高压下ZnS的光电导
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
ZnS是一种重要的半导体材料,常温下带隙较宽,是迄今为止粉末电致发光的最佳基质。此外,优良的光电性能使ZnS成为研究的热点。本文中在金刚石对顶砧上集成电极,测量了样品在压力和光照条件下的电输运性质。
     晶界是影响多晶材料电学性质的重要因素。在本文中首先分析了晶界结构,建立了晶界势垒的高斯分布模型。势垒的存在阻碍了载流子在晶界处的电荷转移,使得晶界的导电性要远远低于晶粒的导电性。利用势垒模型解释了在同一个压力点下,电流对电压的依赖关系。电子在外加电场作用下,在晶粒和晶界中进行传输。低电压下,热激发电流起主要作用。随电压增大,耗尽层上部宽度变窄,隧穿电流超过热激发成为电流的主要形式。
     光照使载流子浓度增大,势垒高度降低,提高了电导。去掉光照后,被束缚在电子陷阱的光生电子,因为势垒的限制不能立即参与复合,导致了持续光电导的出现。跟晶粒相比,晶界层中的大量陷阱态对光生空穴的释放所需弛豫时间更长,是个慢过程,说明多晶半导体材料的电学性质跟晶界的双肖特基势垒密切相关。
The Semiconductor Materials have got widespread application, which is important to the development of information industriesy. Among them, Electro-Optical Devices (semiconductor solar battery, solar cell, laser and so on) receive more and more attention for their good prospect. The electrical property is the foundation of semiconductor device.
     In this paper, with thin film deposition technology and the photoetching technology, we integrate micro electric circuit in the diamond anvil cell which can be used to study Direct current circuits. Electrical measurements under the high pressure has come true . The physical property is the collective behavior which the microparticle fellowship displays. High pressure, one extreme physical condition, can change the crystal structure effectively, influences the carrier transport in the crystal, causes the change of macroscopic conductance (resistance) finally. All of these days , semiconductor's properties under high pressure has been an important topic in the high pressure physics。
     ZnS is an intrinsic semiconductor, which has the good electro-optical performance, obtains the widespread application in optics and the photoelectric apparatus. This article takes the ZnS powder sample as the object of study, makes a systematic study of its property of high-pressure and illumination. The present paper mainly draws the following several conclusions:
     ⑴Boundary structure: The grain boundary is the polysemiconductor's key character. The disorder and devious stoichiometric ratio of boundary structure (Dangling bonds) is responsible for acceptor interfacial state trap, which appears negativly after capturing electrons. The crystal grain interior, which approaches the crystal boundary at a distance, transforms into electron depletion layer .For this reason, Schottky barrier which is symmetrical to grain boundary has come into being . One hand, it reduces the free electron, on the other hand, it reduces mobility. Therefore, the polysemiconductor's conductance must be smaller than the same doping level of single crystal semiconductor .
     ⑵T ransport mechanism: Polycrystalline's carrier transport is controlled by boundary potential barrier (double Schottky potential barrier). For ZnS sample, the conduction electron which only passes through the potential barrier (thermal excitation or tunneling) can form current. With the electric field, the potential barrier becomes no longer symmetrical. The experiment proves that the current transport is mainly desided by reverse bias depletion layer。
     (3)The influence of external voltage to grain boundary: The electrons by means of the heat emission or quantum tunneling can cross the potential barrier to carry on the transport. Heat emission current is influeced by the temperature, has nothing to do with the barrier width. The quantum tunneling probability is concern with the barrier width. Under the low voltage, depletion-layer width is big, the tunneling electron may neglect, the thermal excitation electron occupies the whip hand. The potential barrier acts as high resistance for the hindrance to carriers, the macroscopic electric current is very small. Increases the external voltage, the upper of depletion layer is narrow , the tunneling electron surpasses the thermal excitation electron to become the main transport mechanism.
     ⑷Influence of illumination: When X light illuminates the sample, the sample produces the additional carrier. The light-generated electron-hole pairs are separated by the electric field, enter the grain boundary and the crystal separately. A part of hole are recombinate with interface traps。With the effective electric-charge density’reduction, the potential barrier reduces, the scattering of carrier through grain boundary is weaken. As the carrier concentration and mobility increases, conductance increases. The illumination increaseds the conductance.
     ⑸Persistent photoconductivity: Get rid of illumination, the conductance must pass through certain time to restore to the dark conductance. Light-generated electron-hole’s recombination take place in grain, concerns with the shallow donor level. The other are trapped in the grain boundary, because the limit of the potential barrier, the recombination must be slower compared to volume recombination。
     We may see from the above analysis, the grain boundary’s influence mainly manifests in the grain boundary potential barrier and interfacial state. The illumination and the voltage may reduce the barrier height, the thermal excitation current increase. The electric field may also make depletion layer width get narrow, tunneling electron become the domaint. A fraction of interface States are the recombination center for the traps.
     The developed country has given the enormous attention to the applicition of the grain boundary’s development. The research of semiconductor’s interfacial effect and corresponding theory have the very vital practical significance to the optimizition of component performance and explorition of the new component
引文
[l]季国平,“十五”期间中国光电子技术产业发展战略[R].世界产品与技术ECN,2002.
    [2]Trade Information of World Machine electronies[C]. 2001,7:28~29.
    [3]国家自然科学基金委员会,自然科学学科发展战略研究报告[M] .北京:科学出版社, 1995.
    [4]张立德,牟季美.纳米材料和纳米结构[M].北京:科学出版社,2001.23-45.
    [5]李亚利,张方辉,牟强.有机电致白光发光器件的研究进展[J].云南大学学报,2005,27:597-601
    [6]邓志杰,王雁.化合物半导体光伏电池研究进展[R].世界有色金属,2008
    [7]KUNANO Y. Photovoltaic tech and the genesis project . Research report [R], June 1991~May 1992 ,13 :Ⅱ- 143~Ⅱ- 154 (三洋电机公司功能材料研究中心)
    [8]Information on U.S.A.Department of Energy Photovoltaic Program[R],1998
    [9]刘恩科,朱秉生,罗晋生.半导体物理学[M].北京:国防工业出版社,1994.
    [10]刘祖明,涂洁磊,廖华等,太阳电池研究现状及发展趋势[C].中国第六届光伏会议论文集,2000.
    [11]ZHAO YU WEN. The present status and nature of photovoltaic in China[J].solar energy materials and solar cells,67,2001,663-671
    [12]郑安生,邓志杰,俞斌才.化合物半导体材料的光电应用现状[J].稀有金属,2004,28(3):563
    [13]潘葳.新型半导体材料的电输运特性研究[D].上海:上海交通大学物理系,2007.
    [14]史常忻,覃化,邵传芬等.平面交叉指状电极间电场分布[J].半导体光电,1998年,第19卷第1期,27页
    [15]何智兵,有机∕无机多层复合膜的制备及光电性能研究[D].浙江:浙江大学2004
    [16]池元斌,高压物理[R],吉林:吉林大学超硬材料国家重点实验室
    [17]张流,地震地质论文集[B],天津:天津科学技术出版社
    [18]LAWSON A W,TANG T Y,A diamond bomb for obtaining powder pictures at high pressures[J]. Review of Scientific Instruments,1950,21:815
    [19]关瑞,高压下ZnSe和ZnTe的电学性质及其可逆相变的研究[D].吉林:吉林大学原子与分子物理研究所,2007
    [20] MAO H K,BELL P M, In Carnegie Institution of Washington Year Book[M] .1976,75, 824
    [21]BLOCK S, FORMAN R A,PIERMARINI G J ,in High Pressure Research: Applications in Geophysics [J].Academic, New York,1977,503.
    [22] Mao H K ,Bell P M, Electrical resistivity measurements of conductors in the diamond- window high-pressure cell[J].Review of Scientific Instruments.1981, 52:615-616
    [23] GRZYBOWSKI T A ,RUOFF A L,Band-overlap metallization of BaTe[J]. Physical Review Letter, 1984,53:489-492
    [24] ANDRE.LACAM, Pressure and composition dependence of the electrical conductivity of iron-rich synthetic olivines to 200 kbar[J]. Physics and Chemistry of Minerals,1983, 9:127-132
    [25]XU Y S, CAMMON C MC ,AND.POE B T ,The effect of alumina on the electrical conductivity of silicate perovskite [J].Science , 1998, 282:922
    [26] SAKAI N , KAJIWARA T , TSUJI K AND MINOMURA S, Electrical resistance measurements at high pressure and low temperature using a diamond-anvil cell[J].Review of Scientific Instruments. 1982, 53:499-502
    [27] HE C Y, GAO C X, MA Y Z, LI M, HAO A M, HUANG X W ,.LIU B G ,AND ZHANG D M, In situ electrical impedance spectroscopy under high pressure on diamond anvil cell[J].Applied Physics Letters, 2007,91: 092124-092126.
    [28] VAN DER PAUW L J.A method of measuring specific resistivity and effect of discuss of arbitrary shape[J], Philips Research Reports. 1958,13,1
    [29]GALIT ITKIN, GIOVANNI R.HEARNE, ERAN STERER, MOSHE P .PASTERNAK AND WALTER POTZEL, Pressure-induced metallization of ZnSe[J]. Physical Review B ,1995, 51:3195
    [30]鲍忠兴,程开甲,CuO在高压下的状态方程,电学性质与相变[J],高压物理学报.1998, 12:254
    [31]EREMETS M I, HIMIZU K.S, KOBAYASHI T C, MAYA K A, Metallic CsI at Pressures of up to 220 Gigapascals[J].Science 1998,281:1333
    [32]MIKHAIL I, EREMET S, EUGENE A, GREGORYANZ, VICTOR V.STRUZHKIN , Spiraling Spin Structure in an Exchange-Coupled antiferromagnetic Layer [J]. Physical Review Letter 2000,85 :2797
    [33]张珺,高压处理对ZnO纳米晶形貌和电学性质的影响[D].湖北:武汉理工大学理学院,2008
    [34]BLACHA A, CARDONA M, CHRISTENSEN N E, VES SAND OYERHOF H, Spin-orbit splitting of the copper halides and its volume dependence [J]. Solid State Communication,1982, 43:183
    [35]YU P Y , WELBER B. High pressure photoluminescence and resonant Ramanstudy of GaAs [J], Solid State Communication.1978,25:209.
    [36]JACKSON D D, ARACNE-RUDDLE C, MALBA V, WEIR S T, CATLEDGE S A, VOHRA Y K.Magnetic susceptibility measurements at high pressure using designer diamond anvils[J].Review of Scientific Instruments. 2003, 74:2467
    [37]HIXSON R S, BONESS D A,SHANER J WAND MORIARTY J A, Acoustic Velocities and Phase Transitions in Molybdenum under Strong Shock Compression [J]. Physical.Review.Letter.1989, 62(6):637-640.
    [38]HIXSON R S, BONESS D A, SHANER J W AND MORIARTY J A, Acoustic velocities and phase transitions in molybdenum under strong shock compression [J], Physical Review Letter.1989,62: 637-640
    [39]田昭武.电化学研究方法[M].北京:科技出版社,1984,250-276.
    [40]IAPHCOAT A P, HEMLEY R J AND MAO H K, Structure and multiplicity of detonation regimes in heterogeneous hybrid mixtures [J].Physica B 1988, 150:115
    [41]AHEN CELIKKAYA , MUFIT AKINC , Preparation and Mechanism of Formation of Spherical Submicrometer Zinc Sulfide Powders[J]. Journal of the American Ceramic Society,1990,73(8):2360
    [42]TAGLIENIE M A,PENZA M ,GUSSO M,QUIRINI A,Characterization of ZnS:Mn thin films by Rietveld refinement of Bragg-Brentano X-ray diffraction Patterns[J].Thin Solid Films,1999,353:129-136.
    [43]LEIGH W,WESSELS B W,High conductivity zinc sulphoselenide thin films [J].Applied Physics Letters.1982,41(2):165-167.
    [44]憨勇,郑修麟,刘正堂. ZnS掺杂技术及应用现状[J].材料学报,1995,4:35
    [45]黄书万.光电材料[M].上海:上海科学技术出版社,74-109。
    [46]TAGUEHI T ,ONODERA C, YMADA Y, MASUMOTO Y,Band offsets in CdZnS/ZnS strained-layer quantum well and its application to UV laser diode[J],Japanese Journal of Applied Physics,1993,32.
    [47]TAGUEHI T,YMADA Y,OHNO T,MULLINS J T,MASUMOTO Y. Ultraviolet laser and Photodector of CdZnS/ZnS multiple quantum wells[J].Physica B,1993,191(l-2):136-139.
    [48]MECLEAN I P,THOMAS C B,Memory effete in ZnS:Mn AC thin-film Electroluminescent devices with low Mn concentration[J],IEEE transition on Electron device,1993,40(5):898-902.
    [49]杨桦,王子忱,宋利珠等.功能材料[J],1996,27(4):302
    [50]无机化学丛书编委会.无机化学丛书第六卷[M].科学出版社,1995:724
    [51]MANZOOR K,VANDERA S R,KUMAR N,KUTTY T R N,Synthesis andphotoluminescent properties of ZnS nanocrystals doped with the copper and halogen[J],Materials Chemistry and Physics.2003,82: 718-725.
    [52]DIMITROVA V,TATE J,Synthesis and characterization of some ZnS-based thin film Phosphors for electroluminescent device applications[J],Thin Solid Films,2000,365:134-138.
    [53]王敦青,焦秀玲,陈代荣.硫化锌性质用途及制备方法概述[J].山东化工,2003,32:12
    [54]牛新书,刘艳丽,徐甲强.室温固相合成纳米ZnS及其气敏性能研究[J].无机材料报, 2002 ,17(4):817.
    [55]CHEN S H, LIU W M. Preparation and Characterization of Surface-Coated ZnS nanoparticles [J].Langmuir ,1999 , 15 :8100.
    [56]丘思,半导体表面与界面物理[M].武汉:华中理工大学出版社,1995:205
    [57]朱履冰,表面和界面物理[M],天津:天津大学出版社,1992:67,
    [58]YOO M H, TCLAKR W A ,AND BRIANT C L,Interfacial Structure,Properties and Design[J],Materials Research Society ,Pennsylvania,1988
    [59]COWHER M E AND SEDGWICK T O, Chemical vapor deposited polycrystalline silicon [J].Journal of the Electrochemical Society.1972,119:1565
    [60]CHOUDHURY P RAI, HOWER P L, Growth and characterization of polycrystalline[J], Journal of the Electrochemical Society. 1973, 120,1761.
    [61]KAMINS T I, Hall Mobility in Chemically Deposited Polycrystalline Silicon[J].Journal of Applied Physics. 1971,42,4357
    [62] KIA.杰克逊.半导体工艺[M].北京:科学出版社,1999,14
    [63]陈家才,T iO 2压敏陶瓷晶界偏析的初步研究[D],云南:昆明理工大学,2006
    [64]张静全,碲化镉及相关化合物多晶薄膜与碲化镉太阳能电池研究[D],四川:四川大学,2002
    [65]KAZUO EDA, Conduction Mechanism of non-Ohmic Zinc Oxide Ceramics[J],Journal of Applied Physics. 1978, 49(5):2964-2972
    [66]GUST W H, Shock induced transition stresses for zinc sulfide and zinc selenide [J].Journal of Applied Physics. 1982,53,4843
    [67]何燕,王晖,刘金芳,蒋建中等,纳米晶粒在高压下的相变[J].评述,2007,36(3):215
    [68]孟宪章,康昌鹤,半导体物理学[M].吉林:吉林大学出版社,1993.
    [69]张威虎,张富春,张志勇.压力下纤锌矿ZnS电子结构的第一性原理研究[J].材料导报,2006,20(9):128
    [70]赵辉,王永生,徐征,薄膜电致发光器件中电子输运的瞬态过程[J],中国科学(E辑) .1999, 29(2):174
    [71]胡永今,崔磊,赵江等.高压下ZnS的电子结构和性质[J].物理学报,2007,56(7):4079
    [72]LEITE E R,VAERL J A,LONGO E,Barrier voltage deformation of ZnO varistors by current Pulse[J].Journal of Applied Physics,1992,72(1):147-150.
    [73]李福宾,林硕,李建功,沈晓明. GaN肖特基紫外探测器的电流输运研究[J].广西科学, 2009,16(2):158-160
    [74]SINGH S N , KUMARI S and DAS B K. Electrical properties of polycrystalline silicon and zinc oxide semiconductors[J].National Physical Laboratory, 1984,6(2):243-258
    [75]张小文,二氧化钛压敏陶瓷制备及性能研究[D].昆明理工大学,2004
    [76]王爱坤,周国香,李国昌.ZnSe太阳电池,太阳能学报[J].2004,25(6):804
    [77]GREUTER F , BLATTER G, Electrical properties of grain boundaries in polycrystalline compound semiconductors [J], Semiconductor Science and Technology, 1990,5:111-137
    [78] BLATTER G ,GREUTER F: Electrical breakdown at semiconductor grain boundaries [J] .Physical Review B .1986, 34:8555
    [79] WANG K , SHEN W Z AND YANG H F. Capacitance characteristics in PbSrSe thin films [J], Applied Surface Science.2003,217:100 .
    [80]BLATTER G, GREUTER F. Carrier transport through grain boundaries in semiconductors[J]. Physical Review B, 1986,33(6):3952
    [81]张雷,Ge和Ga掺杂ZnSe的稳恒光电导及其局域性研究[D].上海:复旦大学物理学系,1996.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700