asymmetry resonances shifts from one side of resonance peaks to the other and the asymmetric Fano resonances degenerate into the symmetric Breit-Wigner resonance at a critical value of phase difference. Within a given energy range of incident electron, the spin polarization of transmission current is completely governed by the phase difference which may be used to realize the tunable spin filtering.
     Then, as is well known to all, the more practical oscillation-type is dipole-oscillation in most of experimental setup, and the dipole-type is easier to exploit experimentally than the spatially uniform field. We study the spin-dependent electron transmission through a quantum well driven by both dipole-type and homogeneous oscillating fields. The numerical evaluations show the dipole modulation and the homogeneous modulation are equivalent. Therefore using the splitting of asymmetric Fano-type resonance peaks in the conductivity, we predict that the dipole-type oscillation, which is more practical in the experimental setup, can be used to realize the tunable spin filters by adjusting the field oscillation-frequency and the amplitude as well.
     Finally, we study the transport of atoms across a localized Bose-Einstein condensate in an one-dimensional optical lattice with a single defect. The defect potential and the nonlinear parameter of local BEC can be controlled by laser and magnetic fields, thus we can regulate the size of Fano resonance peaks and the location of block point (the position of total reflection) by changing them. Our analytical and numerical results show that the transmission beam of atoms can control by tuning them. These interesting features may be a very useful theoretical basis for devising tunable atom filters.
引文
[1] M. N. Baibich, J. M. Broto, A. Fert, F. Nguyen Van Dau, F. Petroff, et a!., Giant Magnetoresistance of (001) Fe/ (001) Cr Magnetic Superlattices. Phys. Rev. Lett. 61, 2472-2475 (1988).
    
    [2] Daniel Loss and David P. DiVincenzo, Quantum computation with quantum dots. Phys. Rev. A 57,120-126 (1998).
    
    [3] S. S. P. Parkin, D. Mauri. Spin engineering: Direct determination of the Ruderman Kittel-Kasuya-Yosida far field range function in ruthenium. Phys. Rev. B 44, 7131-7134(1991).
    
    [4] Sarma S Das, Fabian Jaroslav, Hu Xuedong, et al. Spin electronics and spin computation. Solid State communications 119,207-215 (2001).
    
    [5] S. A. Wolf, D. D. Awschalom, R. A. Buhrman, et al. Spintronics: A spin based electronics vision for the future. Scicence 294,1488-1495 (2001).
    
    [6] A. J. Leggett, Bose-Einstein condensation in the alkali gases: Some fundamental concepts. Rev. Mod. Phys. 73,307 (2001).
    
    [7] J. W. Halley, C. E. Campbell, C. F. Giese, and K. Goetz, New approach to the observation of the condensate fraction in superfluid helium-4. Phys. Rev. Lett. 71, 2429(1993).
    
    [8] A. Wynveen, A. Setty, A.Howard, J. W. Halley, and C. E. Campbell, Identical particle scattering from a weakly coupled Bose-Einstein condensed gas. Phys. Rev. A 62, 023602 (2000).
    
    [9] U. V. Poulsen and K. Molmer, Scattering of atoms on a Bose-Einstein condensate. Phys. Rev. A 67, 013610 (2003).
    
    [10] Tobias Paul, Klaus Richter, and Peter Schlagheck, Nonlinear Resonant Transport of Bose-Einstein Condensates. Phys. Rev. Lett. 94, 020404 (2005).
    
    [11] Yu. Kagan, D. L. Kovrizhin, and L. A. Maksimov, Scattering of atoms on a Bose-Einstein condensate. Phys. Rev. Lett. 90,130402 (2003).
    [1] L. Esaki and R. Tsu, Superlatice and Negative Differential Conductivity in Semiconductor, IBM. Res. Dev. 14, 61 (1970); L. L. Chang, L. Esaki and R. Tsu, Resonant Tunneling in Semiconductor Double Barriers, Appl. Phys. Lett. 24, 593 (1974).
    
    [2] A. Y. Cho, M. Panish, I. hayashi, Moleuclar beam epitaxy of GaAs, Al_xGa_(1-x)As and GaP. Proc. SymP. GaAs and Related Compounds 2(1), 18-19 ( 1970); A. Y. Cho, Growth of Peridoic Structres by the molecular-beam method. Appl. Phys.Lett. 19(11), 467-468(1971).
    
    [3] R. Dingle, H. L. Stormer, A. C. Gossard, W. Wiegmann, Electron mobilities in modulation-doped semiconductor heterojunction superlattices, Appl. Phys. Lett. 33(7), 665-667(1978).
    
    [4] R. Dingle, W. Wiegmann and C. H. Henry, Quantum States of Confined Carriers in Very Thin Al_xGa_(1-x)As-GaAs- Al_xGa_(1-x)As Heterostructures, Phys. Rev. Lett. 33(14): 827-827(1974).
    
    [5] R. Dingle, A. C. Gossard, W. Wiegmann, Direct observation of superlattice of formation in semiconductor Heterostructure, Phys. Rev. Lett. 34(21), 1327-1330 (1975).
    
    [6] C. Weisbuch, R. C. Miller, R. Dingle, et al., Intrinsic radiative recombination from quantum states in GaAs- Al_xGa_(1-x)As multi quantum well structures, Solid State Commun37(1):219-222(1981).
    
    [7] T. H. Wood, C. A. Burrus, D. A. Miller, et al., High-speed optical modulation with GaAs/GaAlAs quantum wells in p-i-n diode structure, Appl. Phys. Lett. 44(1), 16-18 (1983).
    
    [8] K. Kondo, MBE as a Production technology for HEMT LSIs, J. Cryst. Growth 95(1), 309-316(1989).
    [9]T.Sonoda,Ultra-high throughput of GaAs and(AlGa)As layers grown by MBE with a specially designed MBE system,J.Cryst.Growth 95(1),317-321(1989).
    [10]夏建白,朱邦芬.半导体超晶格物理.上海:上海科学技术出版社(1995).
    [11]康昌鹤,杨树人.半导体超晶格材料及应用.北京:国防工业出版社(1995).
    [12]陈亚孚,万春明,卢俊著.超晶格量子阱物理.北京:兵器工业出版社(2002).
    [13]郑厚植.人工物性裁剪.长沙:湖南科学技术出版社(1997).
    [14]L.Esaki.IEEE Quant Electon 22,1611(1986).
    [15]李开航,应变超晶格(In_xGa_(1-x)As))n/(GaAs)n(001)的电子结构和光学性质,厦门大学学报 Vol.38,No.2.(1999).
    [16]R.B.Laughlin,Hall conductivity in two dimensions,Phys.Rev.B 23(10),5632-5633(1981).
    [17]G.H.Dohler,Phys Star Sol B 52,79-83(1972).
    [18]H.C.Casey,Jr.M.B.Panish,W.O.Schlosser and T.L.Paoli,J.Appl.Phys.45,322(1974).
    [19]G.H.B.Thompson and P.A.Kirkby,J.Crystal Growth 27,70(1974).
    [20]T.P.Pearsall,GaInAsP Alloy Semiconductor,John Wiley & Sons Ltd,chapter 2,456(1982).
    [21]J.J.Hsieh,Appl.Phys.Lett.28,283(1976).
    [22]S.Isozumi,Jap.J.Appl.Phys.12,306(1973).
    [23]H.C.Casey Jr.and M.B.Panish.Herterostructure Lasers,Part A,New York:Academic Press(1978).
    [24]C.Y.Chert,A.Y.Cho and D.A.Garbinski,IEEE Electron Device Letters EDL-6,20(1985).
    [25]R.D.Dupuis and P.D.Dapkus,IEEE J.of Quantum Electronics,QE-15,128(1979).
    [26]A.Y.Cho and K.Y.Cheng,Appl.Phys.Lett.38,360(1981).
    [27]彭英才,半导体杂志,17(2),44(1992).
    [28]彭英才,固体电子学研究与进展,21(2),51(1996).
    [29]彭英才,半导体超晶格物理与器件(终篇),导体杂志 21(3),50(1996).
    [30]虞丽生,半导体异质结物理(第二版),科学出版社,chapter 10,page 339(2006).
    [31]H.M.Cheong,J.H.Bumett,et al.,Hydrostatic Pressure coefficient of the direct band-gap energy of Al_xGa_(1-x)As for x=0-0.35,Phys.Rev.53(16),10916-10920(1996).
    [32]Y.Hefetz,W.C.Goltsos,A.V.Nurmikko,L.A.Kolodziejski and R.L.Gunsor,Exciton formation and energy exchange with d-electron states in ZnSe/(Zn,Mn)Se multiple quantum wells,Appl.Phys.Lett.48(5),372-374(1986).
    [33]R.N.Bicknell,N.C.Giles-Taylor,et al.,Dilute magnetic semiconductor (Cd_(1-x)Mn1_xTe) quantum well laser,Appl.Phys.Lett.46(12),1122-1124(1985).
    [34]S.Nakashima,Y.Nkakura,H.Fujiyasu and K.Mochizuki,Raman scattering from ZnTe-ZnSe strained-layer superlattice,Appl.Phys.Lett.48(3):236-238(1986).
    [35]Masakazu Kobayashi,Naoki Mino,Hironori Katagiri,Ryuhei Kimura,Makoto Konagai,and Kiyoshi Takahashi,Growth of a ZnTe-ZnSe strained-layer superlattice on an Inp substrate by molecular epitaxy,Appl.Phys.Lett.45(4),296-297(1986).
    [36]赵辉,王永生,徐征等,薄膜电致发光器件中电子的谷间分布,半导体学报,20(8),702(1999).
    [37]Liu H C.Quantum well infrared Photodetectors:the basic design and new research directions,Chinese Journal of Semiconductor,22(5),529(2001).
    [38]程兴奎,王文新,周均铭,黄绮,掺杂超晶格的等离子激元与光学声子的耦合模,量子电子学报,18(6),548-550(2001).
    [39]程兴奎,连洁,王青圃,周均铭,黄绮,闰循领,量子阱红外探侧器响应峰值波长的Raman散射测量,红外与毫米波学报,24(2),97-99(2005).
    [40]Cheng XingKui,Zhou Junming,Huang Qi,The reflection and of electrons at the interface of superlattice,Science in China(Series A),45(I),116-121(2002).
    [41]S.A.Wolf,D.D.Awschalom,R.A.Buhrman et al.Spintronics:A Spin-Based Electronics Vision for the Future.Science 294(16),1488-1495(2001).
    [42]M.N.Baibich,J.M.Broto,A.Fert,F.Nguyen Van Dau,F.Petroff,et al.,Giant Magnetoresistance of(001) Fe/(001) Cr Magnetic Superlattices.Phys.Rev.Lett.61,2472-2475(1988).
    [43]B.Dieny,V.S.Speriosu,S.S.P.Parkin,B.A.Gurney,D.R.Wilhoit,and D.Mauri,Giant magnetoresistive in soft ferromagnetic multilayers.Phys.Rev.B 43,1297-1300(1991).
    [44]J.S.Moodera,L.R.Kinder,T.M.Wong et al.,Large Magnetoresistanee at Room Temperature in Ferromagnetic Thin Film Tunnel Junctions.Phys.Rev.Lett.74,3273-3276(1995).
    [45]H.Ohno,F.Matrukura,Y.Ohno,J SAP International 5,4-13(2002);徐明,半导体自旋电子学的研究与应用进展,材料导报,20(3),12-14(2006).
    [46]I.K.Furdyna,I.Kossut et al,Semiconductor and Semimetals.New York:Academic Press(1988).
    [47]H.Munekata,H.Ohno,S.von Molnar,Armin Segm(u|¨)ller,L.L.Chang,and L.Esaki, Phys. Rev. Lett. 63,1849 (1989).
    
    [48] J. De Boeck, R. Oesterholt, A. Van Esch, H. Bender, C. Bruynseraede, C. Van Hoof, and G. Borghs, Appl. Phys. Lett. 68,2744 (1996).
    
    [49] J. L.Xu, M. V. Schiifgaarde, G. D. Samoly, Role of Disorder in Mn: GaAs, and CnGaAs, Phys. Rev. Lett. 94, 097201 (2005).
    
    [50] T. Diet, H. Ohno, F. Matskura, et al, Zener Model Description of Ferromagnetism in Zinc-Blende Magnetic Semiconductors, Science 287,1019-1022 (2000).
    
    [51] W. B. Mi, H. L. Bai, H. Liu, et al. Microstructure, magnetic, and Optical Properties . of sputtered Mn-doped ZnO films with high-temperature ferromagnetism, J. Appl. Phys. 101,023904(2007).
    
    [52] C. M. Hu, J. Nitta, A. Jensen, Phys. Rev. B 63,125333 (2001).
    
    [53] G. Schmidit, D. Ferrand, L. W. Molenkamp, et al. Phys. Rev. B 62, R4790 (2000).
    
    [54] P. R. Hammar, M. Johnson, Phys. Rev. B 61,7207 (2000).
    
    [55] S. F. Alvarado, Ph Renaud, Phys. Rev. Lett. 68,1387 (1992).
    
    [56] S. A. Wolf, D. D. Awschalom, R. A. Buhrman, et al., Science 294 (16), 1488 (2001).
    
    [57] V. P. LaBella, D. W. Bullock, Z. Ding, et al., Science 292,1518 (2001).
    
    [58] H. J. Zhu, M. Ramsteiner, H. Kostial, et al., Phys. Rev. Lett. 87, 016601 (2001).
    
    [59] S. K. Upadhyay, Spin filtering by ultrathin ferromagnetic films, Appl. Phys. Lett. 74, 3881 (1999).
    
    [60] R. Jansen, The spin-valve transistor: fabrication, characterization and physics, J. Appl. Phys 89, 7431 (2001).
    
    [61] R. Fiederling, G. Reuscher, W. Ossau, et al., Injection and detection of a spin-polarzed current in a light-emitting diode, Nature 402, 787 (1999); Y. Ohno, D. K. Young, B. Beschoten, et al., Electrical spin injection in a ferromagnetic semiconductor heterostructue, Nature 402, 790 (2000).
    
    [62] A. Mallnowski, R. S. Britton, T. Grevatt, et al., Phys. Rev. B 62,13034 (2000).
    
    [63] K. C. Hall, Wayne H. Lau, K. Gilndogdu, Michael E. Flatte', and Thomas F. Boggess, Nonmagnetic semiconductor spin transistor, Appl. Phys. Lett. 83(14), 2937 (2003).
    
    [64] Y. K. Kato, R. C. Myers, A. C. Gossard, et al., Phys. Rev. Lett. 93,176601 (2004).
    
    [65] M. Henini, O. Z. Karidmov, G. H. John, et al. Gated spin relaxation in (110)-oriented quantum wells. Physica E 23,309-314 (2004).
    
    [66] Y. K. Kato, R. C. Myers, A. C. Gossard, et al. observation of the Spin Hall Effect in Semconductors. Seience 306,1910-1913 (2004).
    
    [67] A.Y. Silov, P.A.Blajnov, J.H.Wolter, R. Hey, K. H. Ploog and N. S. Averkiev, Current-induced Spin Polarization at a single heterojunction. Appl. Phys. Lett. 85(24), 5929-5931 (2004).
    [1] R. Kubo, J. Phys. Soc. Jpn. 12, 570 (1957); Can. J. Phys. 34,1274 (1956).
    [2] R. Landauer, IBM J. Rev. Dev. 1,223 (1957).
    
    [3] M. Biittiker, Y. Imry, T. Landauer and S. Pinhas, Phys. Rev. B 31, 6207 (1985).
    
    [4] M. Biittiker, Phys. Rev. Lett. 57,1761 (1986); IBM J. Rev. Dev. 32,317 (1988); Phys. Rev. B 38,9375 (1988).
    
    [5] J. Q. Liang, F. Peng and X. X. Ding, Phy. Lett. A 201,369 (1995).
    
    [6] A. P. Jauho, N. S. Wingreen and Y. Meir, Phys. Rev. B 50, 5528 (1994).
    
    [7] J. B. Xia, Phys. Rev. B 45, 3593 (1992).
    
    [8] P. S. Deo and A. M. Jayannavar, Phys. Rev. B 50, 11629 (1994).
    
    [9] B. S. Andereck and E. Abrahams J. Phys. C 13, L383 (1980).
    
    [10] U. Fano, Phys. Rev. 124,1866 (1961).
    
    [11] H. Z. Lu, R. Lu, and B. F. Zhu, Phys. Rev. B 72, 235320 (2005).
    [12] E. Buks, et al., Nature(London) 391, 871 (1998).
    
    [13] K. Kobayashi, H. Aikawa, S. Katsumoto, and y. lye, Phys. Rev. Lett 88, 256806 (2002).
    
    [14] A. Yacoby, et al., Phys. Rev. Lett 74,4047(1995).
    
    [15] Y. Ji, et al., Science 290, 779 (2000).
    
    [16] J. Kim, et al., Phys. Rev. Lett 90,166403 (2003).
    
    [17] W. Yi, et al., Phys. Rev. Lett 91, 076801 (2003).
    
    [18] B. Babic and C. Schonenberger, Phys. Rev. B 70, 195408 (2004).
    [1] U. Fano, Phys. Rev. 124,1866 (1961).
    
    [2] U. Fano and J.W. Cooper, Phys. Rev. A 137, 1364 (1965).
    
    [3] J.A. Simpson and U. Fano, Phys. Rev. Lett. 11,158 (1963).
    
    [4] F. Cerdeira, T.A. Fjeldly, and M. Cardona, Phys. Rev. B 8,4734 (1973).
    
    [5] J. Feist, F. Capasso, C. Sirtori, K.W. West, and L.N. Pfeiffer, Nature (London) 390, 589(1997).
    
    [6] H. Schmidt, K.L. Campman, A.C. Gossard, and A. Imamoglu, Appl. Phys. Lett. 70, 3455(1997).
    
    [7] J. Gores, D. Goldhaber-Gordon, S. Heemeyer, and M. A. Kastner, Phys. Rev. B 62, 2188(2000).
    
    [8] K. Kobayashi, H. Aikawa, S. Katsumoto, and Y. Iye, Phys. Rev. Lett. 88, 265806 (2002).
    
    [9] R. Franco, M. S. Figueira and E. V. Anda, Phys. Rev. B 67, 155301 (2003).
    
    [10] K. Kobayashi, H. Aikawa, A. Sano, S. Katsumoto, and Y. Iye, Phys. Rev. B 70, 35319(2004).
    
    [11] Masahiro Sato, Hisashi Aikawa, Kensuke Kobayashi, Shingo Katsumoto, and Yasuhiro Iye, Phys. Rev. Lett. 95,66801 (2005).
    
    [12] T. A. Shelykh and N. G. Galkin, Phys. Rev. B 70,205328 (2004).
    [13] S. Datta and B. Das, Appl. Phys. Lett., 56 665 (1990).
    
    [14] K. C. Hall, W. H. Lau, K. Gundogdu, M. E. Flatte and T. F. Boggess, Appl. Phys. Lett. 83,2937 (2003).
    [15] I. P. Smorchkova and N. Samarth, Phys. Rev. Lett. 78,3571 (1997).
    
    [16] C. Bena and L. Balents, Phys. Rev. B 65, 11510 (2002).
    
    [17] J. P. McGuire, C. Ciuti, and L. J. Sham, Phys. Rev. B 69,115339 (2004).
    
    [18] J. P. Morten, A. Brataas and W. Belzig; Phys. Rev. B 70,212508 (2004).
    
    [19] S. Urazhdin, R. Loloee, and W. P. Pratt, Jr., Phys. Rev. B 71,100401(2005).
    
    [20] J. P. Morten, A. Brataas, and W. Belzig, 72,014510 (2005).
    
    [21] J. E. Hirsch, Phys. Rev. Lett. 83,1834 (1999).
    
    [22] S. Zhang, Phys. Rev. Lett. 85,393 (2000).
    
    [23] S. Murakami, N. Nagaosa, and S. Zhang, Science 301,1348 (2003).
    
    [24] J. Sinova et al., Phys. Rev. Lett. 92,126603 (2004).
    
    [25] S.-Q. Shen, Phys. Rev. B 70, 081311 (2004).
    
    [26] B. A. Bernevig and S.-C. Zhang, Phys. Rev. Lett. 95,016801 (2005).
    
    [27] G.Y. Guo,Yugui Yao, and Qian Niu, Phys. Rev. Lett. 94,226601 (2005).
    
    [28] J. Wunderlich, B. Kaestner, J. Sinova and T. Jungwirth, Phys. Rev. Lett. 94, 047204 (2005).
    
    [29] V. I. Perel, S. A. Tarasenko and T. N. Yassievich, Phys. Rev. B 67,201304 (2003).
    
    [30] M. M. Glazov, P. S. Alekseev, M. A. Odnoblyudov, V. M. Chistyakov, S. A. Tarasenko and I. N. Yassievich, Phys. Rev. B 71,155313 (2005).
    
    [31] W. Cai, P. Hu, T. F. Zheng, B. Yudanin, and M. Lax, Phys. Rev. B 41, 3513 (1990).
    [32] G. Dresselhaus,Phys. Rev. 100, 580 (1955).
    [33] J. H. Shirley, Phys. Rev. 138, B979 (1965).
    [34] M. Holthaus and D. Hne, Phys. Rev. B 47, 6499 (1993).
    
    [35] T. Fromherz, Phys. Rev. B 56,4772 (1997).
    
    [36] G. Burmeister and K. Maschke, Phys. Rev. B 57,13050 (1998).
    
    [37] W. Li and L. E. Reichl, Phys. Rev. B 60,15732 (1999).
    
    [38] P. F. Bagwell and R. K. Lake, Phys. Rev. B 46,15329 (1992).
    
    [39] R. Landauer, J. Phys. Condens. Matter 1, 8099 (1989).
    
    [40] M. BUttiker, Phys.Rev. Lett. 57,1761 (1986).
    
    [41] T. Christen and M. BUttiker, Phys. Rev. Lett. 77,143 (1996).
    
    [42] E. N. Bulgakov, and A. F. Sadreev, J. Phys.:Condens.Matter 8, 8869 (1996).
    [1] J. A. Folk, R. M. Potok, C. M. Marcus, and V. Umansky, Science 299, 679 (2003).
    [2] R. Hanson et al., Phys. Rev. Lett. 91,196802 (2003).
    
    [3] Jordan Kyriakidis and Stephen J. Penney, Phys. Rev. B 71,125332 (2005).
    [4] Cynthia Aku-Leh, et al., Phys. Rev. B 76,155416 (2007).
    [5] Y. Ohno, D. K. Young, B. Beschoten, et al., Nature (London) 402, 790 (1999).
    [6] H. J. Zhu, M. Ramsteiner, H. Kostial, et al., Phys. Rev. Lett. 87, 016601 (2001).
    
    [7] A. T. Hanbicki, B. T. Jonker, G. Itskos, G. Kioseoglou and A. Petrou, Appl. Phys. Lett. 80,1240(2002).
    
    [8] Y. B. Xu, E. T. M. Kernohan, D. J. Freeland, et al., Phys. Rev. B 58, 890 (1998).
    
    [9] G. Schmidt, D. Ferrand, L. W. Molenkamp, A. T. Filip and B. J. van Wees, Phys. Rev. B 62, R4790 (2000).
    
    [10] E. I. Rashba, Physical Review B 62, R16267 (2000).
    
    [11] A. Fert and H. Jaffres, Physical Review B 64,184420 (2001).
    
    [12] G Schmidt, L W Molenkamp, Semiconductor Science and Technology 17, 310 (2002).
    
    [13] V. I. Perel, S. A. Tarasenko, I. N. Yassievich, S. D. Ganichev, V. V. Belkov and W. Prettl, Phys. Rev. B 67,201304(R) (2003).
    
    [14] M. M. Glazov, P. S. Alekseev, M. A. Odnoblyudov, V. M. Chistyakov, S. A. Tarasenko and I. N. Yassievich, Phys. Rev. B 71,155313 (2005).
    
    [15] Cun-xi Zhang, Y.-H. Nie and J.-Q. Liang, Phys. Rev. B 73, 085307 (2006).
    [16] Cheng-Zhi Ye, Cun-xi Zhang, Y.-H. Nie and J.-Q. Liang, Phys. Rev. B 76, 035345 (2007).
    
    [17] U. Fano, Phys. Rev. 124, 1866 (1961).
    [18] U. Fano and J.W. Cooper, Phys. Rev. A 137, 1364 (1965).
    [19] J. A. Simpson and U. Fano, Phys. Rev. Lett. 11,158 (1963).
    [20] F. Cerdeira, T.A. Fjeldly, and M. Cardona, Phys. Rev. B 8,4734 (1973).
    
    [21] J. Feist, F. Capasso, C. Sirtori, K.W. West, and L.N. Pfeiffer, Nature (London) 390, 589(1997).
    
    [22] H. Schmidt, K.L. Campman, A.C. Gossard, and A. Imamoglu, Appl. Phys. Lett. 70, 3455(1997).
    
    [23] J. Gores, D. Goldhaber-Gordon, S. Heemeyer, M. A. Kastner, Hadas Shtrikman, D. Mahalu, and U. Meirav, Phys. Rev. B 62,2188 (2000).
    
    [24] K. Kobayashi, H. Aikawa, S. Katsumoto, and Y. Iye, Phys. Rev. B 68, 235304 (2003);
    
    [25] K. Kobayashi, H. Aikawa, S. Katsumoto, and Y. Iye, Phys. Rev. Lett. 88, 256806 (2002).
    
    [26] W. Cai, P. Hu, T. F. Zheng, B. Yudanin, and M. Lax, Phys. Rev. B 41,3513 (1990).
    
    [27] G. Dresselhaus,Phys. Rev. 100, 580 (1955).
    
    [28] R. Landauer, J. Phys. Condens. Matter 1, 8099 (1989).
    
    [29] M. Biittiker, Phys.Rev. Lett. 57, 1761 (1986).
    
    [30] T. Christen and M. Biittiker, Phys. Rev. Lett. 77,143 (1996).
    
    [31] E. N. Bulgakov, and A. F. Sadreev, J. Phys.:Condens. Matter 8, 8869 (1996).
    
    [32] E. R. Racec and Ulrich Wulf, Phys. Rev. B 64, 115318 (2001).
    [1] W. Li and L. E. Reichl, Phys. Rev. B 62, 8269 (2000).
    [2] M. Grifoni and P. Hanggi, Phys. Rep. 304,229 (1998).
    
    [3] A. Emmanouilidou and L. E. Reichl, Phys. Rev. A 65,33405 (2002).
    [4] M. Moskalets and M. Buttiker, Phys. Rev. B 66,205320 (2002).
    [5] Junren Shi and X.C. Xie, Phys. Rev. Lett. 91,086801 (2003).
    
    [6] L. P. Kouwenhoven, S. Jauhar, J. Orenstein, and P. L. McEuen, Y. Nagamune, J.. Motohisa, and H. Sakaki, Phys. Rev. Lett. 73, 3443 - 3446 (1994).
    
    [7] L. Y. Wang, C. S. Tang, and C. S. Chu, Phys. Rev. B 73,085304 (2006).
    
    [8] K. Gnanasekar and K. Navaneethakrishnan, Eur. Phys. J. B 53,455-461 (2006).
    
    [9] V.A. Chitta, R.E.M. de Bekker, J.C. Maan, S.J. Hawkworth, J.M. Chamberlain, M. Henini and G. Hill, Surf. Sci 263,227 (1992).
    
    [10] Jesus Iflarrea and Gloria Platero Phys. Rev. B 51, 5244 - 5252 (1995).
    
    [11] M. Buttiker and R. Landauer, Phys. Rev. Lett. 49,1739 (1982).
    [12] G. Burmeister and K. Maschke, Phys. Rev. B 57,13050 (1998).
    
    [13] P. S. S. Guimaraes, Brian J. Keay, Jann P. Kaminski, S. J. Allen, P. F. Hopkins, A. C. Gossard, L. T. Florez and J. P. Harbsion. Phys. Rev. Lett. 70, 3792 - 3795 (1993).
    
    [14] H. Drexler, J. S. Scott, S. J. Allen, K. L. Campman and A. C. Gossard, Appl. Phys. Lett. 67,2816 (1995).
    
    [15] S. Zeuner, S. J. Allen, K. D. Maranowski and A. C. Gossard Appl. Phys. Lett. 69, 2689(1996).
    
    [16] Yuri Dakhnovskii and Horia Metiu, Phys. Rev. B 51,4193 (1995).
    [17] B. J. Keay, S. I Allen, J. P. Kaminski, J. Galan, K. L. Campman, A. C. Gossard, U. Bhattacharya, and M. J. W. Rodwell, Phys. Rev. Lett. 75,4098 (1995).
    
    [18] T. Fromherz, Phys. Rev. B 56,4772 (1997).
    [19] Mathias Wagner, Phys. Rev. B 57,11899 (1997).
    
    [20] S. Zeuner, B. J. Keay, S. J. Allen, K. D. Maranowski, A. C. Gossard, U. Bhattacharya and M. J. W. Rodwell, Phys. Rev. B 53,1717 (1996).
    
    [21] Cun-xi Zhang, Y.-H. Nie and J.-Q. Liang, Phys. Rev. B 73, 085307 (2006).
    
    [22] Cheng-Zhi Ye, Cun-xi Zhang, Y.-H. Nie and J.-Q. Liang, Phys. Rev. B 76, 035345 (2007).
    
    [23] J. H. Shirley, Phys. Rev. 138, B979 (1965).
    
    [24] M. Holthaus and D. Hne, Phys. Rev. B 47,6499 (1993).
    
    [25] T. Fromherz, Phys. Rev. B 56,4772 (1997).
    
    [26] K. Huisimi, Prog. Theor. Phys. 9, 381 (1953).
    
    [27] F. H. Kerner, Can. J. Phys. 36, 371 (1958).
    
    [28] D. ter Haar, Problems in Quantum Mechanics 3rd ed. p. 17 (Pion, London, 1975).
    
    [29] W. S. Truscott, Phys. Rev. Lett. 70,1900 (1993).
    
    [30] W. Li and L. E. Reichl, Phys. Rev. B 60,15732 (1999).
    
    [31] P. F. Bagwell and R. K. Lake, Phys. Rev. B 46, 15329 (1992).
    
    [32] R. Landauer, J. Phys. Condens. Matter 1, 8099 (1989).
    
    [33] M. Biittiker, Phys.Rev. Lett. 57, 1761 (1986).
    
    [34] T. Christen and M. Biittiker, Phys. Rev. Lett. 77, 143 (1996).
    
    [35] E. N. Bulgakov, and A. F. Sadreev, J. Phys.:Condens.Matter 8, 8869 (1996).
    [1]M.H.Anderson,J.R.Ensher,M.R.Matthews,C.E.Wieman and E.A.Cornell,Observation of Bose-Einstein Condensation in a Dilute Atomic Vapor,Science 269,198-201(1995).
    [2]K.B.Davis,M.-O.Mewes,M.R.Andrews,N.J.Van Druten,D.S.Durfee,D.M.Kurn and W.Ketterle,Bose-Einstein Condensation in a Gas of Sodium Atoms,Phys.Rev.Lett.75,3969(1995).
    [3]C.C.Bradley,C.A.Sackett and R.G.Hulet,Evidence of Bose-Einstein Condensation in an Atomic Gas with Attractive interactions,Phys.Rev.Lett.78,985(1997).
    [4]郝柏林,中性原子的玻色—爱因斯坦凝聚,物理学进展,17卷,223-232(1997).
    [5]D.G.Fried,T.C.Killian,L.Willmann,D.Landhuis,S.C.Moss,D.Kieppner and T.J.Greytak,Bose-Einstein Condensation of Atomic Hydrogen,Phys.Rev.Lett.81,3811(1998).
    [6]A.S.Parkins,D.F.Walls,The physics of trapped dilute-gas Bose-Einstein condensates,Phys.Rep.303,1-80(1998).
    [7]H.Shi and A.Griffin,Finite-temperature excitations in a dilute Bose-Condnsed gas,Phys.Rep.304,1-87(1998).
    [8]F.Dalfovo,S.Giorgini,L.P.Pitaevskii and S.Stringari,Theory of Bose-Einstein condensation in trapped gases,Rev.Mod.Phys.71,463(1999).
    [9]A.Sorensen,L.-M.Duan,J.I.Cirac and P.Zoller,Many-particle entanglement with Bose-Einstein condensates,Nature 409,63(2001).
    [10]C.Liu,Z.Dutton,C.H.Behroozi and L.V.Hau,Observation of coherent optical information storage in an atomic medium using halted light pulses,Nature 409,490 (2001).
    
    [11] A. J. Leggett, Bose-Einstein condensation in the alkali gases: Some fundamental concepts, Rev. Mod. Phys. 73, 307 (2001).
    
    [12] U. Al Khawaja and H. Stoof, Skyrmions in a ferromagnetic Bose-Einstein condensate, Nature 411, 918 (2001).
    
    [13] Z. Dutton, M. Budde, C. Slowe, L. V. Hau, Observation of quantum shock waves created with ultra-compressed slow light pulses in a Bose-Einstein Condensate, Science 293,27 (2001).
    
    [14] .F. S. Cataliotti, S. Burger, C. Fort, P. Maddaloni, F. Minardi, A. Trombettoni, A. Smerzi, Minguscio, Josephson Junction Arrays with Bose-Einstein Condensates, Science 293, 843 (2001).
    
    [15] P. Pedri, L. Pitaevskii, S. Stringari, et al., Expansion of a coherent array of Bose-Einstein Condensates, Phys. Rev. Lett. 87,220401 (2001).
    
    [16] W. Hansel, P. H. Hoff, T. W. Hansch and J. R. Chei, Bose-Einstein condensation on a microelectronic chip, Nature 413,498 (2001).
    
    [17] Wu Ying, Yang, Xiaoxue and Xiao Yi, Analytical method for Yrast line states in interacting Bose-Einstein Condensates, Phys. Rev. Lett. 86,2200 (2001).
    
    [18] Weiping Zhang, Han Pu, Chris Search, and P. Meystre, Spin Waves in a Bose-Einstein-Condensed atomic spin chain, Phys. Rev. Lett. 88,060401 (2002).
    
    [19] J. R. Anglin and W. Ketterle, Bose-Einstein condensation of atomic gases, Nature 416,211 (2002).
    
    [20] Chu Steven, Cold atoms and quantum control, Nature 416,206 (2002).
    
    [21] S. L. Rolston and W. D. Phillips, Nonlinear and quantum atom optics, Nature 416, 219(2002).
    [22] K. Burnett, P. S. Julienne, P. D. Lett, E. Tlesinga and C. J. Williams, Quantum encounters of the cold kind, Nature 416,225 (2002).
    
    [23] Th. Udem, R. Holzwarth and T. W. Hansch, Optical frequency metrology, Nature 416,233 (2002).
    
    [24] C. Monroe Quantum information processing with atoms and photons, Nature 416, 238 (2002).
    
    [25] H. T. C. Stoof, Breaking up a superfluid, Nature 415,25 (2002).
    
    [26] M. Greiner, O. Mandel, T. Esslinger, T. W. Hansch and I Bloch, Quantum phase transition from a superfluid to a mott insulator in a gas of ultracold atoms, Nature 415, 3 (2002).
    
    [27] C. J. Pethick, et al., Bose-Einstein Condensation in dilute gases, page 206, (Cambridge University press, 2002).
    
    [28] S. N.Bose, Z. Physik 261,78 (1924).
    
    [29] A.Einstein, Sitzungsber, Kgl. Preuss, Akad. Wiss P261 (1924), P3 (1925).
    
    [30] A. Griffin, D. W. Snoke and S. Stringari, Bose-Einstein Condensation, Cambridge University Press (1995)
    
    [31] Huang K. Statistical Mechanics, 2nd ed. New York: John Wiley (1987).
    [32] 汪志诚,热力学统计物理,高等教育出版社,P284(1993).
    [33] F. London, Phys. Rev. 54(10), 947 (1938).
    
    [34] W. Ketterle and N.J.Vandruten, In Advances in Atomic, Moleculer and Optical Physics 37, 181(1996).
    
    [35] J.T.M.Walraven, In Quantum Dynamics of simple systems, Institute of Physics Publ., London, 315(1996)
    [36]S.Chu,The manipulation of neutral Particles,Rev.Mod.Phys.70,685(1998).
    [37]C.Cohen-tannoudji,Manipulating atoms with Photons,Rev.Mod.Phys.70,707(1998).
    [38]W.D.Phillips,Laser cooling and trapping of neutral atoms,Rev.Mod.Phys.70,721(1998).
    [39]谭维翰,非线性和量子光学,北京:科学出版社,68页(1996).
    [40]G.Modugno,C.Ferrari,G.Roati,R.J.Breeha,A.Simoni,and M.Inguscio,Bose-Einstein Condensation of Potassium Atoms by Sympathetic Cooling,Science 294,1320-1322(2001).
    [41]L.P.Pitaevskii,Dynamics of collapse of a confined Bose gas,Physics Letters A 221,14-18(1996).
    [42]D.E.Pritehard,Cooling Neutral Atoms in a Magnetic Trap for Precision Spectroscopy,Phys.Rev.Lett.51,1336-1339(1983).
    [43]王谨,詹明生,高克林,原子的玻色—爱因斯坦凝聚.大学物理,17,33-42(1998).
    [44]王晓辉,李义民,李义道,玻色—爱因斯坦凝聚的物理实现及其应用展望.研究快讯.27,3-6(1998).
    [45]闰坷柱,谭维翰.简谐势阱中具有吸引相互作用原子体系的玻色-爱因斯坦凝聚.物理学报.49,1909-1910(2000).
    [46]王义道,原子的激光冷却与捕陷,物理,19,389-393(1990).
    [47]D.G.Fried,T.C.Kiilian,L.Willmann,D.Landhuis,S.C.Moss,D.Kleppner and T.J.Greytak,Bose-Einstein Condensation of Atomic Hydrogen,Phys.Rev.Lett.81,3811(1998).
    [48]Matthias Weidemilller,Andreas Hernmerieh,Axei Gorlitz,et al.,Phys.Rev.Lett.75,4583-458(1995).
    [49]G.Grynberg,B.Lounis,P.Verkerk,et al.,Phys.Rev.Lett.70,2249-2252(1993).
    [50]I.H.Deutsch and P.S.Jessen,Plays.Rev.A.57,1972-1986(1998).
    [51]徐志君,程成,杨欢耸等,物理学报 53,2836-2841.(2004).
    [52]S.Friebel,C.D.Andrea,J.Walz and T.W.Hansch,Phys.Rev.A 57,R20-R23(1998).
    [53]M.Lewenstein,L.Santos,M.A.BaranoV and H.Fehrmann,Phys.Rev.Lett.92,050401(2004).
    [54]Rodrigo A.Vicencio,Joachim Brand,and Sergej Flach,Phys.Rev.Lett.98,184102(2007).
    [55]W.Hansel,P.Hommelho,T.W.Hansch,and J.Reichel,Nature(London) 413,498(2001);H.Ott,J.Fortagh,G.Schlotterbeck,A.Grossmann,and C.Zimmermann,Phys.Rev.Lett.87,230401(2001).
    [56]R.Dumke,T.M(u|¨)ther,M.Volk,W.Ertmer,and G.Birki,Phys.Rev.Lett.89,220402(2002).
    [57]E.Tiesinga,B.J.Verhaar,and H.T.C.Stoof,Phys.Rev.A 47,4114(1993);S.Inouye,et al.,Nature(London) 392,151(1998).
    [58]P.O.Fedichev,Y.Kagan,G.V.Shlyapnikov,and J.T.M.Walraven,Phys.Rev.Lett.77,2913(1996);M.Theis,et al.,ibid.93,123001(2004).
    [59]A.Trombettoni,A.Smerzi,and A.R.Bishop,Phys.Rev.Lett.88,173902(2002).
    [60]M.R.Andrews et al.,Phys.Rev.Lett.79,553(1997).
    [61]C.Fort,et al.,Phys.Rev.Lett.95,170410(2005).
    [62]A.Trombettoni and A.Smerzi,Phys.Rev.Lett.86,2353(2001).
    [63]U.V.Poulsen and K.Molmer,Phys.Rev.A 67,013610(2003).
    [64] S. Flach, A. E. Miroshnichenko, V. Fleurov, and M.V. Fistul, Phys. Rev. Lett. 90, 084101 (2003).
    
    [65] J. Denschlag, et al., Science 287,97 (2000).
    
    [66] Andrey E. Miroshnichenko, Sergei F. Mingaleev, Sergej Flach, and Yuri S. Kivshar, Phys. Rev. E. 71, 036626 (2005).
    
    [67] G. P. Tsironis, M. I. Molina, and D. Hennig, Phys. Rev. E. 50,2365 (1994).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700