金属硫族化合物半导体纳米晶的合成及其性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
金属硫族化合物半导体纳米材料由于其具有一系列优异的物理和化学特性以及在光电子器件和生物医学领域所存在的巨大的应用前景,目前已经发展成为物理学、化学以及材料学等许多学科最活跃的研究领域之一。系统地开发新型金属硫族半导体纳米晶以及深入研究它们的光学、电学和磁学等性质具有十分重要的意义,将有利于充分发挥这一类材料的最大潜能。本论文选取CdSe纳米晶,Cu_2S-In_2S_3异质结纳米晶以及掺杂Cu(I)离子的CdS纳米晶等作为研究对象,系统的研究了水溶性的CdSe纳米晶在电致发光器件中的应用和Cu_2S-In_2S_3异质结纳米晶在光伏器件中的应用,以及掺杂Cu(I)离子的CdS纳米晶的制备和自组装成为超晶格的性质和发光性质的研究。
     首先,采用巯基水相法制备了CdSe半导体纳米晶,利用季铵盐类表面活性剂借助于静电相互作用将CdSe纳米晶从水相转移到油相中,并将其与聚合物聚乙烯咔唑(PVK)按照一定的质量比例混合作为发光层制备了多层电致发光器件,研究了不同驱动电压下以及不同CdSe纳米晶和PVK的质量比例和不同粒径的CdSe半导体纳米晶对CdSe:PVK复合电致发光器件的发光特性的影响,并对比了CdSe:PVK复合薄膜电致发光和光致发光特性的区别。并在此基础之上探究了CdSe:PVK复合电致发光器件的发光机理,发现在不同驱动电压以及不同的CdSe纳米晶的粒径情况下,CdSe纳米晶和PVK之间的能量传递以及载流子的直接注入所起的作用并不相同。
     其次,采用简单的高温热解反应,通过一步合成法制备了球形的Cu_2S纳米晶,并在此基础之上采用分步注射的方法合成了具有火柴棒状的Cu_2S-In_2S_3异质结纳米晶和棒状的In_2S_3纳米晶。将Cu_2S,Cu_2S-In_2S_3和In_2S_3三种不同组分的半导体纳米晶与聚合物MEH-PPV按照相同的比例混合,将其作为活化层制备了纳米晶/聚合物异质结光伏器件,对比了三种器件的光伏性能,发现Cu_2S-In_2S_3/MEH-PPV光伏器件的能量转换效率较单组分的Cu_2S/MEH-PPV和In_2S_3/MEH-PPV光伏器件提高了3-5倍,这主要是因为半导体异质结纳米晶更加有利于激子离化和电荷传输。因此,半导体异质结纳米材料将会成为一种新型的光伏材料。
     最后,采用高温热解一步合成法在十二硫醇中制备了CdS和掺杂Cu(I)离子的CdS半导体纳米晶。考查了掺杂不同Cu(I)离子浓度的CdS纳米晶的光学性质,并将其与未掺杂的CdS纳米晶进行了对比,发现在CdS纳米晶中掺杂Cu(I)离子后,CdS纳米晶的发光随着掺杂Cu(I)离子比例的增加逐渐由表面缺陷态的发光变化为掺杂在CdS纳米晶中Cu(I)离子的红色发光,掺杂Cu(I)离子的CdS纳米晶的荧光量子产率最高可达15.8%。同时,通过改变Cu(I)离子的不同掺杂比例,CdS:Cu(I)纳米晶在所掺杂的Cu(I)离子浓度合适时自组装成为二维或三维的超晶格结构。通过对比掺杂不同比例的Cu(I)离子的CdS:Cu(I)纳米晶的粒径分布范围、制备条件以及形貌变化,我们将单分散的CdS:Cu(I)纳米晶自组装成为超晶格的原因归于掺杂进入CdS纳米晶中过多的Cu(I)离子能够在纳米晶的表面形成一种极化体系,这种极化作用促使了纳米晶自发形成了超晶格结构。同时过多的Cu(I)离子还可以在十二硫醇体系中形成Cu_2S纳米晶。这种合成方法还可以推广到制备其它类型的金属硫系半导体纳米材料中去。
Recently,metal chalcogenide semiconductor nanomaterials have become an active field among physics,chemistry and materials,because they have unique physical and chemical properties and their wide applications in optoelectronic devices and biological medicine.It is interesting to study and develop new metal chalcogenide semiconductor nanocrystals in combination with their optical,electrical and magnetic properties.In this dissertation,this work is mainly focused on CdSe nanocrystals,Cu_2S-In_2S_3 heterostructure nanocrystals and cuprous ions doped CdS nanocrystals,and the study of their applications in light-emitting diodes,photovoltaic devices,self-assembled into superlattices and their optical properties.
     Firstly,CdSe nanocrystals were synthesized in aqueous solution by using mercapto molecules as the stabilizer.The nanocrystals were transferred from aqueous solution into organic phase through static effect by using a surfactant with positive charge.The multilayered light-emitting diodes were fabricated using the blends of CdSe and PVK with different mass ratios of CdSe to PVK.The effects of applied voltages,the mass ratios of CdSe to PVK and the particle sizes of CdSe nanocrystals on the electroluminescence(EL) from the devices were studied,and the photoluminescence (PL) and EL from CdSe:PVK blends were compared.The luminescence mechanism of the light-emitting diodes based on CdSe:PVK nanocomposites were proposed based on the above results.It can be found that the energy transfer from PVK to CdSe and the cartier injection play different roles in the luminescence from the devices when the different applied voltages were applied and the different-size CdSe nanocrystals were used in the devices.
     Secondly,spherical Cu_2S nanocrystals were synthesized through one-pot synthetic method under high temperature,and matchstick-like Cu_2S-In_2S_3 heterostructure nanocrystals and In_2S_3 nanorods were also constructed by multi-injection of precursors. The photovoltaic devices were fabricated by using the blends of the nanocrystals and poly[2-methoxy-5-(2'-ethyl-hexyloxy)-1,4-phenylene vinylene](MEH-PPV) as active layers.As compared to the photovoltaic performance of the devices based on the blends of Cu_2S or In_2S_3 nanocrystals alone and MEH-PPV,the power conversion efficiency of the photovoltaic device based on the blends of Cu_2S-In_2S_3 and MEH-PPV was enhanced by~3-5 times.This improvement is consistent with the improved exciton dissociation and better charge transport abilities in the semiconducting heterostructure nanocrystals. This method may supply a class of new materials to design high-efficiency nanoerystal/ polymer hybrid photovoltaic devices.
     Finally,undoped CdS and Cu(Ⅰ) ions doped CdS nanocrystals were successfully prepared in dedocanethiol using one-pot synthetic method under high temperature.The luminescent properties of doped CdS nanocrystals with different concentrations of Cu(Ⅰ) ions.It is found that the emission from surface-related luminescence to the red emission of Cu(Ⅰ) ions in CdS nanocrystals was dominant in the PL spectra with different dopant concentrations.The maximum fluorescence quantum yields of the doped CdS nanoerystals can reach 15.8%.On the other hand,the doped CdS:Cu(Ⅰ) nanocrystals can be self-assembled into highly-ordered 2D or 3D supedattices when the dopant concentration is appropriate.The size-distribution,synthetic condition and morphology of CdS:Cu(Ⅰ) nanocrystals with different dopant concentrations were studied,and we preferred to attribute the superlattiees formation to a polar system created on the nanoerystal surface originating from electric dipole interaction between the adjacent particles,which promoted rapid and spontaneous superlattice formation.Meanwhile, monodispersed Cu_2S nanocrystals were also formed because excess Cu(Ⅰ) ions can react with dodeeanethiol.This method can be extended to prepare other metal chalcogenide semiconductor nanomaterials.
引文
[1]曹新,刘能杰..网络·基因·纳米-21世纪的科技革命.经济管理出版社,2002.
    [2]许并社等.纳米材料及应用技术.第一版,北京:化学工业出版社,2004:2-3.
    [3]张立德,牟季美.纳米材料和纳米结构.第一版,北京:科学出版社,2001:11-13.
    [4]A.Henglein.Small-particle research:physicochemical properties of extremely small colloidal metal and semiconductor particles.Chem.Rev.1989,89:1861-1873.
    [5]L.Brus.Electronic wave functions in semiconductor dusters:experiment and theory.J.Phys.Chem.1986,90:2555-2560.
    [6]A.P.Alivisatos.Perspeetives on the physical chemistry of semiconductor nanocrystals,J.Phys.Chem.,1996,100:13226-13239.
    [7]V.L.Colvin,M.C.Sehlamp,A P.Alivisatos.Light-emitting diodes made from cadmium selenide nanocwstals and a semiconducting polymer.Nature,1994,370:354-357.
    [8]N.D.Kumar,M.P.Joshi,C.S.Friend,P.N.Prasad,R.Burzynski.Organic-inorganic heterojunetion light emitting diodes based on poly(p-phenylene vinylene)/eadmium sulfide thin films.Appi.Phys.Lett.,1997,71:1388-1390.
    [9]S.Coe-Sullivan,W.K.Woo,M.Bawendi,V.Bulovi(?).Electroluminescence from single monolayers ofnanocrystals in molecular organic devices.Nature,2002,420:800-803.
    [10]A.L.Rogach,N.Gaponik,J.M.Lupton,C.Bertoni,D.E.Gallardo,S.Dunn,N.L.Pira,M.Paderi,A.Eychmüller,ct al.Light-emitting diodes with semiconductor nanocrystals.Angew.Chem.Int.Ed.2008,47:6538-6549.
    [11]N.C.Greenham X.Pcng,A.P.Alivisatos.Charge separation and transport in conjugated-polymer/scmiconductor-nanocrystal composites studied by photolumincsccnce quenching and photoconductivity.Phys.Rev.B.1996,54:17628-17637.
    [12]W.U,Huynh,X.G.Peng,and A.P.Alivisatos,CdSc nanocrystal rods/poly(3-hcxylthiophene)composite photovoltaic devices,Adv.Mater.,1999,11:923-927.
    [13]W.U.Huynh,J.J.Dittmer,A.P.Alivisatos.Hybrid nanorod-polymcr solar cells.Science,2002,295:2425-2427.
    [14]B.R.Saunders,M.L.Turner.Nanoparticle-polymer photovoltaic cells.Adv.Coll.Interf.Sci.2008:138:1-23.
    [15]M.Bruchez,M.Moronne,P.Gin,S.Weiss,A.P.Alivisatos.Semiconductor nanoparticles as fluorescent biological labels.Science,1998,281:2013-2016.
    [16]W.C.W.Chan,S.Nie.Quantum dot bilconjugates for ultraseneitive as fluorescent biological labels.Science,1998,281:2016-2018.
    [17]F.S.Li,D-I Son,S-M Seo,H-M Cha,H-J Kim,B-J Kim,J.H.Jung,T.W.Kim.Organic bistable devices based on core/shell CdSe/ZnS nanoparticles embedded in a conducting poly(N-vinylcarbazle)polymer layer.Appl.Phys.Lett.2007,91:122111-1-3.
    [18]B.C.Das,A.J.Pal.Memory applications and electrical bistability of semiconducting nanoparticles:do the phenomena depend on bandgap? Sma11,2008,4:542-547.
    [19]徐叙瑢,苏勉曾.发光学与发光材料,北京:化学工业出版社,2004:616-617.
    [20]彭卿.硒碲化合物半导体纳米材料的调控合成、结构与性能研究[博士学位论文],北京:清华大学,2003:1-2.
    [21]R.J.Bandaranayake,GW.Wen,J.Y.Lin,et al.Structural phase-behavior in Ⅱ-Ⅵ semiconductor nanoparticles.Appl.Phys.Lett.1995,67:831-833.
    [22]Y Wang,N.Herron.Nanometer-sized semiconductor clusters:materials synthesis,quantum size effects,and photophysical properties.J.Phys.Chem.1991,95:525-532.
    [23]L.E.Brus.Electron-electron and electron-hole interactions in small semiconductor crystallites:The size dependence of the lowest excited electronic state.J.Phys.Chem,1984,80:4403-4409.
    [24]YKayanuma.Quantum-size effects of interacting electrons and holes in semiconductor microcrystals with spherical shape.Phys.Rev.B,1988,38:9797-9805.
    [25]W.W.Yu,Y.A.Wang,X.G.Peng.Formation and stability of size-,shape-,and structure-Controlled CdTe nanocrystals:ligand effects on monomers and nanocrystals.Chem.Mater.2003,15:4300-4308.
    [26]Y.M.Miao,Z.Y.Wu,L.Cao,L.M.Fu,Y.P.He,S.S.Xie,B.S.Zou.Formation and spectroscopic characterization of nearly mono-dispersed CdS nanocrystals.Opti.Mater.2004,26:71-74.
    [27]Y.C.Cao,J.H.Wang.One-pot Synthesis of High-Quality Zinc-Blende CdS Nanocrystals.J.Am.Chem.Soc.2004,126.14336-14337.
    [28]D.V.Talapin,A.L.Rogach,A.Kornowski,M.Haase,H.Weller.Highly Luminescent Monodisperse CdSe and CdSe/ZnS Nanocrystals Synthesized in a Hexadecylamine-Trioctylphosphine Oxide-Trio-ctylphospine Mixture.Nano Lett.2001,1:207-211.
    [29]L.H.Qu,X.G.Peng.Control of Photoluminescence Properties ofCdSe Nanocrystais in Growth.J.Am.Chem.Soc.2002,124:2049-2055.
    [30]P.D.Cozzoli,L.Manna,M.L.Curri,S.Kudera,C.Giannini,M.Striccoli,A.Agostiano.Shape and phase control of colloidal ZnSe nanocrystals.Chem.Mater.2005,17:1296-1306.
    [31]S.L.Cumberland,K.M.Hanif,A.Javier,G.A.Khitrov,GF.Strouse,S.M.Woessner,C.S.Yun.Inorganic Clusters as Single-Source Precursors for Preparation of CdSe,ZnSe,and CdSe/ZnS Nanomaterials.Chem.Mater.2002,12:1576-1584.
    [32]O.I.Micic,H.M.Cheong,H.Fu,AZunger,J.R.Sprague,A.Mascarenhas,A.J.Nozik Size-dependent spectrascopy of InP quantum dots.J.Phys.Chem.B,1997,101:4904-4912.
    [34]R.GXie,D.Battaglia,X.GPeng.Colloidal InP Nanocrystals as Efficient Emitters Covering Blue to Near-Infrared.J.Am.Chem.Soc.2007,129:15432-15433.
    [35]M.A.Hines,G.D.Scholes.Collidal PbS Nanocrystals with Size-Tunable Near-Infrared Emission:Observation of Post-Synthesis Self-Narrowing of the Particle Size Distribution.Adv.Mater.2003,15:1844-1849.
    [36]L.Spanhel,M.Haase,H.Weller,A.Henglein Photochemistry of colloidal semiconductors.20.Surface modification and stability of strong luminescing CdS particlcs.J.Am.Chem.Soc.1987,109:5649-5655.
    [37]D.V.Talapin,I.Mwkis,S.G(o|¨)tzinger,A.Kornowski,O.Benson,H.Wellcr.CdSe/CdS/ZnS and CdSe/ZnSe/ZnS core-shell-shell nanocrystals.J.Phys.Chem.B,2004,108:18826-18831.
    [38]E.Hao,H.P.Sun,Z.Zhou,J.Q.Liu,B.Yang,J.C.Shen.Synthcsis and Optical Properties of CdSc and CdSc/CdS Nanoparticlcs.Chem.Mater.1999,11:3096-3102.
    [39]徐叙瑢,苏勉曾.发光学与发光材料,北京:化学工业出版社,2004:72-132.
    [40]顾锋.半导体纳米材料的制备及发光性质的研究[博士学位论文],济南:山东大学, 2005:19-25.
    [41]关柏鸥,韩关云.半导体纳米材料的光学性能及研究进展.光电子·激光,1998,9(3):260-263.
    [42]孙宝全,徐咏蓝,衣光舜,陈德朴.半导体纳米晶体的光致发光特性及在生物材料荧光标记中的应用.分析化学,2002,30(9):1130-1136.
    [43]H.Weller.Quantized Semiconductor Particles:A novel state of matter for materials science.Adv.Mater.1993,5:88-95.
    [44]C.B.Murray,D.J.Norris,MG.Bawendi.Synthesis and characterization of nearly monodisperse CdE(E = sulfur,selenium,tellurium) semiconductor nanocrystallites.J.Am.Chem.Soc.1993,115:8706-8715.
    [45]X.H.Zhong,M.Y.Han,Z.L.Dong,T.J.White,W.Knoll.Composition-Tunable Zn_xCd_(1-x)Se Nanocrystals with High Luminescence and Stability.J.Am.Chem.Soc.2003,125:8589-8594.
    [46]M.A.Hines,P.Guyot-Sionnest.Bright UV-Blue Luminescent Colloidal ZnSe Nanocrystals.J.Phys.Chem.B.1998,102:3655-3657.
    [47]M.A.Hines,P.Guyot-Sionnest.Synthesis and Characterization of Strongly Luminescing ZnS-Capped CdSe Nanocrystals.J.Phys.Chem.1996,100:468-471.
    [48]X.G.Peng,M.C.Schlamp,A.V.Kadavanich,A.P.Alivisatos.Epitaxial Growth of Highly Luminescent CdSe/CdS Core/Shell Nanocrystals with Photostability and Electronic Accessibility.J.Am.Chem.Soc.,1997,119(30):7019-7029.
    [49]A.A.Guzelian,J.E.B.Katari,A.V.Kadavanich,U.Banin,E.Juban,K.Hamad,A.P.Alivisatos,R.H.Wolters,C.C.Amold,J.R.Heath.Synthesis of size selected,surface passivated InP nanocrystals.J.Phys.Chem.1996,100:7212-7219.
    [50]A.A.Guzelian,U.Banin,A.V.Kadavanich,X.Peng,A.P.Alivisatos.Colloidal chemical synthesis and characterization of InAs nanocrystal quantum dots.Appi.Phys.Lett.1996,69:1432-1434.
    [51]Y.W.Cao,U.Banin.Synthesis and characterization of lnAs/InP and lnAs/CdSe core/shell nanocrystals.Angew.Chem.Int.Ed.1999,38:3692-3694.
    [52]X.G.Peng,L.Manna,W.D.Yang,J.Wickham,E.Scher,A.Kadavanich,A.P.Alivisatos.Shape control ofCdSe nanocrystals.Nature,2000,404:59-61.
    [53]L.Manna,E.C.Scher,A.P.Alivisatos.Synthesis of Soluble and Processable Rod-,Arrow-,Teardrop-,and Tetrapod-Shaped CdSe nanocrystals.J.Am.Chem.Soc.2000,122:12700-12706.
    [54]L.Manna,E.C.Scher,A.P.Alivisatos.Shape control of colloidal semiconductor nanocrystals.J.Clus.Sci.2002,13:521-532.
    [55]T.Trindade,P.O'Brien.A single source approach to the synthesis of CdSe nanocrystallites.Adv.Mater.1996,8:161-163.
    [56]T.Trindade,P.O'Brien,P,X.Zhang.Synthesis of CdS and CdSe Nanocrystallites Using a Novel Single-Molecule Precursors Approach.Chem.Mater.1997,9:523-530.
    [57]M.Green,P.O'Brien.Recent advances in the preparation of semiconductors as isolated nanometric particles:new routes to quantum dots.Chem Commun.1999:2235-2241.
    [58]N.Pradhan,S.Efrima.Single-Precursor,One-Pot Versatile Synthesis under near Ambient Conditions of Tunable,Single and Dual Band Fluorescing Metal Sulfide Nanoparticles.J.Am.Chem.Soc.2003,125:2050-2051.
    [59]X.G.Peng.Green Chemical Approaches toward High-Quality Semiconductor Nanocrystals. Chem.Eur.2002,8:334-339.
    [60]Z.A.Peng,X.GPeng.Synthesis of High Quality Cadmium Chalcogenides Semiconductor Nanocrystals using CdO as Precursor.J.Am.Chem.Soc.2001,123:123-124.
    [61]L.Qu,A.Peng,X.Peng.Alternative Routes toward High Quality CdSe Nanocrystals.Nano.Lett 2001,1:333-337.
    [62]W.Yu,X.Peng.Formation of High Quality CdS and Other Ⅱ-Ⅵ Semiconductor Nanocrystals in Non-Coordinating Solvent:Tunable Reactivity of Monomers.Angew.Chem.Int.Ed.2002,41:2368-2371.
    [63]X.G.Peng.Mechanisms of Shape Control and Shape Evolution of Colloidal Nanocrystals.Adv.Mater.,2003,15:459-463.
    [64]Z.A.Peng,X.G.Peng.Nearly Monodisperse and Shape-Controlled CdSe Nanocrystals via Alternative Routes:Nucleation and Growth.J.Am.Chem.Soc.2002,124:3343-3353.
    [65]Z.A.Peng,X.G.Peng.Mechanisms of shape evolution of CdSe nanocrystals.J.Am.Chem.Soc.2001,123:1389-1395.
    [66]X.Michalet,F.F.Pinaud,L.A.Bentolila,J.M.Tsay,S.Doose,J.J.Li,GSundaresan,AM.Wu,S.S.Gambhir,S.Weiss.Quantum dots for live cells,in vivo imaging,and diagnostics.Science,2005,307:538-544.
    [67]T.Nann.Phase-transfer of CdSe/ZnS quantum dots using amphophilic hyperbranched polyethylenimine.Chem.Commun.2005:1735-1736.
    [68]N.Gaponik,D.V.Talapin,A.L.Rogach,K.Hoppe,E.V.Shevchenko,A.Kornowski,A.Eychm(u|¨)ller,H.Weller.Thiol-Capping of CdTe Nanocrystals:An Alternative to Organometallic Synthetic Routes.J.Phys.Chem.B.2002,106:7177-7185.
    [69]U.Resch,U,H.Weller,A.Henglein.Photochemistry and radiation chemistry of colloidal semiconductors.33.Chemical changes and fluorescence in CdTe and ZnTe.Langmuir.1989,5:1015-1020.
    [70]T.Rajh,O.I.Micic,A.J.Nozik.Synthesis and characterization of surface-modified colloidal cadmium telluride quantum dots.J.Phys.Chem.1993,97:11999-12003.
    [71]M.YGao,S.Kirstein,H.M(o|¨)hwald,A.L.Rogach,A.Kornowski,A.Eychmuller,H.Weller.Strongly Photoluminescent CdTe Nanocrystals by Proper Surface Modification J.Phys.Chem.B.1998,102:8360-8363.
    [72]H.Zhang,Z.Zhou,B.Yang,M.Y.Gao.The Influence of Carboxyl Groups on the Photoluminescence of Mercaptocarboxylic Acid-Stabilized CdTe Nanoparticles.J.Phys.Chem.B,2003,107:8-13.
    [73]A.L.Rogach,A.Kornowski,M.Y.Gao,A.Eychmuller,H.Weller.Synthesis and characterization of a size series of extremely small thiol-stabilized CdSe nanocrystals.J.Phys.Chem.B.1999,103:3065-3069.
    [74]Y.G.Zheng,Z.C.Yang,J.Y.Ying.Aqueous Synthesis of Glutathione-Capped ZnSe and Zn_(1-x)Cd_xSe Alloyed Quantum Dots.Adv.Mater 2007,19:1475-1479.
    [75]X.F.Chen,J.L.Hutchison,P.J.Dobson,G.Wakefield.A one-step aqueous synthetic route to extremely small CdSe nanoparticles.J.Collo.Inter.Sci.2008,319:140-143.
    [76]X.S.Zhao,I.Gorelikov,S.Musikhin,GCauchi,V.Sukhovatkin,E.H.Sargent,E.Kumacheva.Synthesis and Optical Properties of Thiol-Stabilized PbS Nanocrystals.Langmuir,2005,21:1086-1090.
    [77]N.Gaponik,D.V.Talapin,A.L.Rogach,K..Hoppe,E.V.Shevchenko,A.K-ornowski,A.Eychmuller,H.Weller.Thiol-Capping of CdTe Nanocrystals:An Alternative to Organometallic Synthetic Routes.J.Phys.Chem.B 2002,106:7177-7185.
    [78]A.Shavel,N.Gaponik,A.Eychmuller Efficient UV-Blue Photoluminescencing Thiol-Stabilized Water-Soluble Alloyed ZnSe(S)Nanocrystals.J.Phys.Chem.B.2004,108:5905-5908.
    [79]F.C.Liu,T.L.Cheng,C.C.Shen,W.L.Tseng,M.Y.Chiang.Synthesis of Cysteine-capped Zn_xCd_(1-x)Se Alloyed Quantum Dots Emitting in the Blue-Green Spectral Range.Langumir,2008,24:2162-2167.
    [80]Y.Wang,Y.B.Hou,A.W.Tang,B.Feng,Y.Li,J Liu,F.Teng.Synthesis and optical properties of composition-tunable and water-soluble Zn_xCd_(1-x)Te alloyed nanocrystals.J.Crystal.Growth 2007,308:19-25..
    [81]B.Tang,F.Yang,Y.Lin,L.H.Zhuo,J.C.Ge,L.H.Cao.Synthesis and characterization of wavelength-tunable,water-soluble and near-infrared-emitting CdHgTe nanorods.Chem.Mater.2007,19:1212-1214.
    [82]W.Y.Mao,J.Guo,W.L.Yang,C.C.Wang,J.He,J.Y.Chen.Synthesis of high-quality near-infraredemitting CdTeS alloyed quantum dots via the hydrothermal method.Nanotechnology,2007,18:485611(1-7).
    [83]W.R.Algar,U.J.Krull.Luminescence and Stability of Aqueous Thioakkyl Acid Capped CdSe/ZnS Quantum Dots Correlated to Ligand Ionization.ChemPhysChem.2007,8:561-568.
    [84]Z.YGu,L.Zou,Z.Fang,W.H.Zhu,X.H.Zhong.One-pot synthesis of highly luminescent CdTe/CdS core/shell nanocrystals in aqueous phase.Nanotechnology,2008,19:135604(1-7).
    [85]M.T.Harrison,S.V.Kershaw,A.L.Rogach,A.Kornowski,A.Eychmuller,H.Weller.Wet Chemical Synthesis of Highly Luminescent HgTe/CdS Core/Shell Nanocrystals.Adv.Mater.2000,12:123-125.
    [86]Y.He,L.M.Sai,H.T.Lu,W.Y.Lai,Q.L.Fan,L.H.Wang,W.Huang.Microwave-Assisted Synthesis of Water-Dispersed CdTe Nanocrystals with High Luminescent Efficiency and Narrow Size Distribution.Chem.Mater.2007,19:359-365.
    [87]H.F.Qian,X.Qiu,L.Li,J.C.Ren.Microwave-Assisted Aqueous Synthesis:A Rapid Approach to Prepare Highly Luminescent ZnSe(S)Alloyed Quantum Dots.J Phys.Chem B.2006,110:9034-9040
    [88]C.L.Wang,H.Zhang,J.H.Zhang,M.J.Li,H.Z.Sun,B.Yang.Application of Ultrasonic Irradiation in Aqueous Synthesis of Highly Fluorescent CdTe/CdS Core-Shell Nanocrystals.J.Phys.Chem.C.2007,111:2465-2469.
    [89]S.J.Lee,K.N.Kim,P.K.Bae,J.Chang,Y-R.Kim,J.K.Park.Sonication treatment of CdTe/CdS semiconductor nanocrystals and their bio-application.Chem.Commun.2008:5574-5576.
    [90]L.Li,H.F.Qian,J.C.Ren.Rapid synthesis of highly luminescent CdTe nanocrystals in the aqueous phase by microwave irradiation with controllable temperature.Chem Commun.2005:528-530.
    [91]Y.He,H.T.Lu,L.M.Sai,Y.Y.Su,M.Hu,C.H.Fan,W.Huang,L.H.Wang.Microwave Synthesis of Water-Dispersed CdTe/CdS/ZnS Core-Shell-Shell Quantum Dots with Excellent Photostability and Biocompatibility.Adv.Mater.2008,20:3416-3421.
    [92]Y.Jiang,Y.J.Zhu.Microwave-assisted Synthesis of Nanocrystalline Metal Sulfides Using an Ionic Liquid.Chem.Lett.2004,33:1390-1391.
    [93]Y.Zhao,X.H.Liao,J.M.Hong,J.J.Zhu.Synthesis of lead sulfide nanocrystals via microwave and sonochemical methods.Mater.Chem.Phys.2004,87:149-153.
    [94]Y.He,H.T.Lu,L.M.Sai,W.Y.Lai,Q.L.Fan,L.H.Wang,W.Huang.Microwave-Assisted Growth and Characterization of Water-Dispersed CdTe/CdS Core-Shell Nanocrystals with High Photoluminescence.J.Phys.Chem.B.2006,110:13370-13374.
    [95]Y.D.Li,Y.Ding,Y.T.Qian,Y.Zhang,L.Yang.A Solvothermal Elemental Reaction To Produce Nanocrystalline ZnSe.Inorg.Chem.1998,37:2844-2845.
    [96]K.B.Tang,Y.T.Qian,J.H.Zeng,X.G.Yang Solvothermal Route to Semiconductor Nanowires.Adv.Mater.2003,15:448-451.
    [97]Y.D.Li,Z.Y.Wang,Y.Ding.Room Temperature Synthesis of Metal Chalcogenides in Ethylenediamine.Inorg.Chem.,1999,38:4737-4740
    [98]Q.Peng,Y.J.Dong,Z.X.Deng,X.M.Sun,Y.D.Li.Low-Temperature Elemental-Direct-Reaction Route to Ⅱ-Ⅵ Semiconductor Nanocrystalline ZnSe and CdSe Inorg.Chem.,2001,40:3840-3841.
    [99]J.Lu,S.Wei,W.C.Yu,H.B.Zhang,Y.T.Qian.Hydrothermal Route to InAs Semiconductor Nanocrystals.Inorg.Chem.2004,43:4543-4545
    [100]D.B.Yu,D.B.Wang,Y.T.Qian.Synthesis of closed PbS nanowires with regular geometric morphologies.J.Mater Chem,2002,12:403-405.
    [101]Y.D.Li,H.WLiao,Y.Ding,YFan,Y.Zhang,Y.T.Qian.Solvothermal Elemental Direct Reaction to CdE(E = S,Se,Te)Semiconductor Nanorod Inorg.Chem.1999,38:1382-1387.
    [102]H.Zhang,L.P.Wang,H.M.Xiong,L.H.Hu,B.Yang,W.Li.Hydrothermal synthesis to high quality CdTe nanocrystals.Adv.Mater.2003,15:1712-1715.
    [103]C.W.Tang,S.A.VanSlyke.Organic electroluminescent diodes.Appl.Phys.Lett,1987,51:913-915.
    [104]J.H.Hurroughes,D.D.C.Braddley,A.R.Brown,R.N.Marks,K.Mackay,R.H.Friend,P.L.Burns,A.B.Holmes.Light-emitting diodes based on conjugated polymers.Nature.1990,347:539-540.
    [105]G.Gustafsson,Y.Cao,G.M.Treacy,F.Klavetter,N.Colaneri,A.J.Heeger.Flexible lightemitting diodes made from soluble conducting polymers.Nature.1992,357:477-479.
    [106]M.A.Baldo,D.F.Obrien.Very High-Efficient Phosphorescent Emission from Organic Electroluminescent Devices.Nature.1998,385.151-154.
    [107]A.D.Muller,A.Falcou,N.Reckefuss,M.Rajahn,V.Wiederhirn,PRudati,H.Frohne,O.Nuyken,H.Becker,K.Meerholz.Multi-colour organic light-emitting displays by solution processing.Nature.2003,421:829-833.
    [108]YS.Park,J-W.Kang,D.M.Kang,J-W.Park,Y-H.Kim,S-K.Kwon,J-J.Kim.Efficient,Color Stable White Organic Light-Emitting Diode Based on High Energy Level Yellowish-Green Dopants.Adv.Mater.2008,20:1957-1961.
    [109]E.Holder,N.Tessler,A.L.Rogach.Hybrid nanocomposite materials with organic and inorganic components for opto-electronic devices.J.Mater.Chem.2008,18:1064-1078.
    [110]B.O.Dabbousi,M.GBawendi,O.Onitsuka and M.F.Rubner.Electrolumiescence from CdSe quantum-dot/polymer composites.Appl.Phys.Lett.1995,66:1316-1318.
    [111]H.Mattoussi,L.H.Radzilowski,B.O.Dabbousi,E.L.Thomas,M.G.Bawendi,M.F.Rubner.Electroluminescence from heterostructures of poly(phenylene vinylene)and inorganic CdSe nanocrystals.J.Appl.Phys.1998,83:7965-7974.
    [112]Y.Yang,S.H.Xue,S.Y.Liu,J.M.Huang,J.C.Shen.Fabrication and characteristics of ZnS nanocrystals/polymer composite doped with tetraphenylbnzidine single layer structure light-emitting diode.Appl.Phys.Lett.1996,69:377-379.
    [113]M.C Schlamp,X.GPeng,A.P.Alivisatos.Improved efficiencies in light emitting diodes made with CdSe(CdS)core/shell type nanocrystals and a semiconducting polymer.J.Appl.Phys.1997,82:5837-5842.
    [114]M.Y.Gao,B.Richter,S.Kirstin.White-light Electroluminescence from Self-Assembled Q-CdSe/PPV Multilayer Structures.Adv.Mater.1997,9:802-805.
    [115]S.Coe-Sullivan,W-K.Woo,J.S.Steckel,M.Bawendi,V.Bulovic.Tuning the performance of hybrid organic/inorganic quantum dot light-emitting devices.Org.Electron.2003,4:123-130.
    [116]S.Chaudhary,M.Ozkan,W.C.W.Chan.Trilayer hybrid polymer-quantum dot light-emitting diodes.Appl.Phys.Lett.2004,84:2925-2927.
    [117]S.Coe-Sullivan,J.S.Steckel,W-K..Woo,M.GBawendi,V.Bulovic.Large-area ordered quantumdot monolayers via phase separation during spin-coating.Adv.Func.Mater.2005,15:1117-1124.
    [118]M.Peres,L.C.Costa,A.Neves,M.J.Soares,T.Monteiro,A.C.Esteves,A.Barros-Timmons,T.Trindade,A.Kholkin,E.Alves.A green-emitting CdSe/poly(butylacrylate)nanocomposite.Nanotechnology.2005,16:1969-1973.
    [119]J.S.Steckel,J.P.Zimmer,S.Coe-Sullivan,N.E.Stott,VBulovie,M.GBawendi.Blue Luminescence from(CdS)ZnS Core-shell Nanocrystals.Angew.Chem.Int.Ed.2004,43:2154-2158.
    [120]Z.Tan,F.Zhang,T.Zhu,J.Xu,A.Y.Wang,J.D.Dixon,L.Li,Q.Zhang,S.E.Mohney,J.Ruzyllo.Bright and color-saturated emission from blue light-emitting diodes based on solution-processed colloidal nanocrystal quantum dots.Nano Lett.2007,7:3803-3807.
    [121]M.Y.Gao,J.Q.Sun,E.Dulkeith,N.Gaponik,U.Lemmer,J.Feldmann.Lateral Patterning of CdTe Nanocrystal Films by the Electric Field Directed Layer-by-Layer Assembly Method.Langmuir 2002,18:4098-4102.
    [122]N.Tessler,V.Medvedev,M.Kazes,S.H.Kan,U.Banin.Efficient Near-Infrared Polymer Nanocrystal Light-Emitting Diodes.Science,2002,295:1506-1508.
    [123]M.A.Hines,T.W.F.Chang,M.Tzolov.Size-tunable infrared(1000-1600 nm)Electroluminescence from PbS quantum-dot nanocrystals in a semiconducting polymer.Appl.Phys.Lett,2003,82:2895-2897.
    [124]T-W.F.Chang,S.Musikhin,L.Bakueva,L.Levina,M.A.Hines,P.WCyr,E.H.Sargent.Efficient excitation transfer from polymer to nanocrystals.Appl.Phys.Lett.,2004,84:4295-4297.
    [125]G.Konstantatos,C.Huang,L.Levina,Z.Lu,E.H.Sargent.Efficient Infrared Electroluminescent Devices Using Solution-Processed Colloidal Quantum DotsAdv.Funct.Mater.,2005,15:1865-1869.
    [126]H.Mattoussi,L.H.Radzilowski,B.O.Dabbousi,D.E.Fogg,R.R.Schrock,E.L.Thomas,M.F.Rubner.Composite thin films of CdSe nanocrystals and a surface passivating/electron transporting blockcopolymer:Correlations between film microstructure by transmission electron microscopy and electroluminescence.J.Appl.Phys.1999,86:4390-4399.
    [127]J.L.Zhao,J.A.Bardecker,A.M.Munro,M.S.Liu,Y.H.Niu,I.K.Ding,J.D.Luo,B.Q.Chen,A.K-Y Jen,D.S.Ginger.Efficient CdSe/CdS Quantum Dot Light-Emitting Diodes Using a Thermally Polymerized Hole Transport Layer.Nano Lett.2006,6:463-467.
    [128]Q.J.Sun,Y.A.Wang,L.S.Li,D.Y.Wang,T.Zhu,J.Xu,C.H.Yang,Y.F.Li.Bright,multicoloured light-emitting diodes based on quantum dots.Nature.Photonics.2007,1:717-722.
    [129]J.H.Park,J.Y.Kim,B.D.Chin,YC.Kim,J.K.Kim,O.O.Park.White emission from polymer/quantum dot ternary nanocomposites by incomplete energy transfer.Nanotechnology,2004,15:1217-1220.
    [130]Y.Xuan,D.C.Pan,N.N.Zhao,X.L.Ji,D.G.Ma.White electroluminescence from a Poly(Nvinylcarbazole)layer doped with CdSe/CdS core-shell quantum dots.Nanotechnology,2006,17:4966-4969.
    [131]Y.Q.Li,A.Rizzo,M.Mazzeo,L.Carbone,L.Manna,R.Cingolani,GGigli.White organic lightemitting devices with CdSe/ZnS quantum dots as a red emitter.J.Appl.Phys.2005,97:113501(1-4).
    [132]J.H.Ahn,C.Bartoni,S.Dunn,C.S.Wang,D.V.Talapin,N.Gaponik,A.Eychmuller,Y.L.Hua,M.B.Bryce,M.C.Petty.White organic light-emitting devices incorporating nanoparticles of Ⅱ-Ⅵ semiconductors.Nanotechnology,2007,18:335202(1-7).
    [133]A.Mews,J.L.Zhao.Light-emitting diodes-A bright outlook for quantum dots.Nature Photonics.2007,1:683-684.
    [134]D.M.Chapin,C.S.Fuller,G L.Pearson.A new silicon p-n junction photoclell for converting solar radiation into electrical power,J.Appl.Phys.1954,25:676-677.
    [135]D.Kearns,M.Calvin.Photovoltaic effect and photoconductivity in laminated organic systems.J.Chem.Phys.1958,29:950-951.
    [136]C.W.Tang.2-layer organic photovoltaic cell.Appl.Phys.Lett.,1986,48:183-185.
    [137]N.S.Sariciftci,L.Smilowitz,A.J.Heeger,F.Wudl.Photoinduced Electron Transfer from a conducting polymer to buckminsterfullerene.Science,1992,258:1474-1476.
    [138]G.Yu,J.Gao,J.C.Hummelen,F.Wudl,A.J.Heeger.Polymer Photovoltaic Cells:Enhanced Efficiencies via a Network of Internal Donor-Acceptor Heterojunctions.Science.1995,270:1789-1791.
    [139]W.Ma,C.Yang,X.Gong,K.Lee,A.J.Heeger.Thermally Stable,Efficient Polymer Solar Cells with Nanoscale Control of the Interpenetrting Network Morphology.Adv.Func.Mater.2005,15:1617-1622.
    [140]M.Reyes-Reyes,K.Kim,D.L.Carroll.High-efficiency photovoltaic devices based on annealed poly(3-hexylthiophene)and l-(3-methoxycarbonyl)-propyl-l-phenyl-(6,6)C_(61)blends.Appl.Phys.Lett.2005,87:083506(1-3).
    [141]P.Peumans,V.Bulovic,S.R.Forrest.Efficient photon harvesting at high optical intensities in ultrathin organic double-heterostructure photovoltaic diodes.Appl.Phys.Lett.2000,76:2650-2652.
    [142]P.Peumans,S.R.Forrest.Very-high-efficiency double-heterostructure copper phthalocyanine/C_(60)photovoltaic cells.Appl.Phys.Lett.2001,79:126-128.
    [143]J.GXue,S.Uchida,B.P.Rand,S.R.Forrest.4.2 % efficient organic photovoltaic cells with low series resistances.Appl.Phys.Lett.2004,84:3013-3015.
    [144]J.Xue,B.P.Rand,S.Uchida,S.R.Forrest.A hybrid planar-mixed molecular heterojunction photovoltaic cell.Adv.Mater.2005,17:66-71.
    [145]J.Xue,B.P.Rand,S.Uchida,S.R.Forrest.Asymmetric tandem organic photovoltaic cells with hybrid planar-mixed molecular heterojunctions.Appl.Phys.Lett.2004,85:5757-5759.
    [146]S.Gunes,H.Neugebauer,N.S.Sariciftci.Conjugated Polymer-Based Organic Solar Cells.Chem Rev.2007,107:1324-1338.
    [147]於黄忠,彭俊彪.共混型聚合物太阳能电池原理及研究进展.化学进展,2007,19(11):1689.1694.
    [148]H.Spanggaard,F.C.Krebs.A brief history of the development of organic and polymeric photovoltaics.Sol.Energy Mater.Sol.Cells.2004,83:125-146.
    [149]封伟,王晓工.有机光伏材料与器件研究的新进展.化学通报,2003,5:291-300.
    [150]J.G.Xue.Pure and Mixed Organic Thin Films and Heterojunctions for Optoelectronic Applications[PhD Degree Dissertation].Princeton:Princeton University.2005:213-217.
    [151]B.A.Gregg,M.C.Harma.Comparing organic to inorganic photovoltaic cells:Theory,experiment,and simulation.J.Appl.Phys 2003,93:3605-3614.
    [152]C.J.Brabec,A.Cravino,D.Meissner,N.S.Sariciftci,T.Fromherz,M.T.Rispens,L.Sanchez,J.C.Hummelen.Origin of the Open Circuit Voltage of Plastic Solar Cells.Adv.Func.Mater.2001,11:374-380.
    [153]C.J.Brabec,S.E.Shaheen,C.Winder,N.S.Saricifici,P.Denk.Effect of LiF/metal electrodes on the performance of plastic solar cells,Appl.Phys.Lett.,2002,80:1288-1290.
    [154]B.Q.Sun,E.Marx,N.C.Greenham.Photovoltaic Devices using Blends of Branched CdSe Nanoparticles and Conjugated Polymers.Nano.Lett.2003,3:961-963.
    [155]J.S.Liu,T.Tanaka,K.Sivula,A.P.Alivisatos,J.M.Frechet.Employing End-Functional Polythiophene to Control the Morphology Nanocrystal-Polymer Composites in Hybrid Solar Cells.J.Am Chem.Soc.2004,126:6550-6551.
    [156]I.Gur,N.A.Fromer,C-P.Chen,A.G.Kanaras,A.P.Alivisatos.Hybrid Solar Cells with Prescribed Nanoscale Morphologies Based on Hyperbrancbed Semiconductor Nanocrystals.Nano.Lett.2007,7:409-414.
    [157]Y.Kang,D.Kim.Well-aligned CdS nanorod/conjugated polymer solar cells.Sol.Energy Mater.Sol.Cells.2006,90:166-174.
    [158]H.J.Snaith,G.L.Whiting,B.Q.Sun,N.C.Greenham,W.T.SHuck,R.H.Friend.Self-Organization of Nanocrystais in Polymer Brushes.Application in Heterojunction Photovoltaic Diodes.Nano.Lett.2005,5:1653-1657.
    [159]L.L.Han,D.H.Qin,X.Jiang,Y.S.Liu,L.Wang,J.W.Chen,Y.Cao.Synthesis of high quality zinc-blende CdSe nanocrystals and their application in hybrid solar cells.Nanotechnology.2006,17:4736-4742.
    [160]B.Q.Sun,H.J.Snaith,AS.Dhoot,S.Westenhoff,N.C.Greenham.Vertically segregated hybrid blends for photovoltaic devices with improved efficiency.J.Appl.Phys.2005,97:014914(1-6).
    [161]B.Q.Sun,N.C.Greenham.Improved efficiency of photovoltaics based on CdSe nanorods and poly(3-hexylthiophene) nanofibers.Phys.Chem.Chem.Phys.2006,8:35557-3560.
    [162]Y.Zhou,Y.C.Li,H.Z.Zhong,J.H.Hou,Y.Q.Ding,C.H.Yang,Y.F.Li.Hybrid nanocrystal/polymer solar cells based on tetrapod-shaped CdSe_xTe_(1-x) nanocrystals.Nanotechnology.2006,17:4041-4047.
    [163]Y.Kang,N-G.Park,D.Kim.Hybrid solar cells with vertically aligned CdTe nanorods and a conjugated polymer.Appl.Phys.Lett.2005,86:113101(1-3).
    [164]S.A.McDonald,G.Konstantatos,S.G.Zhang,P.W.Cyr,E.J.D.Klem,L.Levina,E.H.Sargent.Solution-processed PbS quqntum dot infrared photodetectors and photovoltaics.Nat.Mater.2005,4:138-142.
    [165]D.H.Cui,J.Xu,T.Zhu,G.Paradee,S.Ashok,M.Gerhold.Harvest of near infrared light in PbSe nanocrystal-polymer hybrid photovoltaic cells.Appl.Phys.Lett.,2006,88:183111(1-3).
    [166]A.Watt,T.Eichmann,H.Rubinsztein-Dunlop and P.Meredith.Carrier transport in PbS nanocrystal conducting polymer composites.Appl.Phys.Lett.,2005,87:253109(1-3).
    [167]A.Maria,P.W.Cyr,E.J.D.Klem,L.Levina,E.H.Sargent.Solution-processed infrared photovoltaic devices with >10% monochromatic internal quantum efficiency Appl.Phys.Lett.2005,87:213112(1-3).
    [168]Z.J.Wang,S.C.Qu,X.B.Zeng,C.S.Zhang,M.J.Shi,F.R.Tan,Z.G.Wang,J.P.Liu,Y.B.Hou,F.Teng,Z.H.Feng.Synthesis of MDMO-PPV capped PbS quantum dots and their application to solar cells.Polymer,2008,49:4647-4651.
    [169]W.J.E.Beek,M.M.Wienk.R.A.J.Janssen.Efficient hybrid solar cells from zinc oxide nanoparticles and a conjugated polymer.Adv.Mater.2004,16:1009-1013.
    [170]D.J.D.Moet,L.J.A.Koster,B de Boer,P.W.M.Blom.Hybrid Polymer Solar Cells from Highly Reactive Diethylzinc:MDMO-PPV versus P3HT.Chem.Mater.2007,19:5856-5861.
    [171]I.Haeldermans,K.Vandewal,W.D.Oosterbaan,A.Gadisa,J.D'Haen,M.K.Van Bael,J.V.Manca,J.Mullens.Ground-state charge-transfer complex formation in hybrid poly(3-hexylthiophene):titanium dioxide solar cells.Appl.Phys.Lett.2008,93:223302(1-3).
    [172]C Dridi,V Barlier,H Chaabane,J Davenas,H BenOuada.Investigation of exciton photodissociation,charge transport and photovoltaic response of poly(N-vinyl carbazole):TiO2 nanocomposites for solar cell applications.Nanotechnology,2008,19:375201(1-11).
    [173]I.Gur,N.A.Fromer,M.L.Geier,A.PAlivisatos.Air-Stable All-inorganic Nanocrystals Solar Cells Processed from Solution.Science,2005,310:462-465.
    [174]Y.Wu,C.Wadia,W.L.Ma,B.Sadtler,A.PAlivisatos.Synthesis and Photovoltaic Application of Copper(I)Sulfide Nanocrystals.Nano.Lett.2008,8:2551-2555.
    [175]Z.I.Alferov.Novel Lecture:The double heterostructure concept and its applications in physics,electronics,and technology.Reviews of Modern Physic.2001,73:767-782.
    [176]H.Z.Zhong,Y.Zhou,Y.Yang,C.H Yang,YF.Li.Synthesis of Type Ⅱ CdTe-CdSe Nanocrystal Heterostructured Multiple-Branched Rods and Their Photovoltaic Applications.J.Phys.Chem.C.2007,111:6538-6543.
    [177]P.D.Cozzoli,T.Pellegrino,L.Manna.Synthesis,properties and perspectives of hybrid nanocrystal structures.Chem.Soc.Rev.2006,35:1195-1208.
    [178]D.J.Milliron,S.M.Hughes,Y.Cui.L.Manna,J.B.Li,L.W.Wang,A.PAlivisatos.Colloidal nanocrystal heterostructures with linear and branched topology.Nature.2004,430.190-195.
    [179]A.J.Mieszawska,RJalilian,G.U.Sumanasekera,F.P.Zamborini.The Synthesis and Fabrication of One-Dimensional Nanoscale Heterojunctions.Small.3:722-756.
    [180]M.S.Gudiksen,L.J.Lauhon,J.Wang,D.C.Smith,C.M.Lieber.Growth of nanowire superlattice structures for nanoscale photonics and electronics.Nature,2002,415:617-620.
    [181]M.T.Bjork,B.J.Ohlsson,T.Sass,A.I.Persson,C.Thelander.M.H.Magnusson,K.Deppert,L.R.Wallenberg,L.Samuelson.One-dimensional Steeplechase for Electrons Realized.Nano Lett.2002,2:87-89.
    [182]K.A.Dick,K.Deppert,M.W.Larsson,T Martensson,W.Seifert,L.R.Wallenberg,L.Samuelson. Synthesis of branched 'nanotrees' by controlled seeding of multiple branching events.Nature.Mater.2004,3:380-384.
    [183]G.Z.Shen,D.Chen,C.J.Lee.Hierarchieal saw-like ZnO nanobelt/ZnS nanowire heterostructures induced by polar surfaces.J.Phys.Chem.B.2006,110:15689-15693.
    [184]T.J.Trentler,K.M.Hickman,S.C.Goel,A.M.Viano,P.C.Gibbons,W.E.Buhro.Solution-liquid-solid growth of crystalline III-V semiconductors-An analogy to vapor-liquid-solid growth.Science.1995,270:1791-1794.
    [185]韩伟。磁性及半导体硫化物纳米材料的合成与研究[博士学位论文],北京:中国科学院化学研究所,2007:7-21.
    [186]S.Kudera,L.Carbone,M.F.Casula,R.Cingolani,A.Falqui,E.Snoeck,W.J.Parak,L.Manna.Selective Growth of PbSe on One or Both Tips of Colloidal Semiconductor Nanorods.Nano Letters 2005,5:445-449.
    [187]T.Mokari,C.G..Sztrum,A.Salant,E.Rabani,U.Banin.Formation of asymmetric one-sided metal-tipped semiconductor nanocrystal dots and rods.Nat.Mater.2005,4:855-863.
    [188]H.T.Liu,A.P.Alivisatos.Preparation of Asymmetric Nanostructures through Site Selective Modification of Tetrapods.Nano.Lett.2004,4:2397-2401.
    [189]W.G.Becker,A.J.Bard.Photolumineseence and photoinduced oxygen adsorption of colloidal zinc sulfide dispersions.J.Phys.Chem.1983,87:4888-4893.
    [190]R.N.Bhargava,D.Gallagher,X.Hong,A.Nurmikko.Optical properties of manganese-doped nanocrystals of ZnS.Phys.Rev.Lett,1994,72:416-419.
    [191]A.A.Bol,A.Meijerink.Long-lived Mn~(2+) emission in nanocrystalline ZnS:Mn~(2+).Phys.Rev.B.1998,58:R15997-R16000.
    [192]B.A.Smith,J.Z.Zhang,A.Joly,J.Liu.Luminescence decay kinetics of Mn~(2+)-doped ZnS nanoelusters grown in reverse micelles.Phys.Rev.B.2000,62:2021-2028.
    [193]W.Chen,A.G.Joly,J.Z.Zhang.Up-conversion luminescence of Mn~(2+) in ZnS:Mn~(2+) nanoparticles.Phys.Rev.B.2001,64:041202(1-4).
    [194]H.Takahashi,T.lsobe.Photoluminescence Enhancement of ZnS:Mn~(2+) Nanocrystal Phosphors:Comparison of Organic and Inorganic Surface Modifications.Jpn.J.Appl.Phys.2005,44:922-925.
    [195]W.Chen,J.Z.Zhang,A.G.Joly.Optical Properties and Potential Applications of Doped Semiconductor Nanoparticles.J.Nanosci.Nanotech.2004,4:919-947.
    [196]H.Yang,S.Santra,P.H.Holioway.Synthesis and Applications ofMn-Doped II-VI Semiconduc-tor Nanocrystals.J.Nanosci.Nanotech.2005,5:1364-1375.
    [197]N.Pradhan,D.M.Battaglia,Y.C.Liu,X.G.Peng.Efficient,Stable,Small,and Water-Soluble Doped ZnSe Nanocrystal Emitters as Non-Cadmium Biomedical Labels.Nano.Lett.2007,7:312-317.
    [198]N.Pradhan,D.Goorskey,J.Thessing,X.G.Peng.An Alternative of CdSe Nanocrystal Emitters:Pure and Tunable Impurity Emissions in ZnSe Nanocrystals.J.Am.Chem.Soc.2005,127:17586-17587.
    [199]N.Pradhan,X.G.Peng.Efficient and Color-Tunable Mn-Doped ZnSe Nanocrystal Emitters:Control of Optical Performance via Greener Synthetic Chemistry.J.Am Chem.Soc.2007,129:3339-3347.
    [200]S.Santra,H.S.Yang,P.H.Holloway,J.T.Stanley,R.A.Mericle.Synthesis of Water-Dispersible Fluorescent,Radio-Opaque,and Paramagnetic CdS:Mn/ZnS Quantum Dots:A Multifunctional Probe for BioimagingJ.Am.Chem.Soc.2005,127:1656-1657.
    [201]H.Zhang,Z.C.Cui,Y.Wang,K Zhang,X L.Ji,C.L.Lv,B.Yang,M.Y.Gao.From watersoluble CdTe nanocrystals to fluorescent nanocrystal-polymer transparent composites using polymerizable suffactant.Adv.Mater.2003,15:777-780.
    [202]S.M.Liu,H.Q.Guo,Z.H.Zhang,R.Li,W.Chen,Z.G.Wang.Characterization of CdSe and CdSe/CdS core/shell nanoclusters synthesized in aqueous solution.Phys.E.2000,8:174-178.
    [203]Y.J.Yang,B.J.Xiang.Wet synthesis of nearly monodisperse CdSe nanoparticles at room temperature.J.Cryst.Growth2005,284:453-458.
    [204]Y.L.Yan,Y.Li,X.F.Qian,J.Yin,Z.K.Zhu..Preparation and characterization of CdSe nanocrystals via Na_2SO_3-assisted photochemical route.Mater.Sci.EngineerB.2003,103:202-206.
    [205]Y.D.Li,H.W.Liao,Y.Fan,L.Q.Li,Y.T.Qian.A solvothermai synthetic route to CdE(E = S,Se)semiconductor nanocrystalline.Mater.Chem.Phys.1999,58:87-89.
    [206]H.Zhang,C.Wang,M.Li,X.Ji,J.Zhang,B.Yang.Fluorescent nanocrystai-polymer composites from aqueous nanocrystals:methods without ligand exchange.Chem.Mater.,2005,17:4783-4788.
    [207]W.W.Yu,Y.A.Wang,X.G.Peng.Formation and Stability of Size-,Shape-,and Structure-Controlled CdTe Nanocrystals:Ligand Effects on Monomers and Nanocrystals.Chem.Mater.2003,15:4300-4308.
    [208]H.Y.Byun,I.J.Chang,,H.K.Shim C.Y.Kim.The effects ofalkyl side-chain length and shape of polyfluorenes on the photoluminescence spectra and the fluorescence lifetimes of polyfluorene blends with poly(n-vinylcarbazole).Chem.Phys.Lett.2004,393:197-203.
    [209]J.X.Cheng,S.Wang,X.Y.Li,Y.Yan,S.Yang.Fast interfacial charge separation in chemically hybridized CdS/PVK nanocomposites studied by photoluminescence and photoconductivity measurements.Chem.Phys.Lett.2001,333:375-380.
    [210]H.Z.Sun,J.H.Zhang,H.Zhang,Y.Xuan,C.L.Wang,MJ.Li,Y.Tian,Y.Ning,D.G.Ma,B.Yang,Z.Y.Wang.Pure white-light emission of nanocrystal-polymer composites.ChemPhysChem,2006,7:2492-2496.
    [211]S.Coe-Sullivan,J.S.Steckel,W.-KWoo,M.G.Bawendi,V.Bulovi(?).Large-Area Ordered Quantum-Dot Monolayers via Phase Separation During Spin-casting.Adv.Funct.Mater.2005,15:1117-1124.
    [212]H.Mattoussi,L.H.Radzilowski,B.O.Dabbousi,E L.Thomas,M.G Bawendi,M F.Rubner.Electroluminescence from heterostructures of poly(phenylene vinylene) and inorganic CdSe nanocrystals.J.Appl.Phys.,1998,83:7965-7974.
    [213]Y.M.Wang,F.Teng,Z.Xu,Y.B.Hou,Y.S.Wang,X.R.Xu,.Enhancement of electroplex emission by using multi-layer device structure.Appl.Surf.Sci.2005,243:355-359.
    [214]Y.M.Wang,F.Teng,Z.Xu,Y.B.Hou,S.Y.Yang,L.Qian,T.Zhang,D.A.Liu.White emission via electroplex formation at poly(N-vinylcarbazole)/2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline interface.Appl.Surf.Sci.2004,236:251-255..
    [215]H.Lee,S.W.Yoon,F.J.Kim,J.Park.In-Situ Growth of Copper Sulfide Nanocrystals on Multiwalled Carbon Nanotubes and Their Application as Novel Solar Cell and Amperometric Glucose Sensor Materials.Nano.Lett.2007,7:778-784.
    [216]D.K.Nagesha,X.R.Liang,A.A.Mamedov,G.Gainer,M.A.Eastman,M.Giersig,J.J.Song,T.Ni, N.A.Kotov.In_2S_3 Nanocolloids with Excitonic Emission:In_2S_3 vs CdS Comparative Study of Optical and Structural Characteristics.J.Phys.Chem.B.2001,105:7490-7498.
    [217]E.W.Berg,J.E.Strassner.Paper Chromatography of Cobalt(Ⅲ),Copper(Ⅱ),and Nickel(Ⅱ)Acetylacetonates.Anal.Chem.1955,27:127-129.
    [218]T.Kuzuya,Y.Tai,S.Yamamuro,K.Sumiyama.Synthesis of Copper and Zinc Sulfide nanocrystals via Thermolysis of the Polymetallic Thiolate Cage.Sci.Tech.Adv.Mater.2005,6:84-90.
    [219]T.Kuzuya,S.Yamamuro,T.Hihara,K.Sumiyama.Water-free Solution Synthesis of Monodisperse Cu_2S Nanocrystals Chem.Lett.2004,33:352-353.
    [220]T.Kuzuya,Y.Tai,S.Yamamuro,T.Hihara,D.L.Peng,K.Sumiyama.Synthesis of Zinc Sulfide Nanocrystals and Fabrication of Nanocrystal Superlattice.Mater.Trans.2004,45:2650-2652.
    [221]M.Meyer,A.M.Albrecht-Gary,C.O.Dietrich-Buchecker,J.P.Sauvage.π-π Stacking-Induced Cooperativity in Copper(Ⅰ)Complexes with Phenanthroline Ligands.Inorg.Chem.1999,38:2279-2287.
    [222]L.L.Han,D.H.Qin,X.Jiang,Y.S.Liu,L.Wang,J.W.Chen,Y.Cao.Synthesis of high quality zinc-blende CdSe nanocrystals and their application in hybrid solar cells.Nanotechnology,2006,17:4736-4742.
    [223]Y.Yasaki,N.Sonoyama,T.Sakata.Semiconductor sensitization of colloidal In_2S_3 on wide gap semiconductors.J.Electroanal.Chem.1999,469:116-122.
    [224]S.J.Xu,S.J.Chua,B.Liu,L.M.Gan,C.H.Chew,G.Q.Xu.Luminescence characteristics of impurities-activated ZnS nanocrystals prepared in microemulsion with hydrothermal treatment.Appl,Phys.Lett.1998,73:478-480.
    [225]J.F.Suyver,T.van der Beek,S.F.Wuister,J.J.Kelly,A.Meijerink.Luminescence of Nanocrystalline ZnSe:Cu.Appl.Phys.Lett.2001,79:4222-4224.
    [226]A.A.Bol,J.Ferwerda,J.A.Bergwerff,A.Meijerink.Luminescence of nanocrystalline ZnS:Cu~(2+).J.Lumin.2002,99:325-334.
    [227]J.M..Huang,Y.Yang,S.H.Xue,B.Yang,S.YLiu,J.C.Shen.Photoluminescence and electroluminescence of ZnS:Cu nanocrystals in polymeric networks.Appl.Phys.Lett.1997,70:2335-2337.
    [228]O.Ehlert,A.Osvet,M.Batentschuk,A.Winnacker,TNann.Synthesis and Spectroscopic Investigations of Cu-and Pb-Doped Colloidal ZnS Nanocrystals.J.Phys.Chem.B.2006,110:23175-23178.
    [229]S.F.Wuister,A.Meijerink.Synthesis and luminescence of CdS quantum dots capped with a silica precursor.J.Lumin,2003,105:35-43.
    [230]S.F.Wuister,A Meijerink.Synthesis and luminescence of(3-mercaptopropyl)-trimethoxy-silane capped CdS quantum dots.J.Lumin,2003,102-103:338-343.
    [231]A.L.Rogach,D.V.Talapin,E.V.Shevchenko,A.Kornowski,M.Haase.Organiczation of Matter on Different Size Scales:Monodisperse Nanocrystals and Their Superlattices.Adv.Func.Mater.2002,12:653-664.
    [232]M.P.Pileni.Self-Assembly of Inorganic Nanocrystals:Fabrication and Collective Intrinsic Properties.Acc.Chem.Res.2007,40:685-693.
    [233]Z.P.Liu,J.B.Liang,D.Xu,J.Lu,Y.T.Qian.A facile chemical route to semiconductor metal sulfide nanocrystal Superlattices.Chem.Commun.2004:2724-2725;
    [234]M.P.Pileni.Nanocrystal Self-Assemblies:Fabrication and Collective Properties.J.Phys.Chem.B.2001,105:3358-3371.
    [235]E.V.Shevchenko,D.V.Talapin,N.A.Kotov,S.O'Brien.C.B.Murray.Structural diversity in binary nanoparticle superlattices.Nature.2006,439:55-59.
    [236]Z.L.Wang.Structural Analysis of Self-Assembling Nanocrystal Superlattices.Adv.Mater.1998,10:13-30.
    [237]Y.Yang,S.M.Liu,K.Kimura.Superlattice Formation from Polydisperse Ag Nanopartiles by a Vapor-Diffusion Method.Angew.Chem.Int.Ed.2006,45:5662-5665.
    [238]M.Yin,S.O'Brien.Synthesis of Monodisperse Nanocrystals of Manganese Oxides.J.Am.Chem.Soc.2003,125:10180-10181.
    [239]M.Chen,J.Kim,J.P.Lu,H.Y.Fan,S.H.Sun.Synthesis of FePt Nanocubes and Their Oriented Self-Assembly.J.Am.Chem.Soc.2006,128:7132-7133.
    [240]Z.Y.Chen,J.Moore,GRadtke,H.Sirringhaus,S.O'Brien.Binary Nanoparticle Superlattices in the Semiconductor-Semiconductor System:CdTe and CdSe.J.Am.Chem.Soc.2007,129:15702-15709.
    [241]J.J.Urban,D.V.Talapin,E.V.Shevchenko,C.B.Murray.Self-Assembly of PbTe Quantum Dots into Nanocrystal Superlattices and Glassy Films.J.Am.Chem.Soc.2006,128:3248-3255.
    [242]D.V.Talapin,E.V.Shevchenko,A.Kornowski,N.Gaponik,M.Haase,A.L.Rogach,H.Weller.A New Approach to Crystallization of CdSe Nanoparticles into Ordered Three-Dimensional Superlattices.Adv.Mater.2001,13:1868-1871.
    [243]G.Budolph,M.C.Henry.The Thermal Decomposition of Zinc Acetylacetonate Hydrate.Inorg.Chem.1964,3:1317-1318.
    [244]R.W.Meulenberg,T.van Buuren,K.M.Hanif,T.M.Willey,GF.Stouse,L.J.Terminello.Structure and Composition of Cu-Doped CdSe Nanocrystals Using Soft X-ray Absorption Spectroscopy.Nano.Lett 2004,4:2277-2285.
    [245]A.Pratt.Photoelectron core levels for enargite,Cu_3AsS_4.Surf.Inter.Anal.2004,36:654-657.
    [246]Z.W.Quan,Z.L.Wang,P.P.Yang,J.Lin,J.Y.Fang.Synthesis and Characterization of High-Quality ZnS,ZnS:Mn~(2+),and ZnS:Mn~(2+)/ZnS(Core/Shell)Luminescent Nanocrystals.Inorg.Chem.2007,46:1354-1360.
    [247]S.A.Harfenist,Z.L.Wang,M.M.Alvarez,I.Wezmar,R.L.Whetten.Highly Oriented Molecular Ag Nanocrystal Arrays.J.Phys.Chem.1996,100:13904-13910.
    [248]S.A.Harfenist,Z.L.Wang.High-Temperature Stability of Passivated Silver Nanocrystal Superlattices.J.Phys.Chem.B.1999,103:4342-4345.
    [249]X.M.Liu,H.M.Jaeger,C.M.Sorensen,K.J.Klabunde.Formation of Long-Range-Ordered Nanocrystal Superlattices on Silicon Nitride Substrates.J.Phys.Chem.B.2001,105:3353-3357.
    [250]A.Taleb,C.Petit,M.P.Pileni.Synthesis of Highly Monodisperse Silver Nanoparticles from AOT Reverse Micelles:A Way to 2D and 3D Self-Organization.Chem.Mater.1997,9:950-959.
    [25l]C.D.Bain,J.Evall,GM.Whitesides.Formation of Monolayers by the Coadsorption of Thiols on Gold:Variation in the Head Group,Tail Group,and Solvent.J.Am.Chem.Soc,1989,111:7155-7164.
    [252])L.Motte,F.Billoudet,E.Lacaze,J.Douin,M.PPileni.Self-Organization into 2D and 3D Superlattices of Nanosized Particles Differing by Their Size.J.Phys.Chem.B 1997,101:138-144.
    [253]D.V.Talapin,E.V.Shevchenko,C.B.Murray,A.VTitov.P.Kral.Dipole-Dipole Interactions in Nanoparticle Superlattices.Nano.Lett.2007,7:1213-1219.
    [254]J.H.Warner,S.Djouahra,R.D.Tilley.Controlled formation of 3D CdS nanocrystal superlattices in solution.Nanotechnology.2006,17:3035-3038.
    [255]J.Olmsted.Calorimetric determinations of absolute fluorescence quantum yields.J.Phys.Chem.1979,83:2581-2584.
    [256]R.F.Kubin,A.N.Fletcher.Fluorescence quantum yields of some rhodamine dyes.J.Lumin 1982,27:455-462.
    [257]Z.H.Zhang,W.S.Chin,J.J.Vittal.Water-Soluble CdS Quantum Dots Prepared from a Refluxing Single Precursor in Aqueous Solution.J.Phys.Chem.B.2004,108:18569-18574.
    [258]L.D.Sun,C.H.Liu,C.S.Liao,C.H.Yan.ZnS nanoparticles doped with Cu(1)by controlling coordination and precipitation in aqueous solution.J.Mater.Chem.1999,9:1655-1657.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700