NTP技术转化柴油机NO_x及再生DPF的实验研究和机理分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
汽车工业的发展在推动经济与社会发展的同时,不可避免地造成大气污染,严重危及人类健康及生存环境。目前柴油机的NO_x、PM排放后处理技术还不成熟,有必要对其进行改进。本文从实用角度提出了利用低温等离子体技术转化柴油机NO_x及再生微粒捕集器的技术路线,探讨了低温等离子体转化NO_x及再生微粒捕集器的可行性。首先通过静态实验系统研究了介质阻挡放电产生低温等离子体的各主要电学参量的变化规律,并以此为基础设计了适于柴油机后处理的低温等离子体反应器;然后研究了NO/C_3H_6/CO_2/O_2/N_2气氛在低温等离子体反应器中的变化规律,并试图揭示其化学反应机理;最后搭建柴油机台架实验系统,将低温等离子体反应器产生的活性物质喷入到柴油机排气系统中,研究活性物质对柴油机各排放物的处理效果及能力,并研究其对柴油机微粒捕集器的再生能力。本文在以下几方面开展了系统的研究工作:
     (1)依据介质阻挡放电理论,进行了静态实验,利用Q-V LissajOUS图形法系统研究了介质厚度、放电气隙、放电频率、激励峰值电压对介质阻挡放电功率、等效电容、电荷传输量、电场强度等表征参数的影响,为研制适于柴油机后处理的低温等离子体反应器提供设计依据。实验结果表明:采用较薄的放电介质以及提高激励峰值电压均可有效提高放电功率、增大电场强度;增大放电频率也可提高放电功率,但其对电场强度的影响不大。
     (2)在静态实验研究工作基础上,综合考虑所设计的低温等离子体反应器应满足工作持续时间长、气体过流量大等条件,最后确定同轴单介质低温等离子体反应器的关键结构参数为:石英介质厚度为3mm、放电气隙为2mm,并对其进行了12小时耐久实验测试,实验结果表明,该反应器持续工作时性能稳定、运行可靠。
     (3)通过搭建模拟气实验系统,详细研究了低温等离子体对O_2/N_2、NO/O_2/N_2、NO/C_3H_6/O_2/N_2以及NO/N_2、NO/C_3H_6/N_2气氛中NO的转化效率及影响因素,并试图揭示其化学反应机理。实验结果表明:低温等离子体反应器产生的活性物质作用于O_2/N_2气氛时,会产生O_3及NO_2物质;活性物质作用于NO/O_2/N_2气氛时,NO主要通过氧化反应转化为NO_2,降低O_2及NO初始浓度,可提高NO转化率;活性物质作用于NO/C_3H_6/O_2/N_2气氛时,NO同时存在氧化和还原两种途径,C_3H_6初始浓度越高,NO通过还原反应转化为N_2的趋势越明显,同时有CO产生;活性物质作用于NO/N_2气氛时,NO只发生还原反应,转化率低、能耗高,当在其中加入C_3H_6后,可有效提高NO还原效率,并有CO生成。
     (4)通过低温等离子体喷射系统处理柴油机模拟排气实验,系统研究了模拟排气温度不同时,低温等离子体反应器产生的活性物质对各模拟排气成分的转化效果。在温度较低时,活性物质主要用于氧化NO为NO_2,NO_x浓度随激励峰值电压的提高基本保持不变;随着温度的升高,活性物质将同时与NO和C_3H_6反应,将NO氧化为NO_2,与C_3H_6反应生成CO:当温度继续升高时,活性物质主要与C_3H_6之间发生氧化反应,生成大量的CO,活性物质对NO的作用相对减弱,故NO转化率降低。
     (5)通过将低温等离子体反应器产生的活性物质喷射到柴油机排气系统中,研究柴油机不同工况下活性物质对各排气组分的转化效果及其对微粒捕集器的再生效果。结果表明:柴油机排气温度对转化效果的影响较大,排气温度较低时,活性物质对NO的氧化作用加强,排气中有更多的NO_2生成;排气温度较高时,活性物质同时作用于排气中的NO_X、HC、PM,此时NO转化为NO_2的反应不再明显,另外,由于活性物质对PM作用时会将其表面的有机可溶性成分转化为气态HC物质,故HC浓度略有升高;排气温度更高时,活性物质主要用于分解柴油机排气中的HC及PM,此时CO排放量升高、HC浓度降低。
     (6)利用活性炭吸附管对柴油机台架实验两排气支路中微粒捕集器后端的微粒进行吸附,并进行索氏萃取,再利用GC-MS对微粒中的有机可溶性成分进行对比分析。结果表明:低温等离子体反应器产生的活性物质对微粒捕集器确有再生作用,当柴油机在高速大、中负荷工况下运转时,低温等离子体活性物质可以将构成有机可溶性成分的大分子HC物质进行分解或转化,使其部分从微粒表面脱离而转化为气态HC,从而达到再生微粒捕集器的目的;当柴油机在低负荷工况下运转时,由于排气温度较低,活性物质对微粒中有机可溶性成分的分解作用变弱。
Though automobile industry promoted the economic development and social progress, it inevitably brought atmospheric pollution and led to human living environment and health endangered. At the present, the aftetreatrment techniques for controlling NO_x and PM emissions of diesel engine are not yet sophisticated, and need to be improved. In this text, the author presents a technology route using non-thermal plasma to convert NO_x and regenerate diesel paniculate filter from a practical point of view and discusses its feasibility. Firstly of all, main electrical parameters of dielectric barrier discharge have been studied using static experimental system. On this basis, a non-thermal plasma reactor is designed which is suitable for controlling the diesel engine emissions. Secondly, the author studies the changing of NO/C_3H_6/CO_2/O_2/N_2 mixture in the non-thermal plasma reactor and attempts to reveal the chemical reaction mechanisms. Lastly, through building diesel engine bench system, the active substances produced by the non-thermal plasma reactor are injected into the exhaust pipe and its effects for dealing with diesel engine emissions and capacity for regenerating diesel particulate filter are studied. Some researches are made in the text:
     (1)Based on dielectric barrier discharge theory, a static experiment system is built to research dielectric barrier discharge characteristics, the effect of dielectric thickness, discharge gap, discharge frequency, excitation peak voltage on the working parameters, such as the power, equivalent capacitance, charge transfer value and electric field intensity, are studied using Q-V Lissajous figures. The experimental results show that: adopting thinner dielectric discharge and smaller discharge gap can improve the discharge power and electric field strength, increasing the discharge frequency may also improve discharge power, but its impact on the electric field strength is little.
     (2)On the basis of the results of static experiments and considering that the non-thermal plasma reactor should meet the long work-time and large gas flow conditions, the key structural parameters are finally determined as follows: quartz thickness is 3mm, discharge gap is 2mm. Its 12-hour endurance test result shows that the reactor can stably run for long work-hours.
     (3)Through building a simulation gases system, NO conversion efficiency and its influencing factors are studied in detail when O_2/N2, NO/O_2/N_2, NO/C_3H_6/O_2/N_2 and NO/N_2, NO/C_3H_6/N_2 mixture passing the discharge area of the reactor, and the author also attempts to reveal these chemical reaction mechanisms. The experimental results show that: O_3 and NO_2 are produced when the O_2/N_2 mixture passing the discharge area of the non-thermal plasma reactor; when active substances produced by the reactor acting on the NO/O_2/N_2 mixture, NO is mainly oxidized into NO2, and the decrease of O_2 and NO initial concentration can enhance NO conversion rate; In the NO/C_3H_6/O_2/N_2 mixture, NO oxidation and reduction reactions simultaneously exist, the higher C_3H_6 initial concentration is, the easier NO reverts into N_2 through the reduction reaction, at the same time, CO is produced; when the NO/N_2 mixture passing the discharge area of the non-thermal plasma reactor, NO reduction reaction only occurs ,its conversion rate is low and its energy consumption is high, after adding C_3H_6 in the NO/N_2 mixture, NO reduction efficiency can be effectively improved, and CO is also produced.
     (4)Through building a non-thermal plasma injection system to deal with diesel engine simulation exhaust, the transformation of simulation exhaust components is studied at the different gas temperature when active substances produced in non-thermal plasma reactor are injected into the exhaust pipe. At the lower temperature, the active substance produced by the reactor mainly oxidize NO into NO_2, the NO_x concentration is almost changeless when excitation peak voltage increases; when the temperature increases, the active substance produced by the reactor simultaneously reacts with NO and C_3H_6, NO is converted to NO2, CO is produced because C_3H_6 is oxidized by the active substance; When the temperature continues to rise, the oxidation reaction between the active substance and C_3H_6 plays a major role, and generate a large number of CO, active substance which oxidize NO becomes less, so the NO conversion rate drops.(5)Through injecting active substance produced by the non-thermal plasma reactor into the diesel exhaust pipe, the transformation effect of exhaust componentsand regeneration efficiency of diesel particulate filter are studied under the diesel different operating conditions. The results showed that: diesel exhaust temperature have a significant impact on the transformation efficiency. When exhaust temperature is low, NO oxidation reaction with the active substances will be strengthened, more NO_2 is generated; when exhaust temperature is high, the active substances simultaneously act on NO_x、HC、PM in the emission pipe, at this time, NO oxidation reaction is not obvious. In addition, HC concentration will slightly increases because active substances will oxidize soluble organic fraction into gaseous HC; when exhaust temperature is more higher, the active substance are mainly used for the decomposition of HC and PM, so CO concentration increased and HC concentration decreased.
     (6) In the Bench test, particulate matter after diesel particulate filter which are fixed in diesel engine exhaust pipe are adsorbed using activated carbon adsorption tube. After Soxhlet extraction, the SOF is analyzed by the use of GC-MS. The results show that: the active substance produced by the non-thermal plasma reactor can strictly regenerate diesel particulate filter. When the diesel engine runs at high speed, big or medium load operating conditions, HC macromolecules in the SOF can be decomposed or transformed by the active composition produced by the reactor and are divorced from particulate matter surface, consequently, diesel particulate filter is regenerated; when the diesel engine runs at low load conditions, the decomposition of SOF by active material becomes weaker due to the low exhaust gas temperature.
引文
[1] 王建昕,傅立新,黎维彬.汽车排气污染治理及催化转化器[M].北京:化学工业出版社,2000.
    [2] 曹明让,柴油机有害排放物及影响因素[J].车用发动机,1999,3:51-54.
    [3] 刘光辉,催化过滤器同时去除柴油机微粒和氮氧化物的基础研究,[博士学位论文].上海:上海交通大学,2000.
    [4] http://www.epa.gov
    [5] 李勤.现代内燃机排放污染物的测量与控制[M].北京机械工业出版社,1998.
    [6] J.R.Needham,Technology for 1994,SAE 891949.
    [7] 刘巽俊.内燃机的排放与控制[M].北京:机械工业出版社,2003.
    [8] 蒋德明,陈长佑,杨嘉林,杨中权.高等车用内燃机原理(上册)[M].西安交通大学出版社,2006.
    [9] J.H.Johnson,S.T.Bagley,L.D.Gratz and D.GLeddy,SAE 940233,Detroit(1994).
    [10] David B. Kittelson.Engines and nanoparticles:a review.J.Aerosol Sci.l998,29(5/6):575-588.
    [11] Seaton A,MacNee W,Donaldson K,et al.Particulate air pollution and acute health effects[J].Lancet,1995,345:176-178.
    [12] Dockery,D.W.,Pope,C.A. Ⅲ,Xu, X.,Spengler,J.D.,Ware,J.H.,Fay,M.E.,Ferris,B.J.Jr., and Speizer,F.E.,"An association between air pollution and mortality in six US cities",New England Journal of Medicine,329(1993).
    [13] C.A.Pope Ⅲ,"Epidemiological Evidence of Health Effects of Combustion Source Particle Air Pollution",p61 in Proceedings of the 1997 DEER Workshop.
    [14] CARB press release, August 1998, www.arb.ca.gov.
    [15] Kajiwara N (ed) (2001) Particle removal technologies of diesel car exhaust gas. CMC Books Corp., pp203 (in Japanese).
    [16] Giuseppe Madia , Manfred Koebel. Side Reactions in the Selective Catalytic Reduction of NOx with Various NO_2 Fractions [J].Ind Eng Chem Res, 2002,41:4008-4015.
    [17] Donghai Sun.Molecular.Origins of Selectivity in the Reduction of NO, by NH_3[J].Phys Chem A, 2004,108: 9365- 9374.
    [18] Heck R M, Farrauto R J.Catalytic air pollution control.Van Nostrand Rdinhold,New York,1995.
    [19] Luders H,Backes R,Huthwohl G et al.An urea lean NOx catalyst system for light duty dieselvechiles[J].SAE Paper 952493.
    [20] Held W,Konig A,Richter T et al.Catalytic NOx reduction in net oxidizing exhaust gas[J].SAE Paper 900496.
    [21] Muller WOlschlegel H,Schafer A. Selective catalytic reduction-Europe's NOx reduction technology[J].SAE Paper 2003-01-2304.
    [22] Lambert C,Hammerle R,McGill R,et al.Technical advantages of urea SCR for light-duty and heavy-duty diesel vehicle applications[J].SAE,2004-01-1292.
    [23] R. M. Heck and R. J. Farrauto, with S. T. Gulati, "CATALITIC AIR POLUTION CONTROL COMERCIAL TECHNOLOGY" 2nd Edition, John Wiley &Sons,Inc.,2002.
    [24] M Iwamato.Proc of symposiumon catalytic technology for the removal of nitrogen oxides[J].Catalysis Soc.Japan,1990,17.
    [25] 运新华,上官文峰.柴油机排放后处理催化净化技术的研究进展[J].化工中间体,2005(1):38-41
    [26] 胡晓宏,刘艳华,董淑萍.氮氧化物选择性催化还原催化剂研究综述[J]环境科学与技术,2007,30(11):107-111
    [27] 张平.汽车尾气净化催化剂Ag/SAPO234选择性催化还原NO[J].环境科学,2002,23(6):22-25.
    [28] John P Breen, Robbie Burch. Structural Investigation of the Promotional Effect of Hydrogen during the Selective Catalytic Reduction of NO, with Hydrocarbons over Ag/ Al_2O_3 Catalysts[J].Phys Chem B, 2005,109:4805- 4807.
    [29] 罗永明.溶胶-凝胶Ag/Al_2O_3催化剂还原稀燃氮氧化物的研究[J].环境污染与防治,004926(5):329-332.
    [30] 徐鲁华,翁端.La_(1-x)Sr_xMn_(0.7)Zn_(0.3)O_(3+λ)钙钛矿的制备及稀燃条件下氮氧化物的催化还原性能[J].中国稀土学报,2002,20(4):378-381.
    [31] 唐晓龙.固定源低温选择性催化还原NO_x技术研究进展[J].环境科学学报,2005,25:1297-1303.
    [32] Kraemer,Abthoff,Duvinage,Ruzicka, Krutzsch, Liebscher,"Possible exhaust gas aftertreatment concepts for passenger car diesel engines with sulphur-free fuel".SAE 1999-01-1328.
    [33] Asanuma,Takamitsu,Takeshima,Shinichi,Yamashita,Tetsuya,Tanaka,Toshiaki,Murai,Toshim i,Iguchi, Satoshi.Influence of sulfur concentration in gasoline on NOx storage-Reduction catalyst.SAE 1999-01-3501.
    [34] 裴梅香,等离子体/催化同时去除氮氧化物和微粒的基础研究,[博士学位论文],上海:上海交通大学,2000.
    [35] T. Toshiaki, After-Treatment Systems and Fuel Properties for Controlling Engine Emission. Japan
    
    [36] H. Ichiro, H. Hirohito, I. Yasuo, Deactivation mechanism of NO, storage reduction catalyst and improvement of its performance [J]. SAE paper 2000-01-1196
    [37] Ja'nos Szanyi. NO_2 Adsorption on BaO/Al_2O_3: The Nature of Nitrate Species [J].Phys.Chem.B,2005,109: 27-29.
    [38] Ja'nos Szanyi. Changing Morphology of BaO/Al_2O_3 during NO_2 Uptake and Release [J].Phys Chem B, 2005,109: 7339- 7344.
    [39] H Y Huang. The Promoting Role of Noble Metals on NO_x Storage Catalyst and Mechanistic Study of NO_x Storage under Lean- burn Conditions[J].Energy & Fuels,2001,15:205-213.
    [40] S. Matsumoto, Y. Ikeda, H. Suzuki, et al., NOx storage-reduction catalyst for automotive exhaust with improved tolerance against sulfur poisoning. Appl. Catal. B 25(2-3), 2000, 115-124
    [41] John P.A. Neeft, Michiel Makkee, Jacob A. Moulijn, Diesel particulate emission control. Feul Prec. Tech.,1996,47:1-69
    [42] 傅昕,魏众,李佩珩,等.用于柴油机排放控制的微粒捕集器技术[J].北京工业大学学报,2002,28(2):163-167.
    [43] 王宪成.柴油机排气微粒静电金属丝网捕集器的试验研究.内燃机学报,2000,18(2):123-126
    [44] Walker A P ,Chandler G R ,Cooper B J.An integrated SCR and continuously regenerating trap system to meet future NOx and PM legislation[C]//Society of Automotive Engineeres Inc. Diesel exhaust aftertreatment.Warrendale:SAE Inc ,2000-01-0188.
    [45] 赵化侨,等离子体化学与工艺,中国科学技术大学出版社,1993
    [46] 刘正超,张振满,候健.CF2C1Br的火花等离子体降解[J].环境科学,1996,17(4):1-3
    [47] Kunhardt E. E. IEEE Transactions on Plasma Science,2000, 28(1):189-199
    [48] 杨丹凤,裘著革,李官贤.低温等离子体技术及其应用研究进展.中国公共卫生,2002(18):107-108
    [49] 许根慧,姜恩永,盛京,等.等离子体技术与应用[M].北京:化学r业出版社,2006
    [50] 胡征,等离子体化学基础,化学时刊,1999(10):36-45
    [51] Eliasson B, Kogelschatz U. Non-equilibrium volume plasma chemical processing. IEEE Transaction on Plasma Science, 1991,19(6): 1063-1076,1991
    [52] 徐学基,诸定昌.气体放电物理[M].上海:复旦大学出版礼,1996
    [53] 胡征.等离子体化学基础.化学时刊,1999,13(12):41-45
    [54] 侯健,刘先锋,候惠奇,等.低温等离子体技术及其治理工业废气的应用[J].上海环境科学,1999,18(4):151-153
    [55] 李国锋,吴彦.脉冲电晕等离子体化学(PPCP)处理有害气体反应器的研究进展.环境科学进展,1999.7(4):54-59
    [56] 宫为民,朱爱民,刘辉,等.脉冲电晕放电去除NO的反戍途径研究.中国环境科学,1997.17(4):369-372
    [57] 曾科,龙学明,蒋德明,等.采用低温等离子体技术降低柴油机有害排放物的研究.内燃机学报,2003.21(1):45-48
    [58] 刘圣华,肖福明,周龙保,等.低温等离子技术在柴油机颗粒排放控制中的应用.内燃机学报,2001.19(4):301-304
    [59] LARSEN C. An Optimization Study on the Control of NOx and Paniculate Emissions from Diesel Engines[J].SAE Paper 9604731
    [60] HAWKER P. Effects of a Continuous Regenerating Diesel Paniculate Filter on Non-Regulated Emissions and Particle Size Distribution[J].SAE Paper 98017891
    [61] J W Hoard,L Worsley and W C Follmer. Electrical characterization of a dielectric barrier discharge plasma device[J].SAE paper 1999-01-3635:23-36
    [62] John hoard, Plasma-Catalysis for Diesel Exhaust Treatment: Current State of the Art. SAE paper 2001-01-0185.
    [63] S.E.Thomas, The role of NO Selective Catalysis in the Plasma Enhanced Removal of NOx and PM from Diesel Exhausts.SAE Paper 2001-01-3568.
    [64] S.E.Thomas, A.R. Martin, D.Raybone, J.T.Shawcross, etal, Whitehead.Non-Thermal Plasma Aftertreatment of Particulates-Theoretical Limits and Impact on Reactor Design.SAE 2000-01-1926.
    [65] B.M.Penetrante, etal. Feasibility of Plasma After-treatment for Simultaneous Control of NOx and Particulate.SAE paper 1999-01-3637.
    [66] 罗毅,方志,邱毓昌,等.材料性质对介质阻挡放电特性的影响[J].绝缘材料,2003,36(4):45-47.
    [67] 方志,邱毓昌,王辉,等.介质阻挡放电的电荷传输特性研究[J].高压电器,2004,40(6):401-403.
    [68] 吴晓东,周建刚,张芝涛,等.介质阻挡放电过程中相关参量的变化[J].大连海事大学学报,2004,30(2):68-71.
    [69] Rachel Feng and Shesha Jayaram. Automated System for Power Measurement in the Silent Discharge[J]. IEEE Transactions on Industry Applications, 1998, 34(3): 563-570.
    [70] 葛自良.放电等离子体臭氧发生技术的研究[J].高电压技术,1997,23(4):65-70.
    [71] 黄玉水,吕宏,王立乔.臭氧发生器电源中容性控制的研究[J].高电压技术,2002,28(10):41-42,53.
    [72] 庄洪春,孙鹞鸿,彭燕昌.介质阻挡放电产生等离子体技术研究[J].高电压技术,2002,28(12):57-58.
    [73] 刘钟阳,吴彦,王宁会.DBD型中高频臭氧发生器的动态负载特性[J].中国电机工程学报,2002,22(5):61-83.
    [74] 刘钟阳,吴彦,王宁会.DBD等离子体反应器放电功率测量的研究[J].仪器仪表学报,2001,22(3supplement):78-80.
    [75] Massines, Segur P. Physics and chemistry in a glow dielectric barrier discharge at atmospheric diagnostics and modeling[J].Surface and Coatings Technology. 2003.174: 8-14.
    [76] 杨波,王燕,白希尧.测量介质阻挡放电功率的一种新方法[J].大连海事大学学报,2002,28(1):92-96.
    [77] Ch.Subrahmanyam, A. Renken, L.Kiwi-Minsker. Novel Catalytic Dielectric Barrier Discharge Reactor for Gas-Phase Abatement of Isopropanol. Plasma Chem Plasma Process(2007)27:13-22.
    [78] amamoto K, Kawamura K, Yukimura K, Kambara S, Moritomi H,Yamashita T. Oxygen effect of high concentration NO removal using an intermittent DBD. Vacuum 2004;73(3-4):583-588.
    [79] Magureanu M, Mandache NB, Eloy P, Gaigneaux EM, Parvulescu @@@.Plasma assisted catalysis for volatile organic compounds abatement.Applied Catalysis B: Environmental 2005;73(3-4):12-20.
    [80] Hammer T, Kappes T, Baldauf M. Plasma catalytic hybrid processes: gas discharge initiation and plasma activation of catalytic processes. Catalysis Today 2004;89(1-2):5-14.
    [81] Mario Moscosa-Santillan, Axel Vincent, Esteban Santirso, Jacques Amouroux. Design of a DBD wire-cylinder reactor for NOx emission control: experimental and modelling approach. Journal of Cleaner Production 2008;16:198-207.
    [82] 王军,蔡忆昔,庄凤芝,等.介质阻挡放电功率测量及各参量变化规律[J].江苏大学学报:自然科学版,2008:29(5):398-401.
    [83] Ulrich Kogelschatz.Dielectric-barrier Discharges: Their History,Discharge Physics, and Industrial Applications[J]. Plasma Chemistry and Plasma Processing,2003,23(1):1-46.
    [84] W. J. M. Samaranayake, Y. Miyahara, T. Namihira, et al. Ozone Production Using Pulsed Dielectric Barrier Discharge in Oxygen[J].IEEE Transactions on Dielectrics and Electrical Insulation,2000,7(6):849-854.
    [85] Chirokov, A. Gutsol, A. Fridman. Atmospheric pressure plasma of dielectric barrier discharges. Pure Appl. Chem[J].2005,77(2):487-495.
    [86] M. Takayama, K. Ebihara, H. Stryczewska, et al, Ozone generation by dielectric barrier discharge for soil sterilization[J].Thin Solid Films, 506-507 (2006) :396-399.
    [87] 陈艳梅,凌一鸣.介质阻挡放电制备臭氧的实验研究[J].电子器件,2004,27(4):653-657.
    [88] Massines F, Segur P, Gherardi N, et al.Physics and chemistry in a glow dielectric barrier discharge at atmospheric pressure:Diagnostics and modeling[J].Surface and Coatings Technology,2003,174:8-14.
    [89] 白希尧,张芝涛,白敏菂,等.臭氧产生方法及其应用[J].自然杂志,2000,22(6):347-354.
    [90] 任基成,费杰.臭氧活性炭工艺去除饮用水中CODMn的应用试验[J].给水排水,2001,27(4):22-24
    [91] 魏兰芬,许激,林军明.水中臭氧杀菌效果及产生亚硝酸盐量的检测[J].中国消毒学杂 志,2002,19(1):48-50
    [92] 周俊虎,张国平,王智化,等.高频介质阻挡放电产生臭氧的实验研究[J].浙江大学学 报(工学版),2008:42(3):502-505.
    [93] Yagi S , Tanaka M. Mechanism of ozone generation in air-fed ozonizers[J]. J.Phys D Appl Phys,1979,(12):1509-1520
    [94] McLarnon, C. R. and Penetrante, B. M., Effect of Gas Composition on the Nox Conversion Chemistry in a Plasma. SAE Paper No.982433(1998).
    [95] Y. H. Lee, J. W. Chung, Y. R. Choi,J. S. Chung,M. H. Cho,l and W. Namkung, NOx Removal Characteristics in Plasma plus Catalyst Hybrid Process. Plasma Chemistry and Plasma Processing, 2004,24(2):137-154.
    [96] R. Dorai and M. J. Kushner, Effect of propylene on the remediation of NOx from engine exhaust, SAE 1999-01-3683(1999).
    [97] W. J. Pitz et al., Preprint for 1997 Fall Meeting of the Western States Section of the Combustion Institute, October 23-27(1997).
    [98] W. Niessen et al., J. Phys. D: Appl. Phys. 31,542-550(1998).
    [99] Orlandini and U. Riedel, J. Phys. D: Appl. Phys. 33,2467-2474(2000)
    [100] Rajesh Dorai,Mark J Kushner.Consequences of unburned hydrocarbons on microstreamer dynamics and chemistry during plasma remediation of NOx using dielectric barrier discharges[J].J. Phys. D: Appl. Phys. 36 (2003) 1075-1083
    [101] Masaaki Okubo, Naoki Arita, Tomoyuki Kuroki. Total Diesel Emission Control System Using Ozone Injection and Plasma Desorption [J]. IEEE 2005 0-7803-9208-6: 2924-2930.
    [102] Okubo M, Yamamoto T, Miwa S (2002) Exhaust gas cleaning system. Japanese patent pending, No. 2002-227920, 5 August 2002; PCT international patent pending, PCT/JP2003/09607, 29 July 2003
    [103] Anthony R Martin, James T Shawcross and J Christopher Whitehead. Modelling of non-thermal plasma aftertreatment of exhaust gas streams. J. Phys. D: Appl. Phys. 37 (2004) 42-49
    [104] McLarnon, C.R.and Penetrante, B.M., Effect of Gas Composition on the NOx Conversion Chemistry in Plasma[J].SAE Paper No. 982433.
    [105] Ali Mohammadi, Yoshinori Kaneda. Takashi Sogo. et al. A Study on Diesel Emission Reduction using a High-frequency Dielectric Barrier Discharge Plasma[J].SAE Paper. No.2003-01-1879.
    [106] 余刚,颜峥,叶丹,等.气体NO/N2系统等离子体反应NO还原机理研究[J].2003,24(2):354-356.
    [107] 代斌,宫为民,张秀玲.冷等离子体作用下CO_2-CO的转化[J],天然气化工.2000,6(25):11.14.
    [108] Yagi S,Kuzumoto M. Silent discharges in ozonisers and CO_2 lasers[J].Aust. J. Phys.,1995,48:411-418.
    [109] 文岳中,姜玄珍,刘维屏.等离子法转化CO_2为CO研究进展[J],燃料化学学报.2002,4(30):372-375.
    [110] Gui-Bing Zhao. XudongHu. Morris D.Argyle, et al. Effect of CO_2 on Nonthermal-Plasma Reactions of Nitrogen Oxides in N2. 1. PPM-Level Concentrations[J].Industrial & Engineering Chemistry Research.2005,44,3925-3934.
    [111] 周龙保.内燃机学[M].北京:机械工业出版社,2005.
    [112] 大连理工大学博士论文 刘瑞祥,用微粒过滤器和EGR同时降低柴油机微粒和NO_x排放,[博士学位论文],大连:大连理工大学,2004.
    [113] P. Kojetin, F. Janezich, L. Roth, D. Tuma, SAE Paper, No. 930129, Feb.(1993).
    [114] K. Hanamura, T. Tanaka, Proc. 2005 JSAE Annual Congress, 22-05, 2005,p. 23.
    [115] M. Okubo, T. Yamamoto, J. Inst. Electrost. Jpn. 26 (6) (2002) 254 (in Japanese).
    [116] N. Kajiwara (Ed.), Particle Removal Technologies of Diesel Car Exhaust Gas, CMC books Corp., 2001, p. 203, (in Japanese).
    [117] B.J. Cooper, J.E. Thoss, SAE Paper, No. 89040 (1989).
    [118] Yamamoto K, Kawamura K, Yukimura K, Kambara S, Moritomi H,Yamashita T. Oxygen effect of high concentration NO removal using an intermittent DBD. Vacuum 2004;73(3-4):583-588.
    [119] Magureanu M, Mandache NB, Eloy P, Gaigneaux EM, Parvulescu VI.Plasma assisted catalysis for volatile organic compounds abatementApplied Catalysis B: Environmental 2005;73(3-4):12-20.
    [120] Hammer T, Kappes T, Baldauf M. Plasma catalytic hybrid processes: gas discharge initiation and plasma activation of catalytic processes. Catalysis Today 2004;89(1-2):5-14.
    [121] Mario Moscosa-Santillan, Axel Vincent, Esteban Santirso, Jacques Amouroux. Design of a DBD wire-cylinder reactor for NOx emission control: experimental and modelling approach. Journal of Cleaner Production 2008;16:198-207.
    [122] T. Yamamoto, M. Okubo, T. Miyashita, K. Kitaura, Trans. Jpn. Soc. Mech. Eng. 67B (663) (2001) 2891 (in Japanese).
    [123] T. Kuroki, M. Takahashi, M. Okubo, T. Yamamoto, IEEE Trans. Ind. Appl. 38 (5) (2002) 1204.
    [124] J. Kupe, D. Goulette, M. Hemingway, T. Slivis, G Fisher, C. DiMaggio, D.Herling, D. Lessor, S. Baskaran, J. Frye, M. Smith, Slides Presented at Diesel Engine Emission Reduction 2000 Workshop, 2000, slides available at http://www.osti.gov/fcvt/.
    [125] J. Kupe, J. Bonadies, D. Goulette, M. Hemingway, T. Silvis, G Fisher, D.Herling, D. Lessor, M. Gerber, J. Frye, M. Smith, J. Wiens, G Yowell Diesel Engine Emission Reduction 2001Workshop, 2001, slides available at http://www.osti.gov/fcvt/.
    [126] S. Miiller, J. Conrads, W. Best, Proc. Int. Symp. High Pressure Low Temperature Plasma Chemistry (Hakone Ⅶ), vol.2,2000,p.340.
    [127] M. Okubo, T. Yamamoto, S. Miwa, Japanese patent pending, No. 2002-227920, August 5, 2002, PCT international patent pending, PCT/JP2003/09607, July 29,2003.
    [128] M. Okubo, T. Miyashita, T. Kuroki, S. Miwa, T. Yamamoto, IEEE Trans.Ind. Appl. 40 (6) (2004) 1451.
    [129] He Lin, Zhen Huang, Wenfeng Shangguan, Xiaosheng Peng.Temperature-programmed oxidation of diesel particulate matter in a hybrid catalysis-plasma reactor. Proceedings of the Combustion Institute 31 (2007) 3335-3342.
    [130] Masaaki Okubo, Naoki Arita, Tomoyuki Kuroki, Toshiaki Yamamoto.Carbon particulate matter incineration in diesel engine emissions using indirect nonthermal plasma processing. Thin Solid Films 515 (2007) 4289-4295.
    [131] 李兴虎.汽车环境保护技术[M].北京:航空航天大学出版社.2004.
    [132] Donginn Kim, Hyeong-Sang Lee, Kwang Min Chun and Jung-Ho Hwang.Comparison of Soot Oxidation by NO_2 Only and Plasma-Treated Gas Containing NO_2,O_2, and Hydrocarbons.SAE 2002-01-2704
    [133] Ali MOHAMMADLYoshinori KANEDA,Takashi sogo,et al.A study on diesel emission reduction using a high-frequency dielectric barrier discharge plasma.SAE 2003-01-1879
    [134] Okubo M, Yamamoto T (2002) Recent studies on regeneration of DPF using non-thermal plasma. J Inst Electrostat Jpn 26(6):254-255(in Japanese)
    [135] Okubo M, Miwa S, Kuroki T, Yamamoto T (2003) Low temperature soot incineration of diesel particulate filter using honeycomb non-thermal plasma. Trans Jpn Soc Mech Eng 69B(688):2719-2724 (in Japanese)
    [136] Yamamoto T, Okubo M, Kuroki T, Miyairi Y (2003) Non-thermal plasma regeneration of diesel particulate filter.SAE paper,No. 2003-01-1182.
    [137] Okubo M, Kuroki T, Yamamoto T, Miwa S (2003) Soot incineration of diesel particulate filter using honeycomb non-thermal plasma.SAE paper,No. 2003-01-1886
    [138] Okubo M, Miyashita T, Kuroki T, Miwa S, Yamamoto T (2004) Regeneration of diesel particulate filter using non-thermal plasma without catalyst. IEEE Trans Ind Appl 40(6):1451-1458
    [139] Okubo M, Kuroki T, Miyairi Y, Yamamoto T (2004) Low temperature soot incineration of diesel particulate filter using remote non-thermal plasma induced by a pulsed barrier discharge. IEEE Trans Ind Appl 40(6).1504-1512

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700