氨基化明胶的性能及在鼻粘膜给药的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究以明胶为原料,在水溶性碳二亚胺存在的条件下与乙二胺反应,首次设计并制备了一种新型带正电荷的生物可降解性聚合物—氨基化明胶。氨基化明胶的数均分子量为97.5kDa,每mg氨基化明胶含伯氨基1.655mol,比明胶具有较好的水溶性和较低的胶凝温度。热分析实验结果表明,氨基化明胶比明胶具有较低的玻璃化温度、较好的分子链柔顺性和链段运动性。
     以粘液中发挥粘附作用的主要成分粘蛋白为粘液模型,分别以蒸馏水、人工胃液及人工肠液为介质模型,综合运用比浊法、粘度法、粘附力测定法及表面自由能分析法等方法,分别从胶体学、流变学、力学及热力学的角度,系统地考察氨基化修饰对明胶生物粘附性能的影响。胶体学和流变学的研究结果表明,氨基化明胶与粘蛋白在均相体系中的相互作用比明胶与粘蛋白间的相互作用显著增强,静电引力是相互作用力的主要成分。粘附力测定结果表明,氨基化明胶比明胶具有优越的生物粘附性能,氨基化明胶的快速水化及良好的分子链柔顺性是这一性能的主要原因,热力学研究结果表明,氨基化明胶与粘蛋白在界面处相互作用的自由能显著降低,其降低程度显著大于明胶与粘蛋白相互作用时自由能的降低程度,氨基化明胶溶液能够润湿和铺展于粘蛋白溶液的表面;自由能的色散分量和Lewis酸碱作用分量对这一过程均有重要贡献,但氨基化明胶与明胶之间的差异主要是由界面张力的Lewis酸碱作用分量决定的。各种实验方法得出的结果具有较好的一致性,均表明氨基化明胶与粘蛋白间的相互作用比明胶强,氨基化修饰显著改善了明胶的生物粘附性能。氨基化明胶的生物粘附性能是其正电荷性质、较好的分子链柔性及有利的表面能性质等因素共同决定的。
     为进一步考察氨基化明胶的生物粘附性,并为制剂学研究奠定基础,本研究在无外加乳化剂的条件下,将氨基化明胶的水溶液分散在橄榄油中,经乳化、胶凝、脱水及交联等过程,制备了一种新型带正电荷的凝胶微球—氨基化明胶微球。微球平均粒径为40~50μm,大小分布均匀。干燥微球可吸收相当于自身重量约20倍的水形成水凝胶。氨基化明胶微球比明胶微球具有较高的氨基含量,在蒸馏水及磷酸盐缓冲液中均荷正电,在蒸馏水中的Zata电位为41.5mV。随着制备微球时交联剂戊二醛浓度的增大或交联反应时间的延长,微球的氨基含量降低。但无论交联反应的条件如何,本方法制备的氨基化明胶微球比明胶微球具有较高的伯氨基含量。氨基化明胶微球在胰蛋白酶存在的条件下可迅速降解(<1h),在胃蛋白酶及酸碱介质环境中降解较为缓慢(>20h),在磷酸盐
    
     沈阳药科大学博士学位论文 摘要
    一
    缓冲液中具有较好的稳定性。
     综合运用多种体内外实验方法研究了氨基化明胶微球的粘膜粘附性能。采
    用比色法考察了氨基化明胶微球与两种市售粘蛋白在不同介质环境中的相互作
    用,虽然这种相互作用随介质的种类、pH及离子强度的不同而不同,但是,在
    相同的试验条件下,吸附到氨基化明胶微球的两种粘蛋白量比吸附到两种明胶
    微球(IEP=5刀和 9.0)的粘蛋白量多。这表明,氨基化明胶微球与粘蛋白之间
    的相互作用比明胶微球强。氨基化明胶微球较高的正电荷密度是它与粘蛋白间
    较强相互作用的主要原因。
     结合荧光标记法及体外酶降解技术,利用离体大鼠胃灌流冲洗模型和大鼠
    体内实验研究了氨基化明胶微球的生物粘附性能。结果表明,在相同的实验条
    件下,滞留在离体大鼠胃中的氨基化明胶微球的数量比明胶微球多,而灌流冲
    洗液的种类(人工胃液或PH 7人磷酸盐缓冲液)对微球的胃滞留性无显著影响,
    这表明微球与胃粘液之间的静电相互作用不是这一模型中微球胃滞留性的决定
    性因素。但是,实验中发现滞留在离体大鼠胃中的氨基化明胶微球的量随制备
    微球时交联剂戊二醛浓度的增大而减少,这表明氨基化明胶微球的胃粘膜粘附
    性可能受微球表面氨基含量或交联度的影响。大鼠体内实验结果表明,氨基化
    明胶微球比明胶微球具有较好的粘膜粘附性能。
     采用Y闪烁照相技术研究了99”m标记氨基化明胶微球在健康志愿者鼻粘膜
    的粘附性能。结果表明,氨基化明胶微球比明胶微球具有优越的生物粘附性能。
    明胶微球和氨基化明胶徽球在健康志愿者鼻腔内的清除半衰期分别为45和
    87min。氨基化明胶微球较高的氨基含量、氨基化明胶改进的分子链柔顺性和
    链段运动性、氨基化明胶微球在粘膜表面的吸水溶胀等性质在其生物粘附性方
    面共同发挥着作用。
     鉴于多种阳离子聚合物可以促进水溶性大分子物质从鼻粘膜的吸收,本研
    究考察了新型带正电荷的聚合物一氨基化明胶用作胰岛素鼻粘膜吸收促进剂的
    可行性。以健康大鼠为模型动物,考察了氨基化明胶对葡聚糖和胰岛素鼻粘膜
    吸收的促进作用。结果表明,02%(WN)氨基化明胶可以显著促进分于量为
    女4kDa的异硫氰酸荧光素-葡聚糖从大鼠鼻粘膜的吸收,生物利用度为23.8%。
    鼻腔给予含 0二%(w/v)氨基化明胶的胰岛素磷酸盐缓冲液10 IU帅)后,血糖
    水平与给予胰岛素的磷酸盐缓冲液相比显著降低。这一降糖作用与相同浓度的
A new cationic polymer, aminated gelatin, was synthesized by modification of gelatin with 1,2-ethylenediamine in the presence of a kind of water-soluble carbodiimide. Aminated gelatin presents a higher amino group content, a higher level of solubility, a lower gelling temperature and a higher molecular flexibility and chain mobility.
    The mucoadhesive properties of aminated gelatin were evaluated systemically by using two kinds of commercial mucin (type I -S and type III) as mucus models and using water, simulated gastric fluid and simulated intestinal fluid as medium models respectively. Colloidal and rheological studies showed that aminated gelatin demonstrates a stronger interaction with mucin in all of the experimental conditions tested in comparison with that of native gelatin, and the electrostatic interaction is the main force involved in these interactions. Mechanical studies showed that aminated gelatin possesses stronger mucoadhesive strengths than the native gelatins, which is ascribed to the properties of quick hydration and the higher flexibility of aminated gelatin. The results of thermodynarnic studies indicated that the interfacial interaction between hydrated aminated gelatin and mucin is a process accompanied with a negative Gibbs free energy, and aminated gelatin solution can spread over the surface of mucin solution sp
    ontaneously. The change of interaction surface energy between aminated gelatin film and mucin is also negative. Both the dispersive and polar components of the Gibbs free energy contribute to this phenomenon. However, the difference between gelatin and aminated gelatin mainly comes from polar component of surface energy.
    To further investigate the bioadhesive properties and the mechanisms of bioadhesion of aminated gelatin, aminated gelatin microspheres were prepared by surfactant-free emulsification of aminated gelatin solution in olive oil, followed by cross-linking reaction with glutaraldehyde. The microspheres are in a sphere shape, with a mean diameter of about 40-50 um, and present a good biodegradability. The amino group contents of the aminated gelatin microspheres were determined using a 2,4,6-trinitrobenzenesulfonic acid method. Aminated gelatin microsphere presents a significantly higher amino group content than the two kinds of native gelatin microspheres. However, with the increase of the glutaraldehyde concentration and/or cross-linking reaction time, the amino group content of the microspheres decreased accordingly.
    The mucoadhesive properties of aminated gelatin microspheres were evaluated both in vitro and in vivo in rats and healthy volunteers. The interactions of native and
    
    
    aminated gelatin microspheres with two kinds of commercial mucin (type I -S and type III) were investigated in different aqueous media. As a result, a larger amount of mucin was adsorbed to aminated gelatin microspheres than to either of the native gelatin microspheres under all the conditions investigated, although the amount of mucin adsorbed to microspheres varied significantly in different media. These results indicated that there is a stronger interaction between mucin and aminated gelatin microspheres than that between mucin and native gelatin microspheres. The electrostatic attraction is the main force for these interactions.
    In the in vitro model of isolated and perfused rat stomach, the amount of aminated gelatin microspheres that remained in the stomach after perfusion was significantly larger than that of the native gelatin microspheres. No significant difference in gastric retention was observed whether the test was performed in simulated gastric fluid (SGF) or in phosphate buffered saline (PBS, pH7.4), nor differences observed between the two native gelatin microspheres. These results suggested that the electrostatic interaction is not the decisive force for the mucoadhesion of the microspheres in this model.
    In the in vivo mucoadhesion experiment, the amount of aminated gelatin microspheres remained in the stomach two hours after oral administration in a capsule inc
引文
[1] Ishida M, Nambu N, Nagai T. Ointment-type oral mucosal dosage form of Carbopol containing prednisolone for treatment of aphtha. Chem Pharm Bull. 1983, 31:1010-1014.
    [2] Nagai T, Machida Y. Mucosal adhesive dosage forms. Pharm Int. 1985, 6: 196-200.
    [3] Lee JW, Park JH, Robinson JR. Bioadhesive-based dosage forms: the next generation. J Pharm Sci. 2000, 89: 850-866.
    [4] Luessen HL, Verhoef JC, Lehr CM, de Boer AG, Junginger HE. Mucoadhesive poly(acrylates) are inhibitors of the intestinal proteases trypsin and carboxypeptidase.Proc Int Symp Controlled Release bioact Mater. 1994, 21:130-131.
    [5] Luessen HL, Verhoef JC, Borchard G, Lehr CM, de Boer AG, Junginger HE.Mucoadhesive polymers in peroral peptide drug delivery. Ⅱ.Carbomer and polycarbophil are potent inhibitors of the intestinal proteolytic enzyme trypsin. Pharm Res. 1995, 12:1293-1298.
    [6] Weltzin R, Lucia-Jandris P, Michetti P, Fields BN, Kraehenbuhl JP, Neutra MR. Binding and transepithelial transport of immunoglobulins by intestinal M cells: Demonstration using monoclonal IgA antibodies against enteric viral proteins. J Cell Biol. 1989, 108:1673-1685.
    [7] Rathi RC, Kopeckova P, Rihova B, Kopecek J. N-(2-hydroxypropyl)methacrylamide copolymers containing pendant saccharide moities: sythesis and bioadhesive properties. J Polym Sci, Part A: Polym Chem. 1991, 29: 1895-1902.
    [8] Lehr CM, Bouwstra JA, Kok W, Noach AB, de Boer AG, Junginger HE. Bioadhesion by means of specific binding of tomato lectins. Pharm Res. 1992, 9: 547:553.
    [9] Bernkop-Schnuerch A, Gabor F, Szostak MP, Lubitz W. An adhesive drug delivery system based on K99-fimbriae. Eur J Pharm Sci. 1995, 3: 293-299.
    [10] Gabor F, Bernkop-Schnuerch A, Hamilton G. Bioadhesion to the intestine by means of E. Coli K99-fimbriae: Gastrointestinal stability and specificity of adherence. Eur J Pharm Sci. 1997, 5: 233-242.
    [11] Sharma R, van Damme EJM, Peumans WJ, Sarsfield P, Schumacher U. Lectin binding reveals divergent carbohydrate expression in human and mouse Peyer's patches. Histochem Cell Biol. 1996, 105:459-465.
    [12] Park H, Robinson JR. Physico-chemical properties of water insoluble polymers important to mucin epithelial adhesion. J Controlled Release. 1985, 2:47-57
    [13] Deryaguin BV, Toporov YP, Wueler VM, Aleinikova IN. On the relationship between the electrostatic and molecular component of the adhesion of elastic particles to a solid surface. J Colloid Interface Sci. 1997, 58: 528-533.
    [14] Kaelble DH. A surface energy analysis of bioadhesion. Polymer. 1977, 18: 475-482.
    [15] Campion RP. The influence of structure on autohesion (self-tack) and other forms of diffusion into polymers. J Adhesion. 1975, 7: 1-23.
    [16] Lehr CM, Bodde HE, Bowstra JA, Junginger HE. A surface energy analysis of mucoadhesion Ⅱ: prediction of mucoadhesion performance by spreading coefficients,
    
    Eur J Pharm Sci, 1993, 1:19-30.
    [17] Mikos AG, Peppas NA. Comparison of experimental technique for the measurement of the bioadhesive forces of polymeric materials with soft tissues. Proc Int Symp Control Release Bioact Mater. 1986, 13:97-116.
    [18] Haltner E, Easson JH, Lehr CM. Lectins and bacterial invasion factors for controlling endo-and transcytosis of bioadhesive drug carrier systems. Eur J Pharm Biopharm. 1997,44: 3-13.
    [19] Hubbell JA. Bioactive biomaterials. Curr Opin Biotechnol. 1999, 10:123-129.
    [20] Leung SHS, Robinson JR. Polymer structure features contributing to bioadhesion. Ⅱ .J Controlled Release. 1990, 12:187-194.
    [21] Peppas NA, Buri PA. Surface, interfacial and molecular aspects of polymer bioadhesion on soft tissues. J Control Release. 1985, 2:257-275.
    [22] He P, Davis SS, Illum L. In vitro evaluation of the mucoadhesive properties of chitosan microspheres. Int J Pharm. 1998, 166: 75-88.
    [23] Helfand E, Tagami Y. Theory of the interface between immiscible polymers. J Chem Phys.1972, 57: 1812-1813.
    [24] Huang YB, Leobandung W, Foss A, Peppas NA. Molecular aspects of muco-and bioadhesion: Tethered structures and site-specific surfaces. J Controlled Release. 2000, 65:63-71.
    [25] Smart JD, Kellaway IW, Worthington HEC. An in vitro investigation of mucosa-adhesive materials for use in controlled drug delivery. J Pharm Pharmcol. 1984, 36:295-299.
    [26] Park, H, Robinson JR. Mechanisms of mucoadhesion of poly (acrylic acid) hydrogels.Pharm Res. 1987, 4:457-464
    [27] Kriwet B, Kissel T. Interactions between bioadhesive poly (acrylic acid) and calcium ions. Int J Pharm. 1996, 127:135-145
    [28] Kamath KR, Park K. Mucosal adhesive preparations. In Swarbrick J, Boylan JC (Ed.).Encyclopedia of Pharmaceutical Technology. New York: Marcel Dekker.1994, pp133-163.
    [29] Duchene D, Ponchel G. Principle and investigation of the bioadhesion mechanism of solid dosage forms. Biomaterials. 1992, 13: 709-714.
    [30] Lehr C-M, Bouwstra JA, Schacht E.H, Junginger HE. In vitro evaluation of mucoadhesive properties of chitosan and some other natural polymers. Int J Pharm. 1992,78: 43-48.
    [31] Smart JD. An in vitro assessment of some mucosa-adhesive dosage forms, Int J Pharm.1991, 73: 69-74.
    [32] Tobyn MJ, Johnson JR, Dettmar PW. Factors affecting in vitro gastric mucoadhesion.Ⅰ.Test conditions and instrumental parameters. Eur J Pharm Biopharm. 1995,41:235-241.
    [33] Mikos AG, Peppas NA. Comparison of experimental technique for the measurement of the bioadhesive forces of polymeric materials with soft tissues. Proc Int Symp Control Release Bioact Mater. 1986, 13, 97.
    [34] Teng CLC, Ho NFH. Mechanistic studies in the simultaneous flow and adsorption of polymer-coated latex particles on intestinal mucus.Ⅰ.Methods and physical model
    
    development. J Controlled Release. 1987, 6: 133-149.
    [35] Pimienta C, Lenaerts V, Cadieux C, Raymond P, Juhasz J, Simard MA, Jolicoeur C.Mucoadhesion of hydroxypropylmethacrylate nanoparticles to rat intestinal ileum segments in vitro. Pharm Res. 1990, 7: 49-53.
    [36] Helliwell M, Martin GP, Marriott C. The in situ mucoadhesion of microcapsule-polymer conjugates, Proc Int Symp Control Release Bioact Mater. 1991, 18: 572-573.
    [37] Hassan EE, Gallo JM. A simple rheological method for the in vitro assessment of mucin-polymer bioadhesive bond strength. Pharm Res. 1990, 7: 491-495.
    [38] Ferrari F, Rossi S, Bonferoni MC, Caramella C, Karlsen J. Characterization of rheological and mucoadhesive properties of three grades of chitosan hydrochloride. J Farmaco. 1997, 52: 493-497.
    [39] Lehr CM, Bouwstra JA, Bodde HE, Junginger HE. A surface energy analysis of mucoadhesion: contact angle measurements on polycarbophil and pig intestinal mucosa in physiologically relevant media. Pharm Res, 1992, 9:70-75.
    [40] Meseguer G, Gurny R, Buri P. In vivo evaluation of dosage forms: application of gamma scingigraphy to non-enternal routes of administration. J Drug Target. 1994, 2: 269-288.
    [41] Soane RJ, Frier M, Perkins AC, Jones NS, Davis SS, Illum L. Evaluation of the clearance characteristics ofbioadhesive systems in humans, Int J Pharm. 1999,178:55-65.
    [42] Ranga Rao, Buri P. A novel in situ method to test polymer and coated microparticles for bioadhesion. Int J Pharm. 1989, 52: 265-270.
    [43] Lehr CM, Bouwstra JA, Tukker JJ, Junginger HE. Intestinal transit of bioadhesive microspheres in an in situ loop in the rat-a comparative study with copolymers and blends based on poly(acrylic acid). J Controlled Release. 1990, 13: 51-62.
    [44] Ch'ng HS, Park H, Kelly P, Robinson JR. Bioadhesive polymers as platforms for oral controlled drug delivery Ⅱ: Synthesis and evaluation of some swelling water-insoluble bioadhesive polymers. J Pharm Sci. 1985, 74: 399-405.
    [45] Qaqish RB, Amiji MM. Synthesis of a fluorescent chitosan derivative and its application for the study of chitosan-mucin interactions. Carbohydr Polym. 1999, 38:99-107.
    [46] Bowman WC, Rand MJ. (Eds.) Anaethesia and general anaesthetics, in: Textbook of Pharmacology, Blackwell Scientific Publications, Oxford, 1980, Vol. 2, PP7.1-7.15.
    [47] Ishida M, Nambu N, Nagai T. Highly viscous gel ointment containing carbopol for application to the oral mucosa. Chem Pharm Bull. 1983, 31: 4561-4564.
    [48] Robinson JR, Longer MA, Veillard M. Bioadhesive polymers for controlled drug delivery. Ann NY AcM Sci. 1987, 507: 307-317.
    [49] Ali J, Khar RK, Ahuja A.Formulation and Characterization of a buccoadhesive erodible tablet for the treatment of oral lesions. Pharmazie. 1998, 53: 329-334.
    [50] Duchene D, Ponchel G. Principle and investigation of the bioadhesion mechanism of solid dosage forms. Biomaterials. 1992, 13: 709-714.
    [51] Pimienta C, Lenaerts V, Cadieux C, Rayond P, Juhasz J, Simard MA, Jolicoeur C.Mucoadhesion of hydroxypropylmethacrylate nanoparticles to rat intestinal ileal segments in vitro. Pharm Res. 1990, 7: 49-53.
    [52] Harris D, Fell JT, Taylor DC, Lynch J, Sharma HL. GI transit of potential bioadhesive systems in the rat. J Controlled Release. 1990, 12: 55-65.
    
    
    [53] Greaves JL, Wilson CG. Treatment of disease of the eye with mucoadhesive delivery systems. Adv Drug Deliv Rev. 1993, 11: 349-383.
    [54] Chen GH, Hoffman AS, Kabra B, Randeri K. Temperature-induced gelation pluronic-g-poly (acrylic acid) graft copolymers for prolonged drug delivery to the eye. ACS Series. 1997, 680: 441-457.
    [55] Zimmer AK, Chetoni P, Saettone MF, Zerbe H, Kreuter J. Evaluation of pilocarpine-loaded albumin particles as controlled drug delivery systems for the eye 2.Co-administration with bioadhesive and viscous polymers. J Controlled Release. 1995, 33: 31-46.
    [56] Durrani AM, Farr SJ, Kellaway IW. Precorneal clearance of mucoadhesive microspheres from the rabbit eye. J Pharm Pharmacol. 1995, 47: 581-584.
    [57] Morimoto K, Morisaka K, Kamanda A. Enhancement of nasal absorption of insulin and calcitonin using polyacrylic acid gel. J Pharm Pharmacol. 1985, 37:134-136.
    [58] Fernandez-Urrusuno R, Calvo P, Remunan-Lopez C, Vila-Jato JL, Alonso MJ.Enhancement of nasal absorption of insulin using chitosan nanoparticles. Pharm Res.1999, 16:1576-1581.
    [59] Nagai T, Nishimoto Y, Narnbu N, Suzuki Y, Sekine K. Powder dosage forms of insulin for nasal administration. J Controlled Release. 1984, 1: 15-22.
    [60] Callens C, Remon JP. Evaluation of starch-maltodextrin-Carbopol 947P mixtures for the nasal delivery of insulin in rabbits. J Controlled Release. 2000, 66:215-220.
    [61] Bjork E, Edman P. Degradable starch microspheres as a nasal delivery system for insulin.Int J Pharm. 1988, 47:233-236.
    [62] Robinson JR, Bologna WJ. Vaginal and reproductive-system for the administration of 5-fluorouracil to cervical tissue. J Controlled Release. 1994, 35: 49-58.
    [63] Clark MA, Hirst BH, Jepson MA. Lectin-mediated mucosai delivery of drugs and microparticles. Adv Drug Deliv Rev. 2000, 43: 207-223.
    [64] Clark MA, Jepson MA, Simmons NL, Booth TA, Hirst BH. Differential expression of lectin-binding sites defines mouse intestinal M-cells. J Histochem Cytochem. 1993, 41:1679-1687.
    [65] Clark MA, Jepson MA, simmons NL, Hirst BH. Selective binding and transcytosis of Ulex europaeus 1 lectin by mouse Peyer's patch M-cells in vivo. Cell Tissue Res. 1995,282:455-461.
    [66] Giannasca PJ, Giannasca KT, Falk P, Gordon JI, Neutra MR. Reginal differences in glycoconjugates of intestinal M cells in Mice: potential targets for mucosal vaccines. Am J Physiol. 1994, 267: G1108-G1121.
    [67] Foster N, Clark MA, Jepson MA, Hirst BH. Ulex europaeus 1 lectin targets microspheres to mouse Peyer's patch M-cells in vivo. Vaccine. 1998, 16: 536-541.
    [68] Irache JM, Durrer C, Duchene D, Ponchel G. In vitro study of lectin-latex conjugates for specific bioadhesion. J Controlled Release. 1994, 31:181-188.
    [69] Irache JM, Durrer C, Duchene D, Ponchel G. Bioadhesion of lectin-latex conjugates to rat intestinal mucosa. Pharm Res. 1996, 13: 1716-1719.
    [70] Hussain N, Jani PU, Florence AT. Enhanced oral uptake of tomato lectin-conjugated nanoparticles in the rat. Pharm Res. 1997, 14:613-618.
    
    
    [71] Hinchcliffe M, Illum L. Intranasal insulin delivery and therapy. Advanced Drug Delivery Reviews, 1999, 35:199-234
    [72] Illum L. Nasal delivery of peptides, factors affecting nasal absorption, in:DJA Crommelin,KK Midha(Eds.), Topics in pharmaceutical Science, Medpharm Scientific, Stuttgart, 1992,pp71-88
    [73] Dondeti P, Zia H, Needham TE. Bioadhesive and formulation parameters affecting nasal absorption. Int J Pharm. 1996, 127:115-133.
    [74] Morimoto K, Morisaka, Kamanda A. Enhancement of nasal absorption of insulin and calcitonin using polyacrylic acid gel. J Pharm Pharmacol, 1985, 37:134-136
    [75] Hirai S, Yashiki, T, Mima H. Effect of surfactants on the nasal absorption of insulin in rats.Int J Pharm, 1981, 9:165-172
    [76] Hirata Y, Yokosuka T, Kasahara T, Kikuchi M, Ooi K. Nasal adminstration of insulin in patients with diabetes, in: Baba S, Kaneko T, Yanaihara C. proceedings of the symposium on proinsulin, insulin and C-peptide. Tokushima, July 1978, Excerpta Medica,Amsterdam, 1979, pp319-326
    [77] Illum L, Farraj NF, Critchley H, Johansen BR, Davis SS. Enhanced nasal absorption of insulin in rats using lysophospatidylcholine, Int J Pharm, 1989, 57:49-54
    [78] Hersey SJ, Jackson RT. Effect of bile salts on nasal permeability in vitro. J Pharm Sci,1987, 76:876-879
    [79] Merkus FWHM, Schiepper NGM, Hermens WAJJ, Romeijin VSG, Verhoef JC.Absorption enhancers in nasal drug delivery: efficacy and safety. J Control Release, 1993,24:201-208
    [80] Verhoef JC, Merkus FWHM. Nasal absorption enhancers: relevance to drug delivery. In:deboer A(Bert)G.(Eds.)Drug Absorption Enhancement:Concepts, Possibility,Limitations and Trends. Harwood Academic Publishers, Singapore, 1994, pp119-153
    [81] Illum L, Farraj NF, Davis SS. Chitosan as a novel nasal delivery system of peptide drugs.Pharm Res. 1994, 11:1186-1189.
    [82] Aspden TJ, Illum, L, Skaugrud φ. Chitosan as a nasal delivery system: evaluation of insulin absorption enhancement and effect on nasal membrane integrity using rat models.Eur J Pharm Sci. 1996, 4:23-31.
    [83] McEwan GTA, Jepson MA, Hirst BH, Simmons NL. Polycation-induced enhancement of epithelial paracellular permeability is independent of tight junctional characteristics.Biochim Biophys Acta. 1993, 1148: 51-60.
    [84] Natsume H, Iwata S, Ohtake K, Miyamoto M, Yamaguch M, Hosoya K-I, Kobayashi D,Sugibayashi K, Morimoto Y. Screening of cationic compounds as an absorption enhancer for nasal drug delivery. Int J Pharm. 1999, 185: 1-12.
    [85] Schipper NGM, Olson S, Hoogstraate JA, deBoer AG, Varum KM, Artursson P.Chitosans as absorption anhancers for poorly absorbable drugs 2: mechanisms of absorption enhancement. Pharm Res, 1997, 14:923-929
    [86] Artursson P, Lindmark T, Davis SS, Illum L. Effect of chitosan on the permeability of monolayers of intestinal epithelial cells (Caco-2). Pharm Res. 1994, 11: 1358-1361.
    [87] Borchard G, Luessen HL, de Boer AG, Verhoef JC, Lehr CM, Junginger HE. The potential of mucoadhesive polymers in enhancing intestinal peptide drug absorption. Ⅲ.
    
    Effect of chitosan-glutamate and carbomer on epithelial tight junctions in vitro. J Controlled Release, 1996, 39:131-138.
    [88] Kotze AF, Luepen HL, de Leeuw BJ, de Boer AG, Verhoef JC, Junginger HE.N-trimethyl chitosan chloride as a potential absorption enhancer across mucosal surface: in vitro evaluation in intestinal epithelial cells (Caco-2). Pharm Res, 1997, 14:1197-1202.
    [89] Fuse N, Matsuda S, Iwata H, Ikada Y. Bioadhesive medical materials comprising carboxyl group-introduced gelatins and their manufacture. Jpn. Kokai Tokyo Koho, JP 11 239610 (99 239610). 1999.
    [90] Weiner ML, Kotkoskie LA. Drugs and the Pharmceutical Science: Excipient toxicity and safety, Marcel Dekker, 1999, Inc. V103, pp69-70
    [91] Zekorn D. modified gelatin as plasma substibutes. Biol Haematol. 1969, 33:30-60.Int J Pharm 2001,213(1-2)103-16
    [92] Nakayama Y, Matsuda T. Photocurable surgical tissue adhesive glues composed of photoreactive gelatin and poly(ethylene glycol) diacrylate. J Biomed Mater Res 1999;48(4):511-21.
    [93] Kosmala JD, Henthorn DB, Brannon-Peppas L. Preparation of interpenetration networks of gelatin and dextran as degradable biomaterials. Biomaterials, 2000,21(20):2019-2023.Jizomoto H. Phase separation induced in gelatin-base coacervation systems by addition of water-soluble nonionic polymers I:Microencapsulation. J Pharm Sci, 1984,73(7):879-82.
    [94] Van Den Bulcke AI, Bogdanov B, De Rooze N, et al. Structural and rheological properties of methacrylamide modified gelatin hydrogels. Biomacromolecules, 2000,1(1):31-38
    [95] Edwards-levy F, Andry MC, Levy M-C. Determination of free amino group content of serum albumin microcapsules using trinitrobenzenesulfonic acid: effect of variations in polycondensation pH. Int J Pharm. 1993, 96:85-90.
    [96] Habeeb AFSA. Determination of free amino groups in proteins by trinitrobenzenesulfonic acid. Anal Biochem. 1966, 14:328-336
    [97] Bubnis WA, Ofner Ⅲ CM. The determination of ε-amino groups in soluble and poorly soluble proteinaceous materials by a spectrophotometric method using trinitrobenzene-sulfonic acid. Anal Biochem. 1992, 207:129-133.
    [98] Leo E, Vandelli M A, Cameroni R, Forni F. Doxorubicin-loaded gelatin nanoparticles stabilized by glutaraldehyde: involvement of the drug in the cross-linking process. Int J Pharm. 1997, 155:75-82.
    [99] Caramella C, Bonferoni MC, Rossi S, Ferrari F. Rheological and tensile tests for the assessment of polymer-mucin interactions. Eur J Pharm Biopharm, 1994,40(4):213-217.
    [100] Mortazavi SA, Carpenter BG, Smart JD. An investigation of the rheological behavior of the mucoadhesive/mucosal interface. Int J Pharm, 1992, 83:221-225.
    [101] Ambwani DS, Fort T. Pendent drop technique for measuring liquid boundary tensions. In Good RJ and Stromberg RR (Eds), Surface and Colloid Science, Vol 11, Plenum, New York, NY, 1979, pp93-115.
    [102] Van Oss CJ, Chaudhury MK, Good RJ. Estimation of the polar parameters of the surface tension of liquid by contact angle measurements on gels. J Colloid Interface Sci, 1989,128(2) :313-319.
    
    
    [103] Buckton G, Chandaria B. Consideration of adhesion to modified container walls, by surface energy and polarity data, and Lewis acid-Lewis base interactions, Int J Pharm,1993, 94:223-229.
    [104] Van Oss CJ, Chaudhury MK, Good RJ. Interfacial Lifshitz-van der Waals and polar interactions in macroscopic systems. Chem Rev, 1988, 88:927-941.
    [105] Jackson S J, Bush D, Washington N, Perkins AC. Effect of resin surface charge on gastric mucoadhesion and residence of cholestyramine. Int J Pharm. 2000, 205:173-181.
    [106] Morita T, Horikiri Y, Suzuki T, Yoshino H. Preparation of gelatin micmparticles by co-lyophilization with poly(ethylene glycol): characterization and application to entrapment into biodegradable microspheres. Int J Pharm 2001, 219(1-2): 127-37
    [107] Morimoto K, Katsumata H, Yabuta T, Iwanaga K, Kakemi M, Tabata Y, Ikada Y. Gelatin microspheres as a pulmonary delivery system: Evaluation of salmon calcitonin absorption. J Pharm Pharmacol 2000, 52:611-617.
    [108] Duquemin SJ, Nixon JR. The effect of surfactants on the microencapsulation and release of phenobarhitone from gelatin-acacia complex coacervate microeapsules.J Microencapsul 1986, 3(2):89-93
    [109] Tabata Y, Ikada Y, Morimoto K, Katsumata H, Yabuta T, Iwanaga K, Kakemi K. Surfactant-free preparation of biodegradable hydrogel microspheres for protein release. J Bioact Compat Mater. 1999, 14:371-384.
    [110] Tabata Y, Ikada Y. Synthesis of gelatin microsphere containing interferon. Pharm Res.1989, 6:422-427.
    [111] Mantle M, Allen A. A colorimetric assay for glycoproteins based on the periodic acid/schiff stain. Biochem Sec Tran. 1978, 6: 607-609.
    [112] Madsen F, Eberth K, Smart JD. A reheological evaluation of various mucus gels for use in in vitro mucoadhesion testing. Pharm Sci. 1996, 2: 563-566.
    [113] Rossi S, Ferrari F, Bonferoni MC, Caramella C. Characterization of chitosan hydrochloride-mucin interaction by means of viscosimetric and turbidimetric measurements. Eur J Pharm Sci. 2000, 10: 251-257.
    [114] Marttin E, Verhoef JC, Cullander C, Romeijin SG, Nagelkerke JF, Merkus FWHM.Confocal laser scanning microscopic visualization to rats: effects of absorption enhancers.Pharm Res, 1997, 14:631-637.
    [115] Quan YS, Hattori K, Lundborg E, Fujita T, Murakami M, Muranishi S, Yamamoto A.Effectiveness and toxicity screening of various absorption enhancers using Caco-2 cell monolayers. Biol Pharm Bull, 1998, 21:615-620.
    [116] Hirai S, Yashiki T, Mima H. Absorption of drugs from the nasal mucosa of rat. Int J Pharm. 1981, 7:317-325.
    [117] Schipper NGM, Olson S, Hoogstraate JA, deBoer AG, Varum KM, Artursson P.Chitosans as absorption enhancers for poorly absorbable drugs 2: mechanism of absorption enhancement. Pharm Res. 1997, 14: 923-929.
    [118] Schipper NGM, Varum KM, Artursson P. Chitosans as absorption enhancers for poorly absorbable drugs 1: influence of molecular weight and degree of acetylation on drug transport across human intestinal epithelial (Caco 2) cells. Pharm Res. 1996, 13:1686-1692.
    
    
    [119] Hirai S, Ikenaga T, Matsuzawa T. Nasal absorption of insulin in dogs. Diabetes. 1978, 27: 296-299.
    [120] Ohwaki T, Ando H, Kakimoto F, Uesugi K, Watanabe S, Miyake Y, Kayano M. Effects of dose, pH and osmolarity on nasal absorption of secretin in rats. Ⅱ.Histological aspects of the nasal mucosa in relation to the absorption variation due to the effects of pH and osmolarity. J Pharm Sci. 1987, 76, 695-698.
    [121] Dodane V, Khan MA, Merwin JR. Effect of chitosan on epithelial permeability and structure. IntJ Pharm. 1999, 182, 21-32.
    [122] Agu RU, Jorissen M, Willems T, Van den Mooter G, Kinget R, Augustigns P. Effects of pharmaceutical compounds on cilliary beating in human nasal epithelial cells: A comparative study of cell culture models. Pharm Res. 1999, 16: 1380-1385.
    [123] Ennis RD, Borden L, Lee WA. The effect of permeation enhancers on the surface morphology of the rat nasal mucosa: A scanning electron microscopy study. Pharm Res.1990, 7:468-475.
    [124] Tengamnuay P, Sahamethapat A, Sailasuta A, Mitra AK. Chitosan as nasal absorption enhancers of peptides: comparison between free amine chitosan and soluble salts. Int J Pharm. 2000, 197: 53-67.
    [125] Marttin E, Verhoef JC, Romeijin SG, Merkus FWHM. Effects of absorption enhancers on rat nasal epithelium in Vivo: Release of marker compounds in nasal cavity. Pharm Res,1995, 12(8):1151-1157.
    [126] Cornaz AL, Buri P. Nasal mucosa as an absorption barrier. Eur J Pharm Biopharm. 1994, 40(5):261-270
    [127] Rojanasakul Y, Wang LY, Bhat M, Glover DD, Malanga CJ, Ma JKH. The transport barrier of epithelia: A comparative study on membrane permeability and charge selectivity in the rabbit. Pharm Res. 1992, 9:1029-1034.
    [128] McMartin C, Hutchinson LEF, Hyde R, Peters GE. Analysis of structural requirements for the absorption of drugs and macromolecules from the nasal cavity. J Pharm Sci. 1987,76:535-540.
    [129] Wheatley MA, Dent J, Wheeldon EB, Smith PL. Nasal drug delivery: an in vitro characterization of transepithelial electrical properties and fluxes in the presence or absence of enhancers. J Controlled Release. 1988, 8:167-177.
    [130] Tabata Y, IkadaY. Protein release from gelatin matrics. Adv Drug Del Rev, 1998, 31:287-301.
    [131] Pereswetoff-Morath L, Edman P. Dextran microspheres as a potential nasal drug delivery system of insulin: in vitro and in vivo properties. Int J Pharm. 1995, 124:37-44.
    [132] Takenaga M, Serizawa Y, Azechi Y, Ochiai A, Kosaka Y, Igarashi R, Mizushima Y.Microparticle resins as a potential nasal drug delivery system for insulin. J Controlled release. 1998, 52:81-87.
    [133] Schipper NGM, Romeijin SG, Verhoef JC, Merdus FWHM. Nasal insulin delivery with dimethyl-β-cyclodextrin as an absorption enhancer in rabbits: powder more effective than liquid formulations. Pharm Res. 1993, 10: 682-686.
    [134] Lee VHL, Yamamoto A. penetration and enzymatic barriers to peptide and protein absorption. Adv Drug Deliv Rev, 1990, 4:171-207.
    
    
    [135] Ponirolli AE. Intranasal administration of calcitonin and other peptides: studies with different promoters. J Controlled Release. 1990, 13:247-251.
    [136] Shao Z, Mitra AK. Nasal membrane and intracellular protein release by bile salts and bile salt-fatty acid mixed micelles: correlation with facilitated nasal drug transport. Pharm Res,1992, 9:1184-1189.
    [137] Salzman R, Manson JE, Griffing GT. Intranasal aerosolized insulin: mixed meal studies and long-term use in type Ⅰ diabetes. New Engl J Med, 1985, 312:1078-1084.
    [138] Schipper NGM, Verhoef J, Romejin SG, Merkus FWHM. Absorption enhancers in nasal insulin delivery and their influence on nasal cilliary functioning. J Controlled Release.1992, 21:173-186.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700