金属离子与DNA碱基对相互作用的理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
核酸是最重要的生物大分子,是生物储存和传递信息的载体。金属离子不仅在核酸的生物合成、构象维持、功能发挥与调控等方面起着重要的作用,而且金属及其配合物与核酸相互作用还是开发抗癌药物、制造光谱探针及反应性探针、以及发展以DNA为基础的金属纳米器件技术的基础。因而,深入研究金属与核酸相互作用的化学本质成为了核酸研究的前沿课题之一。
     本文以DNA为研究对象,采用高级别量子化学计算程序并结合化学理论基础知识,对金属离子与DNA碱基对相互作用中存在的某些实验现象及问题进行了理论研究,并讨论了这种相互作用在相关生命现象的意义,主要内容有:
     1.从不同金属离子( Mg~(2+), Mn~(2+), Ni~(2+), Zn~(2+) )在GC Watson-Crick碱基对和GG r-Hoogsteen碱基对中鸟嘌呤碱基上金属离子最佳成键位点N7位成键的研究出发,采用密度泛函理论方法、高级电子相关方法以及AIM和NBO分析方法,较为深入探讨了这些金属离子存在下双螺旋DNA熔化温度Tm差异的根源。从金属离子作用前后碱基对结构、拓扑分析、电荷分布、相互作用能以及碱基对间氢键的差异、碱基对在不同金属离子作用前后形成碱基离子对能量的不同、不同金属离子在碱基骨架变化后配位数变化所需的能量补偿不同等方面的比较研究,结果表明决定不同金属离子存在下双螺旋DNA熔化温度Tm的差异主要是由于不同金属离子在碱基骨架变化后引起的配位数变化所需能量补偿不同所致。
     2.采用密度泛函理论方法、高级电子相关方法以及AIM和NBO分析方法,比较了不同金属离子(Na+、Mg~(2+)和Zn~(2+))在DNA的AT Watson-Crick碱基对大沟金属最佳位点N7位和小沟金属最佳位点N3位上配位后碱基的几何结构、电荷分布以及碱基对间氢键能的差异,讨论了DNA螺旋结构碱基在大沟和小沟中不同金属位点作用后碱基间氢键作用的差异。结果显示与孤立AT碱基对中氢键比较,水合金属离子配位于A( N3 )位与配位于A( N7 )位时对AT碱基对氢键的影响明显不同。水合金属离子与AT碱基对的A( N3 )位作用能够有效地增加碱基对间氢键的强度,因而处于DNA小沟位置中碱基A的N3位也可能是一个有潜力的金属抗癌药物化学疗法成键位点。
     3.采用密度泛函理论方法、高级电子相关方法以及AIM分析方法,从几何结构、相互作用能、临界点的电荷密度以及作用的净电荷等方面讨论了不同金属离子对G4聚合物结构稳定性的影响及G4聚合物对金属离子的选择性。通过在B3LYP/SDD以及MPWB95/6-31+G(d,p)和MP2/6-31G理论计算级别下,计算了金属离子在G4-MZ+-G4复合物(MZ+=Li~+、Na~+、K~+、Rb~+、Cs~+、Mg~(2+)、Ca~(2+)、Sr~(2+)、Ba~(2+))中分子间相互作用能的大小顺序,结果发现即使是采用水合能进行校正与否,都与实验结果相矛盾。对于G4-M~+-G4复合物,AIM分析表明在O-M~+相互作用临界点上电荷密度值ρb的大小顺序为K~+ > Na~+ > Li~+,也就意味着在G4-M~+-G4复合物中K~+比Na~+和Li~+要稳定,且与稳定性实验结果K~+ > Na~+ >> Li~+相一致,说明G4-MZ+-G4复合物对金属离子的选择性主要取决于“最佳适合尺寸”而不是相对水合自由能。
     4.采用B3LYP/6-31++G(d,p)理论方法,就碱基对(GC Watson-Crick碱基对、GG r-Hoogsteen碱基对及AT Watson-Crick碱基对)在水合金属离子作用前后的静电势变化进行了计算。从碱基对的静电势可知,金属正离子与碱基对可在多个位点成键。金属离子在碱基对负电势位点成键后,基本观测不到碱基对的负电势区,而正电势区扩大且正电势值增加。由此可推测金属离子作用碱基对前后其静电势的变化必然会改变碱基周围的微环境,从而引起相应结构、动力学与相关性质的改变。5.采用B3LYP/6-31++G(d,p)理论方法以及AIM理论分析,探讨了谷氨酸离子在蛋白质酪氨酸(Yz)硝化中的作用。就谷氨酸离子的存在对Yz性质的影响、对Yz·的形成机理以及谷氨酸离子如何引导·NO_2至Yz·附近以形成NT后可能的质子迁移机理等方面进行了研究。结果表明,Yz残基附近Glu离子存在能通过它与Yz残基形成氢键显著地影响Yz残基的电子性质;同时,Glu离子在Yz残基附近存在有助于形成稳定的中间复合物M1,并有利于引导硝化试剂到达Yz·的-OH邻位C原子上,这些作用主要依赖于N_(17)…O_(15)相互作用(此作用与·NO_2平面垂直)。此外,Glu残基在Yz残基附近的存在还有助于复合物M2通过双质子协同迁移得到更稳定的复合物M3,其中Glu离子作为质子开关催化了质子迁移,从理论上证实了实验结果,即在Yz的附近存在负价态残基,是决定硝化位点的关键。
As is well-known, genetic information is stored and duplicated in nucleic acids which can thus be considered as one of the most important molecules in our life. Metal cations have significant influence on the structure, dynamics and function of nucleic acids. The interaction between metal ions or metal ion adducts with the nucleic acid bases is the base of discovery of antitumor drugs, make of spectrum probes and reaction probes, and development of nanometer scale DNA-based device technology. Thus, it is fundamentally important to understand the chemical nature of interactions between metal cations with nucleic acid bases.
     In the present paper, we investigated the interaction between metal cations with DNA bases and DNA base pairs using the high-level quantum chemical computation methods. The main results are as follows:
     1. The different affinity of the studied metal cations (Mg~(2+), Zn~(2+), Mn~(2+), and Ni~(2+)) for the N7 position of guanine in GC WC or GG rH base pair has been quantitatively characterized using density functional theory (DFT), highly correlated treatments, AIM analysis, and NBO analysis to explore the origin of difference of the melting temperature of DNA when presenting different metal cations. From comparing the difference of the molecular structures, topological analysis, NBO analysis, the total interaction energies, and the hydrogen-bond interactions in base pairs between isolated nucleobases and metalated nucleobases; the energy differences of formation of the ion-pair between isolated nucleobases and metalated nucleobases; the difference of energy penalty for changing the coordination number of different metal cations–GC complexes with one or two water molecules in the second shell, we propose that the energy penalty for changing the coordination number of metal cation-necleobases complex seems to be dominant to explain the difference of the melting temperature of DNA when presenting different metal cations.
     2. We have numerically compared the changes of the hydrogen bonds in the AT base pair upon the hydrated metal cations(Na~+, Mg~(2+), and Zn~(2+))binding the adenine-N3 of AT or the adenine-N7 of AT base pair, using the electron density topological analysis and NBO analysis at B3LYP/6-31++G(d,p) level of theory, to discuss the differences of the hydrogen bonds when presenting the hydrated metal cations binding to major grooves or minor grooves of DNA. In comparison with the hydrogen bonds in the isolated AT case pair, the changes of the hydrogen bonds when presenting the hydrated metal cations at A-N3 position are different from those when presenting the hydrated metal cations at A-N7 position. Due to the much stronger hydrogen bond interaction when binding the hydrated metal cations to the N3 of adenine in AT, it is possible that the N3 position of adenine in minor groove of DNA can also be a potential target for platinum-based chemotherapy.
     3. We have quantified the binding energies between cations and G tetrad in G4-M~(Z+)-G4 (inter) complexes (M~(Z+)=Li~+, Na~+, K~+, Rb+, Cs+, Mg2+, Ca2+, Sr2+, and Ba2+) using DFT, highly correlated treatments, AIM analysis, and NBO analysis, to discuss the effect when presenting metal ions both in stabilization and destabilization of G-tetrad complexes and the origin of metal ions selectivity. On the basis of theoretical results, we found the stability order of the metal cations in the G4-M~+-G4 complexes obtained from supermolecule calculation method, whether it is corrected by the hydration energy or not, obviously conflicts with the experimental observations. According the topological analysis and relaxation energy sequence of G4-M~+-G4 complexes (M~+=Li~+, Na~+, and K~+), we proposed that the ion selectivity in the G tetraplexes is still dominated by the optimal fit of the cations not by relative energies of hydration.
     4. To gain insight into the effect of the electron density redistribution induced upon cation binding on the interaction between bases, we have compared the molecular electrostatic potential (ESP) computed by B3LYP/6-31++G(d,p) between GC Watson-Crick, GG r-Hoogsteen, and AT Watson-Crick base pairs with the counterpart metalated base pairs. According the ESP, there are many negative ESP sites around the isolated base pair where tend to bind with metal cations. After the hydrated metal cations binding with the N7 position of guanine in GC WC or GG rH base pair and the adenine-N7 of AT base pair, there are significant changes in ESP that the negative ESP charges are disappeared whereas the positive ESP charges are increased. It is worth noting that the changes of ESP in base pairing with hydrated metal cations may affect subtle environment of base pair and influence the structure, dynamics and function of nucleic acids.
     5. The influence of the local environment (water, histidine, or glutamate anion) on the properties of tyrosine and the process of 3-nitrotyrosine formation with the presence of glutamate residue have been investigated in detail at the B3LYP/6- 31++G(d,p) theory level. The results show that the presence of glutamate anion within a few angstroms from the tyrosine residue (a) may help the tyrosine more likely to ionize and more easily to form radical by acting as a proton acceptor; (b) may stabilize the intermolecular complex M1 and direct the nitro reagent to the two equivalent ortho carbons of the aromatic ring of tyrosine residues mainly by the N…O interaction whose geometry is found to be vertical with the plane of nitro due to the electrostatic interaction between N atom of·NO_2 and O atom of glutamate anion; (c) may assist to form the more stable complex M3 through the concerted double proton transfer, in which the glutamate residue acts as a proton switch to catalyze the proton transfer.
引文
[1] Frausto da Silva JJR, Williams RJP. The Biological Chemistry of the Elements. Oxford: Oxford University Press, 1991. P168-296.
    [2] Bertini I, Gray HB, Lippard SJ, et al. Bioinorganic Chemistry. Mill Valley, California: University Science Books, 1994. P141-441.
    [3] Lippard SJ, Berg JM. Principles of Bioinorganic Chemistry. Mill Valley, California: University Science Books, 1994. P56-224.
    [4] Bertini L, Sigel A, Sigel H, Editors. Handbook on Metalloproteins. New York: Marcel Dekker, 2001. P432-490.
    [5] Glusker JP, Katz AK, Bock CW. Metal Ions in Biological Systems. Rig. J., 1999, 16(2): 8-17.
    [6] Thomson AJ, Gray HB. Special Issue: Bioinorganic chemistry. Curr. Opin. Struct. Biol., 1998, 2(2): 155-302.
    [7]杨频,高飞.生物无机化学原理.第一版,北京:科学出版社,2002. P1-167.
    [8] Pan T, Long DM. Uhlenbeck OC. Divalent metal ions in RNA folding and catalysis. In: Gesteland RF, Atkins JF, editors. The RNA world. Cold Spring Harbor, New York: Cold Spring Harbor Laboratory Press, 1993. P271–302.
    [9] Rosenberg B, VanCamp L, Trosko JE, et al. Platinum compounds: a new class of potent antitumour agents. Nature, 1969, 222(5191): 385-386.
    [10] Ratner M, Ratner D. Nanotechnology: A Gentle Introduction to the next Big Idea. Upper Sadde River, NJ: Prentice Hall, 2002. P23-156.
    [11] Tour JM. Molecular Electronics: Commercial Insights, Chemistry, Devices, Architecture and Programming. New Jersey: River Edge, World Scientific, 2003. P34-89.
    [12] Dutta S. Electronic Transport in Mesoscopic Systems. Cambridge, U.K.: Cambridge University Press, 1997. P123-136.
    [13] Kawazoe Y, Kondow T, Ohno K, Editors. Clusters and Nanomaterials: Theory and Experiment. Berlin: Springer, 2002. P56-89.
    [14] Shack J, Jenkins RJ, Trompsett JM. The Interaction of Ions and Desoxypentose Nucleic Acid of Calf Thymus. J. Biol. Chem., 1953, 203: 373-387.
    [15] Felsenfeld G, Huang SL. Some effects of charge and structure upon ionic interactions of nucleic acids. Biochim. Biophys. Acta.,1961, 51: 19-32.
    [16] Sorokin VA, Valeev VA, Gladchenko GO, et al. Interaction of bivalent copper, nickel, manganese ions with native DNA and its monomers. Inorg. Biochem. 1996, 63(2): 79-98.
    [17] Hua E, Wang H, Yang P, et al. Studies on the interaction of Cu+ and Cu2+ with poly (I:C), Polyhedron. 1996, 15(12): 2067-2070.
    [18] Bui MN, Baek TJ, Seong GH. Gold nanoparticle aggregation-based highly sensitive DNA detection using atomic force microscopy. Analy. Bioanaly. Chem., 2007, 388(5-6): 1185-1190.
    [19] Gulanowski B, Swiatek J, Kozlowski H. Impact of chromium ions on. nucleoside triphosphates and nucleic acids. J. Inorg. Biochem., 1992, 48(4): 289-298.
    [20] Nakano S, Fujimoto M, Hara H, et al. Nucleic Acid Duplex Stability: Influence of Base Composition on Cation Effects. Nucleic Acid. Res., 1999, 27(14): 2957-2965.
    [21] Abrescia NGA, Malinina L, Fernandez LG, et al. Structure of the oligonucleotide d(CGTATATACG) as a site-specific complex with nickel ions. Nucleic Acids Res., 1999, 27(7): 1593-1599.
    [22] Egli M, Williams LD, Fredericks CA, et al. DNA-Nogalamycin Interactions. Biochemistry, 1991, 30(5): 1364-1372.
    [23] Coste F, Maligne JM, Serre L, et al. Crystal structure of a double-stranded DNA containing a cisplatin interstrand cross-link at 1.63 A resolution: hydration at the platinated site. Nucleic Acid. Res., 1999, 27(8): 1837-1846.
    [24] Takahara PM, Frederick CA, Lippard SJ. Crystal structure of the anticancer drug cisplatin bound to duplex DNA. J. Am. Chem. Soc., 1996, 118(49): 12309-12321.
    [25] McFail-Isom L, Shui X, Williams LD. Divalent Cations Stabilize Unstacked Conformations of DNA and RNA by Interacting with Base P Systems. Biochemistry, 1998, 47: 17105-17111.
    [26] Harper A, Brannigan JA, Buck M, et al. The Structure of d(TGCGCA)2 and aComparison to Other Z-DNA Hexamers. Acta Crystallogr. D, 1998, 54(6): 1273-1284..
    [27] Correl CC, Freeborn B, Moore PB, et al. Metals, motifs, and recognition in the crystal structure of a 5S rRNA domain. Cell, 1997, 91(5): 705-712.
    [28] Wang AHJ, Hakoshima T, van der Marel G, et al. AT base pairs are less stable than GC base-pairs in Z-DNA: the crystal structure of d(m5CGTAm5CG), Cell, 1984, 37(1): 321-331.
    [29] Egli M. DNA-Cation Interactions: Quo Vadis?. Chem. Biol., 2002, 9: 277-286.
    [30] Hunter WN, Brown T, Anand NN, et al. Structure of an adenine-cytosine base pair in DNA and its implications for mismatch repair. Nature, 1986, 320(6062): 552–555
    [31] Roitzsch M, Lippert B. Feasibility of a Two-Metal, Four-Purine Nucleobase Quartet Motif. Inorg. Chem., 2004, 43(18): 5483– 5485.
    [32] Schroder G, Lippert B, Sabat M, et al. Unusual hydrogen bonding patterns of N7 metallated, N1 deprotonated guanine nucleobases: acidity constants of cis-[Pt(NH3)2(Hegua)2]2+ and crystal structures of cis-[Pt(NH3)2(egua)2]·4H2O and cis-[Pt(NH3)2(egua)2]·Hegua·7H2O (Hegua = 9-ethylguanine). J. Chem. Soc., Dalton Trans., 1995: 3767-3775.
    [33] Schroder G, Sabat M, Baxter I, et al. cis-[Pt(NH3)2 (9-MeA-N7) (9-EtGH-N7)](PF6)2? 5H2O(9-MeA = 9-Methyladenine; 9-EtGH= 9-Ethylguanine): A Right-Handed Helicoidal Model Compound for the Intrastrand A,G Cross-Link in Duplex DNA. Inorg. Chem., 1997, 36(3): 490-493.
    [34] Schroder G, Kozelka J, Sabat M, et al. Model of the Second Most Abundant Cisplatin-DNA Cross-Link: X-ray Crystal Structure and Conformational Analysis of cis-[(NH3)2Pt(9-MeA-N7)(9-EtGH-N7)](NO3)·2H2O (9-MeA = 9-Methyladenine; 9-EtGH = 9-Ethylguanine). Inorg. Chem., 1996, 35(6): 1647-1652.
    [35] Hud NV, Feigon J. Localization of divalent metal ions in theminor groove of DNA A-tracts. J. Am. Chem. Soc., 1997, 119(24): 5756-5757.
    [36] Denisov VP, Halle B. Sequence-specific binding of counterions to B-DNA. Proc.Natl. Acad. Sci. USA, 2000, 97(2): 629-633.
    [37] Halle B, Denisov VP. Water and monovalent ions in the minor groove of B-DNA oligonucleotides as seen by NMR. Biopolymers, 2000, 48(4): 210–233.
    [38] Lippert B. Effects of N7 platinum binding on the hydrogen-bonding behavior of 9-ethylguanine. J. Am. Chem. Soc., 1981, 103(19): 5691-5697.
    [39] Yang D, van Boom SSGE, Reedijk J, et al. Structure and isomerization of an intrastrand cisplatin-cross-linked octamer DNA duplex by NMR analysis. Biochemistry, 1995, 34(39): 12912-12920.
    [40] Marzilli LG, Ano SO, Intini FP, et al. New Concepts Relevant to Cisplatin Anticancer Activity from Unique Spectral Features Providing Evidence That Adjacent Guanines in d(GpG), Intrastrand-Cross-Linked at N7 by a cis-Platinum(II) Moiety, Can Adopt a Head-to-Tail Arrangement. J. Am. Chem. Soc., 1999, 121(39): 9133-9142.
    [41] Grant CV, Frydman V, Harwood JS, et al. 59Co Solid-State NMR as a New Probe for Elucidating Metal Binding in Polynucleotides. J. Am. Chem. Soc., 2002, 124(16): 4458-4462
    [42] Lachenmann MJ, Ladbury JE, Dong J, et al. Why Zinc Fingers Prefer Zinc: Ligand-Field Symmetry and the Hidden Thermodynamics of Metal Ion Selectivity. Biochemistry, 2004, 43 (44): 13910 -13925.
    [43] Dupureur CM, Conlan LHA. Catalytically Deficient Active Site Variant of PvuII Endonuclease Binds Mg(II) Ions. Biochemistry, 2000, 39(35): 10921-10927.
    [44] Boerner LJK, Zaleski JM. Metal complex–DNA interactions: from transcription inhibition to photoactivated cleavage. Curr. Opin. Chem. Biol., 2005, 9:135–144.
    [45] Ahmad R, Arakawa H, Tajmir-Riahi HA. A Comparative Study of DNA Complexation with Mg(II) and Ca(II) in Aqueous Solution: Major and Minor Grooves Bindings. Biophy. J., 2003, 84(4): 2460–2466
    [46] Dorcier A, Dyson PJ, Gossens C, et al. Binding of Organometallic Ruthenium(II) and Osmium(II) Complexes to an Oligonucleotide: A Combined Mass Spectrometric and Theoretical Study. Organometallics, 2005, 24(9): 2114-2123.
    [47] Wang AHJ. Intercalative drug binding to DNA. Curr. Opin. Struct. Biol., 1992, 2:361–368.
    [48] Wang AHJ. X-ray crystallographic and NMR structural studies of anthracycline anticancer drugs: implication in drug design. In: Hurley L, Chaires B, Editors. Advance in DNA Sequence Specific Agents. Vol. 2. Greenwich: JAI Press, 1996: P59–100.
    [49] Krugh T. Drug-DNA interactions. Curr. Opin. Struct. Biol., 1994, 4: 351–364
    [50] Keniry MA, Shafer R. NMR studies of drug-DNA complexes. Methods Enzymol, 1995, 261: 575–604.
    [51] Wemmer D, Dervan PB. Targeting the minor groove of DNA. Curr. Opin. Struct. Biol., 1997, 7: 355–361.
    [52] Chaires JB. Drug-DNA interactions. Curr. Opin. Struct. Biol., 1998, 8: 314–320.
    [53] Mello JA, Lippard SJ, Essigmann JM. DNA Adducts of cis-Diamminedichloroplatinum(II) and Its Trans Isomer Inhibit RNA Polymerase II Differentially in vivo. Biochemistry, 1995, 34(45): 14783-14791.
    [54] Chifotides HT, Koshlap KM, Perez LM, et al. Novel binding interactions of the DNA fragment d(pGpG) cross-linked by the antitumor active compound tetrakis (mcarboxylato) dirhodium(II,II). J. Am. Chem. Soc., 2003, 125(35): 10714-10724.
    [55] Laughlan G, Murchie AIH, Norman DG, et al. The high-resolution crystal structure of a parallel-stranded guanine tetraplex. Science, 1994, 265(5157): 520-524.
    [56] Kang C, Zhang X, Ratliff R, et al. Crystal structure of four-stranded Oxytricha telomeric DNA. Nature, 1992, 356(6365): 126-131.
    [57] ?ket P, ?Crnugelj M, Plavec J. Identification of mixed di-cation forms of G-quadruplex in solution. Nucleic Acids Res., 2005, 33(11): 3691-3697.
    [58] Paeschke K, Simonsson T, Postberg J, et al. Telomere end-binding proteins control the formation of G-quadruplex DNA structures in vivo. Nat. Struct. Mol. Biol., 2005, 12: 847-854.
    [59] Sun D, Thompson B, Cathers BE, et al. Inhibition of Human Telomerase by a G-Quadruplex-Interactive Compound. J. Med. Chem., 1997, 40(14): 2113-2116.
    [60] Kerwin SM. G-Quadruplex DNA as a Target for Drug Design. Curr. Pharm. Des., 2000, 6: 441-471.
    [61] Baker ES, Lee JT, Sessler JL, et al. Cyclo[n]pyrroles: Size and Site-Specific Binding to G-Quadruplexes. J. Am. Chem. Soc., 2006, 128(8): 2641-2648.
    [62] Detellier C, Laszlo P. Role of alkali metal and ammonium cations in the self-assembly of the 5'-guanosine monophosphate dianion. J. Am. Chem. Soc, 1980, 102(3): 1135-1141.
    [63] Xu Q, Deng H, Braunlin WH. Selective localization and rotational immobilization of univalent cations on quadruplex DNA. Biochemistry, 1993, 32(48): 13130-13137.
    [64] Deng H, Braunlin WH. Kinetics of Sodium Ion Binding to DNA Quadruplexes. J. Mol. Biol, 1996, 255(3): 476-483.
    [65] Hud NV, Smith FW, Anet FAL, et al. The Selectivity for K+ versus Na+ in DNA Quadruplexes Is Dominated by Relative Free Energies of Hydration: A Thermodynamic Analysis by 1H NMR. Biochmistry, 1996, 35(48): 15383-15390.
    [66] Hud NV, Schultze P, Feigon J, Ammonium Ion as an NMR Probe for Monovalent Cation Coordination Sites of DNA Quadruplexes. J. Am. Chem. Soc., 1998, 120(25): 6403-6404.
    [67] Neidle S, Parkinson G. Telomere maintenance as a target for anticancer drug discovery. Nat. Rev. Drug Discovery, 2002, 1: 383-393.
    [68] Hurley LH. DNA and its associated processes as targets for cancer therapy. Nat. Rev. Cancer, 2002, 2: 188-200.
    [69] Mergny JL, Riou JF, Mailliet P, et al. Natural and pharmacological regulation of telomerase. Nucleic Acids Res. 2002, 30(4): 839-865.
    [70] Pearson RG. Hard and Soft Acids and Bases. J. Am. Chem. Soc., 1963, 85(22): 3533-3539.
    [71] Parr RG, Pearson RG. Absolute hardness: companion parameter to absolute electronegativity. J. Am. Chem. Soc., 1983, 105(26): 7512-7516.
    [72] Sigel H, McCormick DB. Discriminating behavior of metal ions and ligands with regard to their biological significance. Acc. Chem. Res., 1970, 3(6): 201-208.
    [73] Martin RB. A stability ruler for metal ion complexes. J. Chem. Educ., 1987, 64(5): 402.
    [74] Glusker JP. Structural aspects of metal liganding to functional groups in proteins. Adv. Protein Chem., 1991: 42:1-76.
    [75] Rul?ek L, Vondrásek J. Coordination geometries of selected transition metal ions (Co2+, Ni2+, Cu2+, Zn2+, Cd2+, and Hg2+) in metalloproteins. J. Inorg. Biochem. 1998, 71(3-4): 115-127.
    [76] Frisch MJ, Trucks GW, Schlegel HB, et al. Gaussian 03, Revision A.11; Pittsburgh, PA: Gaussian, Inc., 2003.
    [77] Werne HJ, Knowles PJ, Amos RD, et al. MOLPRO, version 2006.1, 2006.
    [78] Schmidt MW, Baldridge KK, Boatz JA, et al. General atomic and molecular electronic structure system. J. Comput. Chem., 1993, 14(11): 1347-1363.
    [79] Andersson K, Barysz M, Bernhardsson A, et al. MOLCAS Version 5.2, Lund University, Sweden, 2001.
    [80] Helgaker T, Jensen HJA, J?rgensen P, et al. Dalton, a molecular electronic structure program, Release 1.2, 2001,
    [81] Pearlman DA, Case DA, Caldwell JW, et al. AMBER, a package of computer programs forapplying molecular mechanics, normal mode analysis, molecular dynamics and free energy calculations to simulate the structural and energetic properties of molecules. Comp. Phys. Commun., 1995, 91:1.
    [82] CPMD, Copyright IBM Corp 1990-2001, Copyright MPI four Festk?orperforschung Stuttgart, 1997-2001.
    [83] MacKerell AD, Brooks B, Brooks CL, et al. CHARMM: The Energy Function and Its Parameterization with an Overview of the Program in The Encyclopedia of Computational Chemistry. In: Schleyer, PVR, editor. vol.1. Chichester: John Wiley & Sons, 1998: P271-277.
    [84] Kresse G, Hafner J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B, 1993, 47(1): 558-561.
    [85] Kresse G, Furthmüller FA. Efficiency of ab iniyio total energy calcilations for metals and semiconductors using a plane-wave basis set. J. Comput. Mat. Sci., 1996, 6(1): 15-50.
    [86] Kresse G, Furthmüller FA. Efficient iterative schemes for ab initio total-energycalculations using a plane-wave basis set. Phys. Rev. B, 1996, 54(16): 11169-11186.
    [87] Baerends EJ, Ellis DE, Ros P. Self-consistent molecular Hartree-Fock-Slater calculations I: The Computational Procedure. Chem. Phys., 1973, 2: 41-51.
    [88] Auffinger P, Westhof E. RNA hydration: three nanoseconds of multiple molecular dynamics simulations of the solvated tRNAAsp anticodon hairpin. J. Mol. Biol., 1997, 269(3): 326–341.
    [89] Auffinger P, Westhof E. Water and ion binding around r(UpA)12 and d(TpA)12 oligomers—comparison with RNA and DNA (CpG)12 duplexes. J. Mol. Biol., 2001, 305(5): 1057–1072.
    [90] Auffinger P, Westhof E. Water and ion binding around RNA and DNA (C,G)-oligomers. J. Mol. Biol., 2000, 300(5): 1113–1131.
    [91] Csaszar K, Spackova N, Stefl R, et al. Molecular dynamics of the frame-shifting pseudoknot from beet western yellows virus: the role of non-Watson–Crick base-pairing, ordered hydration, cation binding and base mutations on stability and unfolding. J. Mol. Biol., 2001, 313(5): 1073–1091.
    [92] Cheatham TE, Kollman PA. Molecular dynamics simulations highlights the structural differences among DNA:DNA, RNA:RNA, and DNA:RNA hybrid duplexes. J. Am. Chem. Soc., 1997, 119(21): 4805–4825.
    [93] Mocci F, Saba G. Molecular dynamics simulations of A·T-rich oligomers: sequence-specific binding of Nat in the minor groove of B-DNA. Biopolymers, 2003, 68(4): 471–485.
    [94] Korolev N, Lyubartsev AP, Laaksonen A, et al. On the competition between water, sodium ions, and spermine ion binding to DNA: a molecular dynamics computer simulation study. Biophys. J., 2002, 82(6): 2860–2875.
    [95] Lyubartsev AP, Laaksonen A. Molecular dynamics simulations of DNA in solutions with different counter-ions. J. Biomol. Struct. Dynam., 1998, 16(3): 579–592.
    [96] Feig M, Pettitt BM. Sodium and chlorine ions as part of the DNA solvation shell. Biophys. J., 1999, 77: 1769–1781.
    [97] Hamelberg D, McFail-Isom L, Williams LD, et al. Flexible structure of DNA: ion dependence of minor-groove structure and dynamics. J. Am. Chem. Soc., 2000, 122(43): 10513-10520.
    [98] Hamelberg D, Williams LD, Wilson DS. Influence of the dynamic positions of cations on the structure of the DNA minor groove: sequence-dependent effects. J. Am. Chem. Soc., 2001, 123(32): 7745–7755.
    [99] Bonvin AMJJ. Localisation and dynamics of sodium counterions around DNA in solution from molecular dynamics simulation. Eur. Biophys. J., 2000, 29(1): 57–60.
    [100] McConnell KJ, Beveridge DL. DNA structure: what’s in charge?. J. Mol. Biol., 2000,304(5): 803–820.
    [101] Young MA, Jayaram B, Beveridge DL. Intrusion of counterions into the spine of hydration in the minor groove of B-DNA: fractional occupancy of electronegative pockets. J. Am. Chem. Soc. 1997, 119(1): 59–69.
    [102] Reblova K, Spackova N, Stefl R, et al. Non-Watson– Crick basepairing and hydration in RNA motifs: molecular dynamics of 5 S rRNA loop E. Biophys. J., 2003, 84(6): 3564–3582.
    [103] Korolev N, Lyubartsev AP, Laaksonen A, et al. A molecular dynamics simulation study of oriented DNA with polyamine and sodium counterions: diffusion and averaged binding of water and cations. Nucl. Acids Res., 2003, 31(20): 5971–5981.
    [104] Auffinger P, Bielecki L, Westhof E. Symmetric K+ and Mg2+ Ion-binding Sites in the 5 S rRNA Loop E Inferred from Molecular Dynamics Simulations. J. Mol. Biol., 2004, 335(2): 555–571.
    [105] Lin CH, Patel DJ.. Structural basis of DNA folding and recognition in an AMP-DNA aptamer complex: distinct architectures but common recognition motifs for DNA and RNA aptamers complexed to AMP. Chem. Biol., 1997, 4(11): 817-832.
    [106] Spackova N, Berger I, Sponer J. Nanosecond Molecular Dynamics Simulations of Parallel and Antiparallel Guanine Quadruplex DNA Molecules. J. Am. Chem. Soc. 1999, 121(23): 5519-5534.
    [107]陈敏伯.《诺贝尔奖百年鉴》量子与理论化学卷.上海:上海科技教育出版社,2001. P1-140.
    [108] Del Bene J. Molecular orbital theory of the hydrogen bond : XXXII. The effect of H+ and Li+ association on the A---T and G---C pairs. J. Mol. Struct (THEOCHEM), 1985, 124(3-4): 201-212.
    [109] Sagarik KP, Rode BM. The Influence of Mg Ion on the Hydrogen Bonds of Adenine-Thymine Base Pair. Inorg. Chim. Acta., 1983, 78: 177-180.
    [110] Lipinski J. Intermolecular interactions, proton-transfer and charge-transfer transitions in biological hydrogen-bonded systems: thioguanine-cytosine, adenine-5-fluoro (bromo)-uracil, Mg2+-guanine-cytosine complexes and cis-Pt(NH3)22+-thioguanine (guanine). J. Mol. Struct. (THEOCHEM) 1989, 201: 87-98.
    [111] Hobza P, Sandorfy C. Perturbation of hydrogen-bonds in the adenine...thymine base pair by Na+, Mg2+, Ca2+ and NH4+ cations. J. Biomol. Struct. Dyn., 1985, 6: 1245-1254.
    [112] Basch H, Krauss M, Stevens WJ. Cation binding effect on hydrogen bonding. J. Am. Chem. Soc., 1985, 107(25): 7267-7271.
    [113] Anwander EHS, Probst MM, Rode BM. The influence of Li+, Na+, Mg2+, Ca2+, and Zn2+ ions on the hydrogen bonds of the Watson-Crick base pairs. Biopolymers, 1990, 29(4-5): 757-769.
    [114] Burda JV, Sponer J, Hobza P. Ab Initio Study of the Interaction of Guanine and Adenine with Various Mono- and Bivalent Metal Cations (Li+, Na+, K+, Rb+, Cs+; Cu+, Ag+, Au+; Mg2+, Ca2+, Sr2+, Ba2+; Zn2+, Cd2+, and Hg2+). J. Phys. Chem., 1996, 100(17): 7250-7255.
    [115] Carloni P, Andreoni W. Platinum-Modified Nucleobase Pairs in the Solid State: A Theoretical Study, J. Phys. Chem. 1996, 100(45): 17797-17800.
    [116] Stewart GM, Tiekink ERT, Buntine MA. Structural Aspects of the Coordination of Triethylphosphinegold(I) to 2-Thiouracil: A Comparison between Theory and Experiment. J. Phys. Chem.A, 1997, 101(29): 5368-5373.
    [117] Burda JV, Sponer J, Leszczynski J, et al. Interaction of DNA Base Pairs withVarious Metal Cations (Mg2+, Ca2+, Sr2+, Ba2+, Cu+, Ag+, Au+, Zn2+, Cd2+, and Hg2+): Nonempirical ab Initio Calculations on Structures, Energies, and Nonadditivity of the Interaction. J. Phys. Chem. B, 1997, 101(46): 9670-9677.
    [118] Sponer J, Burda JV, Sabat M. Interaction between the Guanine-Cytosine Watson-Crick DNA Base Pair and Hydrated Group IIa (Mg2+, Ca2+, Sr2+, Ba2+) and Group IIb (Zn2+, Cd2+, Hg2+) Metal Cations, J. Phys. Chem. A, 1998, 102(29): 5951-5957.
    [119] Gresh N, Sponer J. Complexes of Pentahydrated Zn2+ with Guanine, Adenine, and the Guanine-Cytosine and Adenine-Thymine Base Pairs. Structures and Energies Characterized by Polarizable Molecular Mechanics and ab Initio Calculations. J. Phys. Chem. B, 1999, 103(51): 11415-11427.
    [120] Sponer J, Sponer JE, Gorb L, et al. Metal-Stabilized Rare Tautomers and Mispairs of DNA Bases: N6-Metalated Adenine and N4-Metalated Cytosine, Theoretical and Experimental Views. J. Phys. Chem. A, 1999, 103(51): 11406-11413.
    [121] Mourik TV. First-principles quantum chemistry in the life sciences. Phil. Trans. R. Soc. Lond. A, 2004, 362: 2653–2670.
    [122] Müller-Dethlefs K, Hobza P. Noncovalent Interactions: A Challenge for Experiment and Theory. Chem. Rev., 2000, 100(1): 143-167.
    [123] Chasasiński G, Szczesniak MM. State of the Art and Challenges of the ab Initio Theory of Intermolecular Interactions. Chem. Rev., 2000, 100(11): 4227-4252.
    [124] Sponer JE, Burda JV, Leszczynki J, et al. Interaction of Metal Cations with Nucleic Acids and their Building Units, In: Sponer J, Lanka? F, editors. Computational Studies of RNA and DNA, In: Lesczynski J, editors. Challenges and advances in Computational Chemistry and Physic, Volume 2, The Netherlands: Springer, 2006: P389-410.
    [125] Matsui T, Shigeta Y, Hirao K. Influence of Pt complex binding on the guanine-cytosine pair: A theoretical study. Chem. Phys. Lett. 2006, 423(4-6): 331-334.
    [126] Baik M, Friesner RA, Lippard SJ. Theoretical Study of Cisplatin Binging to Purine Bases: Why Does Cisplatin Prefer Guanine over Adenine?. J. Am. Chem. Soc.,2003, 125(46): 14082-14092.
    [127] Raber J, Zhu C, Eriksson LA. Theoretical Study of Cisplatin Binding to DNA: The Importance of Initial Complex Stabilization. J. Phys. Chem. B, 2005, 109(21): 11006-11015.
    [128] Robertazzi A, Platts JA. Hydrogen Bonding and Covalent Effects in Binding of Cisplaitin to Purine Bases: ab initio and Atoms in Molecules Studies. Inorg. Chem., 2005, 44(2): 267-274.
    [129] Burda JV, Sponer J, Leszezynski J. The influence of square planar platinum complexes on DNA base pairing. An ab initio DFT study. Phys. Chem. Chem. Phys., 2001, 3: 4404-4411.
    [130] Sponer J, Sabat M, Gorb L, et al. The Effect of Metal Binding to the N7 Site of Purine Nucleotides on Their Structure, Energy, and Involvement in Base Pairing. J. Phys. Chem. B, 2000, 104(31): 7535-7544.
    [131] Fonseca Guerra C, Bickelhaupt FM, Snijders JG, et al. Hydrogen Bonding in DNA Base Pairs: Reconciliation of Theory and Experiment. J. Am. Chem. Soc., 2000, 122(17): 4117-4128.
    [132] Musoz J, Sponer J, Hobza P, et al. Interactions of Hydrated Mg2+ Cation with Bases, Base Pairs, and Nucleotides. Electron Topology, Natural Bond Orbital, Electrostatic, and Vibrational Study, J. Phys. Chem. B, 2001, 105(25): 6051-6060.
    [133] Zeizinger N, Burda JV, Sponer J, et al. A Systematic ab Initio Study of the Hydration of Selected Palladium Square-Planar Complexes. A Comparison with Platinum Analogues. J. Phys. Chem. A, 2001, 105(34): 8086-8092.
    [134] Petrov AS, Lamm G, Pack GR. Water-Mediated Magnesium-Guanine Interactions. J. Phys. Chem. B, 2002,106(12): 3294-3300.
    [135] Rulí?ek L, Sponer J. Outer-shell and Inner-shell Coordination of Phosphate Group to Hydrated Metal Ions (Mg2+, Cu2+, Zn2+, Cd2+) in the Presence and Absence of Nucleobase. The Role of Nonelectrostatic Effects. J. Phys. Chem. B, 2003, 107(8): 1913-1923.
    [136] Noguera M, Bertran J, Sodupe M. A Quantum Chemical Study of Cu2+ Interacting with Guanine-Cytosine Base Pairs. Electrostatic and Oxidative Effects onIntermolecular Proton-Transfer Processes. J. Phys. Chem. A, 2004, 108(2): 333-341.
    [137] Marincola FC, Denisov VP, Halle B. Competitive Na+ and Rb+ Binding in the Minor Groove of DNA. J. Am. Chem. Soc., 2004, 126(21): 6739-6750.
    [138] Petrov S, Lamm G, Pack GR. Calculations of Magnesium-Nucleic Acid Site Binding in Solution. J. Phys. Chem. B, 2004, 108(19): 6072-6081.
    [139] Sponer JE, Sychrovsky V, Hobza P, et al. Interactions of hydrated divalent metal cations with nucleic acid bases. How to relate the gas phase data to solution situation and binding selectivity in nucleic acids. J. Phys. Chem. Chem. Phys., 2004, 6: 2772-2780.
    [140] Martínez A. Theoretical study of guanine–Cu and uracil–Cu ?neutral, anionic, and cationic. Is it possible to carry out a photoelectron spectroscopy experiment?. J. Chem. Phys., 2005, 123: 24311-24314
    [141] Petrov AS, Funseth-Smotzer J. Pack GR. Computational study of dimethyl phosphate anion and its complexes with water, magnesium, and calcium. Int. J. Quantum Chem. 2005, 102(5): 645-655.
    [142] Sundaresan N, Pillai CKS, Suresh CH. Role of Mg2+ and Ca2+ in DNA Bending: Evidence from an ONIOM-Based QM-MM Study of a DNA Fragment. J. Phys. Chem. A, 2006, 110(28): 8826-8831.
    [143] Tai HC, Lim C. Computational Studies of the Coordination Stereochemistry, Bonding, and Metal Selectivity of Mercury. J. Phys. Chem. A, 2006, 110(2): 452-462.
    [144] Prado MAS, Garcia E, Martins JBL. Theoretical study of cytosine–Mg complex, Chem. Phys. Lett., 2006, 418(1-3): 264-267.
    [145] Kumar A, Mishra PC, Suhai S. Binding of Gold Clusters with DNA Base Pairs: A density Functional Study of Neutral and Anionic GC-Aun and AT-Aun (n=4-8) Complexes, J. Phys. Chem., 2006, 110(24): 7719-7727.
    [146] Tai H, Lim C. Computational Studies of the Coordination Stereochemistry, Bonding, and Metal Selectivity of Mercury. J. Phys. Chem. A, 2006, 110(2): 452-462
    [147] Sigel H. Acid-base properties of purine residues and the effect of metal ions: Quantification of rare nucleobase tautomers. Pure Appl. Chem., 2004, 76(10): 1869-1886.
    [148] Matsui T, Shigeta Y, Hirao K. Influence of Pt complex binding on the guanine–cytosine pair: A theoretical study, Chem. Phys. Lett. 2006, 423(4-6): 331-334.
    [149] Zhang Y, Huang K. On the interactions of hydrated metal cations (Mg2+, Mn2+, Ni2+, Zn2+) with guanine– cytosine Watson– Crick and guanine– guanine reverse-Hoogsteen DNA base pairs. J. Mol. Struc.(THEOCHEM), 2007, 812(1-3): 51-61.
    [150] Zhang Y, Huang K. The influence of the hydrated metal cations binding to adenine-N7 or adenine-N3 on the hydrogen bonding in adenine–thymine base pair: A comparative study. J. Mol. Struc.(THEOCHEM), 2007, 822(1-3): 57-64.
    [151] Gu J, Leszczynski J. A Remarkable Alteration in the Bonding Pattern: An HF and DFT Study of the Interactions between the Metal Cations and the Hoogsteen Hydrogen-Bonded G-Tetrad. J. Phys. Chem. A, 2000, 104(26): 6308-6313.
    [152] Gu J, Leszczynski J. Origin of Na+/K+ Selectivity of the Guanine Tetraplexes in Water: The Theoretical Rationale. J. Phys. Chem. A, 2002, 106(3): 529-532.
    [153] Kornberg A, Baker TA. DNA replication, New York: Freeman, 1992. P56-124.
    [154] Drake JH. The molecular basis of mutation. San Francisco: Holden-Day, 1970. P78-89.
    [155] Tamm C, Stazewski P. Replication Experiments with Nucleotide Base. Analogues Angew Chem. Int. Ed. Engl, 1990, 29(1): 36–57.
    [156] Soyfer VN, Potaman VN. Triple-helical nucleic acids. Berlin: Springer, 1996. P45-51.
    [157] Izatt RM, Christensen JJ, Rytting JH. Sites and theromodynamic quantities associated with proton and metal ion interaction with ribonucleic acid, deoxyribonucleic acid, and their constituent bases, nucleosides, and nucleotides. Chem. Rev, 1971, 71(5): 439-481.
    [158] Eichhorn GL. The effect of metal ions on the structure and function of nucleicacids. Adv. Inorg. Biochem. 1981, 3: 1-46.
    [159] Sanger W. Principles of Nucleic Acids Structure. New York: Springer-Verlag, 1984. P3-45.
    [160] Martin RB. Nucleoside Sites for Transition Metal Ion Binding. Acc. Chem. Res., 1985, 18(2): 32-38.
    [161] Sigel H. Interactions of metal ions with nucleotides and nucleic acids and their constituents. Chem. Soc. Rev., 1993, 22: 255-267.
    [162] Potaman VN, Soyfer VNJ. Divalent metal cations upon coordination to the N7 of purines differentially stabilize the PyPuPu DNA triplex due to unequal Hoogsteen-type hydrogen bond enhancement. Biomol. Struct. Dyn. 1994, 11(5): 1035-1040.
    [163] Sabat M, Lippert B. In: Sigel A, Sigel H, Editors. Metal ions in Bio. Systems. Vol. 33. New York: Marcel Dekker, Inc., 1996. P12-167.
    [164] Lippert B. Multiplicity of metal ion binding patterns to nucleobases. Coor. Chem. Rev., 2000, 200–202: 487–516.
    [165] Rodgers MT, Armentrout P. Noncovalent Interactions of Nucleic Acid Bases (Uracil, Thymine, and Adenine) with Alkali Metal Ions. Threshold Collision-Induced Dissociation and Theoretical Studies. J. Am. Chem. Soc., 2000, 122(35): 8548-8558.
    [166] Russo N, Toscano M, Grand A, Bond Energies and Attachments Sites of Sodium and Potassium Cations to DNA and RNA Nucleic Acid Bases in the Gas Phase. J. Am. Chem. Soc., 2001, 123(42): 10272-10279.
    [167] Pedersen D, Simard B, Martínez A, et al. Stabilization of an Unusual Tautomer of Guanine: Photoionization of Al-Guanine and Al-Guanine-(NH3)n. J. Phys. Chem. A, 2003, 107(33): 6464-6469.
    [168] Moussatova A, Vázquez MV, Martínez A, et al. Theoretical Study of the Structure and Bonding of a Metal-DNA Base Complex: Al-Guanine. J. Phys. Chem. A, 2003.107 (44), 9415–9421.
    [169] Vázquez MV, Moussatova A, Martínez A, et al. Solvation of Al-Guanine Complexes with NH3: A Theoretical Study, J. Phys. Chem. A, 2004, 108(27):5845-5850.
    [170]王新莹,纪鸣,李志果等.金属离子与DNA相互作用的研究进展,分析科学学报,2005,21(5): 557-562.
    [171] Nickol J, Rau DC. Zinc induces a bend within the transcription factor IIIA-binding region of the 5 S RNA gene. J. Mol. Biol. 1992, 228(4): 1115-1123.
    [172] Bernues J, Azorin F. In: Eckstein F, Lilley DMJ, Editors. Nucleic Acids and Molecular Biology. Vol. 9. Berlin: Springer-Verlag, 1995. P24-78.
    [173] Egli M, Gessner RV. Stereoelectronic effects of deoxyribose O4' on DNA conformation. Proc. Natl. Acad. Sci. U.S.A., 1995, 92(1): 180-184.
    [174] Lippert B. Effects of metal-ion binding on nucleobase pairing: stabilization, prevention and mismatch formation. J. Chem. Soc., Dalton Trans, 1997: 3971-3976.
    [175] Sigel RKO, Lippert B. PtII coordination to guanine-N7: enhancement of the stability of the Watson–Crick base pair with cytosine. Chem. Commun., 1999: 2167-2168.
    [176] Sigel RKO, Freisinger E, Lippert B. Effects of N7-Methylation, N7-Platination, and C8-Hydroxylation of Guanine on H-Bond Formation with Cytosine: Platinum Coordination Strengthens the Watson-Crick Pair. J. Biol. Inorg. Chem., 2000, 5: 287-299.
    [177] Mahnken RE, Billadeau MA, Nikonowicz EP, et al. Development of photo cis-platinum reagents. Reaction of cis-dichlorobis(1,10-phenanthroline)rhodium(III) with calf thymus DNA, nucleotides and nucleosides. J. Am. Chem. Soc., 1992, 114(24): 9253-9265.
    [178] Lui Y, Pacifico C, Natile G, et al. Antitumor trans Platinum Complexes can Form Cross-Links with Adjacent Purine Groups. Angew. Chem. Int. Ed., 2001, 40(7): 1226-1228.
    [179] Meiser C, Song B, Freisinger E, et al. The N3 position of N9-substituted adenine as a metal ion binding site: Structural and solution studies with PdII and PtII complexes of N6', N6', N9-trimethyladenine. Chem. Eur. J., 1997, 2: 388-398.
    [180] Amantia D, Price C, Shipman MA, et al. Minor Groove Site Coordination ofAdenine by Platinum Group Metal Ions: Effects on Basicity, Base Pairing, and Electronic Structure. Inorg. Chem., 2003, 42(9): 3047-3056.
    [181] Barry CG, Day CS, Bierbach U. Duplex-Promoted Platination of Adenine-N3 in the Minor Groove of DNA: Challenging a Longstanding Bioinorganic Paradigm. J. Am. Chem. Soc., 2005, 127(4): 1160-1169.
    [182] Eichhorn GL, Shin YA. Interaction of Metal Ions with Polynucleotides and Related Compounds. XII. The Relative Effect of Various Metal Ions on DNA Helicity. J. Am. Chem. Soc. 1968, 90(26): 7323-7328.
    [183] Narasimhan V, Bryan AM. Conformational effects on DNA polymers due to physiological concentrations of divalent metal ions. Inorg. Chim. Acta., 1984, 91: L39-L41.
    [184] Ross WS, Hardin CC. Ion-Induced Stabilization of the G-DNA Quadruplex: Free Energy Perturbation Studies. J. Am. Chem. Soc. 1994, 116(14): 6070-6080.
    [185] van Duijneveldt F, van Duijneveldt-van de Rijdt GCJM, van Lenthe JH. State of the Art in Counterpoise Theory. Chem. Rev., 1994, 94(7): 1873-1885.
    [186] Rak J, Szczeü?niak MM, Cha?asiński G, et al. The influence of O-H stretch and O...O distance on the many-body interactions in the cyclic water trimer. Pol. J. Chem., 1998, 72(7): 1505-1523.
    [187] Frisch MJ, Head-Gordon M, Pople JA. A direct MP2 gradient method. Chem. Phys. Lett., 1990, 166(3): 275-280.
    [188] Frisch MJ, Head-Gordon M, Pople JA. Semi-direct algorithms for the MP2 energy and gradient. Chem. Phys. Lett., 1990, 166(3): 281-289.
    [189] Pople JA, Krishnan R, Schlegel HB, et al. Derivative studies in Hartree-Fock and M?ller-Plesset theories. Int. J. Quant. Chem. Symp., 1979, 513: 225-241.
    [190] Trucks GW, Salter EA, Sosa C, et al. Theory and implementation of the MBPT density matrix. An application to one-electron properties. Chem. Phys. Lett., 1988, 147(4): 359-366.
    [191] Trucks GW, Watts JD, Salter EA, et al. Analytical MBPT(4) gradients. Chem. Phys. Lett., 1988, 153(6): 490-495.
    [192] Krishnan R, Pople JA. Approximate fourth-order perturbation theory of theelectron correlation energy. Int. J. Quant. Chem., 1978, 14(1): 91-100.
    [193] M?ller C, Plesset MS. Note on an Approximation Treatment for Many-Electron Systems. Phys. Rev., 1934, 46(7): 618-622.
    [194] Cizek J. On the use of the cluster expansion and the technique of diagrams in calculations of correlation effects in atoms and molecules. Adv. Chem. Phys., 1969, 14: 35-89.
    [195] Purvis GD, Bartlett RJ. A full coupled-cluster singles and doubles model: The inclusion of disconnected triples. J. Chem. Phys., 1982, 76(4): 1910-1918.
    [196] Scuseria GE, Janssen CL, Schaefer III HF. An efficient reformulation of the closed-shell coupled cluster single and double excitation (CCSD) equations. J. Chem. Phys., 1988, 89(12): 7382-7387.
    [197] Scuseria GE, Schaefer III HF. Is coupled cluster singles and doubles (CCSD) more computationally intensive than quadratic configuration interaction (QCISD)?. J. Chem. Phys., 1989, 90(7): 3700-3703.
    [198] Pople JA, Head-Gordon M, Raghavachari K. Quadratic configuration interaction. A general technique for determining electron correlation energies. J. Chem. Phys., 1987, 87(10): 5968-5975.
    [199] Pople JA, Seeger R, Krishnan R. Variational Configuration Interaction Methods and Comparison with Perturbation Theory. Int. J. Quant. Chem. Symp., 1977, 11: 149-163.
    [200] Krishnan R, Schlegel HB, Pople JA. Derivative studies in configuration–interaction theory. J. Chem. Phys., 1980, 72(8): 4654-4655.
    [201] Raghavachari K, Pople JA. Calculation of one-electron properties using limited configuration interaction techniques. Int. J. Quant. Chem., 1981, 20(5): 1067-1071.
    [202] Parr RG, Yong W. Density-functional Theory of Atoms and Molecules. New York: Oxford University Press, 1989. P3-167.
    [203] Hohenberg P, Kohn W. Inhomogeneous Electron Gas. Phys. Rev., 1964, 136(3B): B864-B871.
    [204] Niu S, Hall MB. Theoretical Studies on Reactions of Transition-Metal Complexes. Chem. Rev., 2000, 100(2): 353-405.
    [205] Loew GH, Harris DL. Role of the Heme Active Site and Protein Environment in Structure, Spectra, and Function of the Cytochrome P450s. Chem. Rev., 2000, 100(2): 407-419.
    [206] Siegbahn PEM, Blomberg MRA. Transition-Metal Systems in Biochemistry Studied by High-Accuracy Quantum Chemical Methods. Chem. Rev., 2000, 100(2): 421-437.
    [207] Frenking G, Fr?hlich N. The Nature of the Bonding in Transition-Metal Compounds. Chem. Rev., 2000, 100(2): 717-774.
    [208] Hush NS, Reimers JR. Solvent Effects on the Electronic Spectra of Transition Metal Complexes. Chem. Rev., 2000, 100(2): 775-786.
    [209] Siegbahn PEM, Blomberg MRA. Density Functional Theory of Biologically Relevant Metal Centers. Annu. Rev. Phys. Chem., 1999, 50:221-249.
    [210] Guo H, Sirois S, Proynov EI, et al. In: Theoretical Treatments of Hydrogen Bonding. Had?i, D., Editor. Chichester: Wiley, 1997. P2-145.
    [211] Thomas H. The Calculation of Atomic Fields. Proc. Camb. Phil. Soc., 1927, 23: 542-548.
    [212] Fermi E. Un Metodo Statistico per la Determinazione di alcune Priorieta dell'Atome. Accad. Naz. Lincei, 1927, 6: 602-607.
    [213] Kohn W, Sham LJ. Self-consistent equations including exchange and correlation effects. Phys. Rev., 1965, 140(4A): A1133-A1138.
    [214] Koch W, Holthausen MC. A Chemistry’s Guide to Density Functional Theory. 2nd Edition. New York: Wiley, 2001. P1-124.
    [215] Bichelhaupt FM, Baerends EJ. In: Lipkowitz KB, Boyd DB, Editors. Reviews in Computational Chemistry. Vol. 15. New York: Wiley, 2000. P45-89.
    [216] Becke AD. Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A, 1988, 38(6): 3098-3100.
    [217] Becke AD. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys., 1993, 98(7): 5648-5652.
    [218] Lee C, Yang W, Parr RG. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B, 1998, 37(2):785-789.
    [219] Ditchfield R, Hehre WJ, Pople JA. Self-Consistent Molecular-Orbital Methods. IX. An Extended Gaussian-Type Basis for Molecular-Orbital Studies of Organic Molecules. J. Chem. Phys., 1971, 54(2): 724-728.
    [220] Hay PJ. Gaussian basis sets for molecular calculations. The representation of 3d orbitals in transition-metal atoms. J. Chem. Phys., 1977, 66(10): 4377-4384.
    [221] Raghavachari K, Trucks GW. Highly correlated systems. Excitation energies of first row transition metals Sc–Cu. J. Chem. Phys., 1989, 91(2): 1062-1065.
    [222] McGrath MP, Radom L. Extension of Gaussian-1 (G1) theory to bromine-containing molecules. J. Chem. Phys., 1991, 94(1): 511-516.
    [223] Curtiss LA, McGrath MP, Blaudeau JP, et al. Extension of Gaussian-2 theory to molecules containing third-row atoms Ga–Kr. J. Chem. Phys., 1995, 103(14): 6104-6113.
    [224] Boys SF, Bernardi F. The Calculation of Small Molecular Interaction by the Differences of Separate Total Energies: Some Procedures with Reduced Errors. Mol. Phys., 1970, 19(4): 553-566.
    [225] Salvador P. One- and two-center energy components in the atoms in molecules theory. Ph. D. Thesis, Girona: University of Girona, 2001. P15-56.
    [226] Mayer I. Towards a Chemical Hamiltonian. Int. J. Quantum Chem., 1983, 23(2): 341-363.
    [227] Tao FM, Klemperer W. Accurate ab initio potential energy surfaces of Ar–HF, Ar–H2O, and Ar–NH3. J. Chem. Phys., 1994, 101(2): 1129-1145.
    [228] Aziz RA. Interatomic potentials for rare gases: pure and mixed interaction, In: Klein ML, editor. Inert Gases, Berlin: Springer, 1984. P34-46.
    [229] Le Roy RJ, Hutson JM. Improved potential energy surfaces for the interaction of H2 with Ar, Kr, and Xe. J. Chem. Phys., 1987, 86(2): 837-853.
    [230] L?wdin PO. Quantum Theory of Many-Particle Systems. I. Physical Interpretations by Means of Density Matrices, Natural Spin-Orbitals, and Convergence Problems in the Method of Configurational Interaction. Phys. Rev., 1955, 97(6): 1474-1489.
    [231] Reed AE, Curtiss LA, Weinhold F. Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint. Chem. Rev., 1988, 88(6): 899-926.
    [232] Jensen F. Introduction to Computational Chemistry. New York: John wiley and Sons, 1999. P2-47.
    [233] Alml?f J, Taylor PR. Atomic natural orbital basis sets for LCAO calculations. Adv. Quantum Chem., 1992, 22: 301-373.
    [234] Reed AE, Weinhold F. Natural localized molecular orbitals. J. Chem. Phys., 1985, 83(4): 1736-1740.
    [235] Reed AE, Weinstock RB, Weinhold F. Natural population analysis. J. Chem. Phys., 1985, 83(2): 735-746.
    [236] Carpenter JE, Weinhold F. Analysis of the geometry of the hydroxymethyl radical by the“different hybrids for different spins”natural bond orbital procedure. J. Mol. Struct. (Theochem), 1988, 169: 41-62.
    [237] Hehre WJ, Radom L, Scheyer PVR, et al. Ab initio Molecular Orbital Theory. New York: John Willey & Sons, 1986. P3-89.
    [238] Bader RFW. Atoms in Molecules. A Quantum Theory. Oxford, U.K.: Clarendon, 1990. P2-78.
    [239] Popelier PLA. Atoms in Molecules. An Introduction. Harlow, U.K.: Pearson Education, 1999. P1-126.
    [240] Koch U, Popelier PLA. Characterization of C-H-O Hydrogen Bonds on the Basis of the Charge Density. J. Phys. Chem., 1995, 99(24): 9747-9754.
    [241] Popelier PLA. Characterization of a Dihydrogen Bond on the Basis of the Electron Density. J. Phys. Chem. A, 1998, 102(10): 1873-1878.
    [242] Sigel H, Song B, Oswald G, et al. Acid-base and metal-ion-binding properties of the quaternary cis-(NH3)2Pt(dGuo)(gGmp) complex formed between cis-diammineplatinum(II), 2’-deoxyguano sine (dGuo), and 2’-deoxyguanosine 5’-monophosphate (dGmp2-) in aqueous solution. Chem. Eur. J., 1998, 4(8): 1053-1060.
    [243] Sigel A, Sigel H, Editors. Metal Ions in Biological Systems: Interactions of Metal Ions with Nucleotides, Nucleic Acids, and their Constituents. Vol. 32. New York:Marcel Dekker, 1996. P214-345.
    [244] Teeter MM, Quigley GJ, Rich A. In: Spiro TG, Editor. Nucleic Acid–Metal Ion Interactions. New York: Wiley, 1980. P314-336.
    [245] Ke A, Zhou K, Ding F, et al. A conformational switch controls hepatitis delta virus ribozyme catalysis. Nature, 2004, 429(6988): 201-205.
    [246] Adams PL, Stahley MR, Kosek AB, et al. Crystal structure of a self-splicing group I intron with both exons. Nature, 2004, 430(6995): 45-50.
    [247] Krasovska MV, Sefcikova J, RéblováK, et al. Cations and Hydration in Catalytic RNA: Molecular Dynamics of the Hepatitis Delta Virus Ribozyme. Biophys. J., 2006, 91(2): 626-638.
    [248] Aoki K. In: Saenger W, Editor. Landoit–Bornstein, Group VII, Vol. 1, Subvol. b, part 2.5, Berlin, Germany: Springer-Verlag, 1989. P34-78.
    [249] Abrescia NGA, Malinina L, Fernandez LG, et al. Structure of the oligonucleotide d(CGTATATACG) as a site-specific complex with nickel ions. Nucleic. Acids Res., 1999, 27(7): 1593-1599.
    [250] Baeyens KJ, De bondt HL, Pardi A, et al. A curved RNA helix incorporating an internal loop with G·A and A·A non-Watson-Crick base pairing. Proc. Natl. Acad. Sci. USA, 1996, 93: 12851-12855.
    [251] Kankia BI. Hydration effects of Ni2+ binding to synthetic polynucleotides with regularly alternating purine–pyrimidine sequences. Nucleic Acids Res., 2000, 28: 911-916.
    [252] Robinson H, Gao YG, Sanishvili R, et al. Hexahydrated magnesium ions bind in the deep major groove and at the outer mouth of A-form nucleic acid duplexes. Nucleic Acids Res., 2000, 28: 1760-1766.
    [253] Soler-López M, Malinina L, Subirana JA. Solvent Organization in an Oligonucleotide Crystal: The Structure of d(GCGAATTCG)2 at atomic resolution. J. Biol. Chem., 2000, 275(30): 23034-23044.
    [254] Fraústo da Silva JJR, Williams RJP. In: The Biological Chemistry of the Elements. The Inorganic Chemistry of Life. Oxford, England: Clarendon Press, 1991. P23-68.
    [255] Christianson DW. Structural chemistry and biology of manganese metalloenzymes.Prog. Biophys. Mol. Biol., 1997, 67(2-3): 217-243.
    [256] Cotton FA, Wilkinson G. In: Advanced Inorganic Chemistry. A Comprehensive Text. Fourth editor. New York: John Wiley and Sons, 1980. P67-115.
    [257] Schramm VL. In: F.C. Wedler Editors. Manganese in Metabolism and Enzyme Function. New York: Academic Press, 1986. P21-74.
    [258] Bock CW, Katz AK, Markham GD, et al. Manganese as a Replacement for Magnesium and Zinc: Functional Comparison of the Divalent Ions. J. Am. Chem. Soc., 1999, 121(32): 7360-7372.
    [259] Hartwig A, Schlepegrell R, Beyersman D. Indirect mechanism of lead-induced genotoxicity in cultured mammalian cells. Mutat Res., 1990, 241(1): 75–82.
    [260] Kawanishi S, Inouc S, Yamamoto K. Site-specific DNA damage induced by nickel(II) ion in the presence of hydrogen peroxide. Carcinogenesis, 1989, 10(12): 2231-2235.
    [261] Kasperzak KS. In: Hadjitiadis ND Editor. Cytotoxic, Mutagenic and Carcinogenic Potential of Heavy Metals Related to Human environment. Dordrecht: Kluwer, 1997. P89-113.
    [262] Datta AK, Misra M, Lynn North S, et al. Enhancement by nickel(II) and L-histidine of 2'-deoxyguanosine oxidation with hydrogen peroxide. Carcinogenesis, 1992, 13(2): 283-287.
    [263] Brown ID. What factors determine cation coordination numbers?. Acta Crystallogr., 1988, B44: 545-553.
    [264] Gaullar V, Douhal A, Moreno M, et al. DNA Mutations Induced by Proton and Charge Transfer in the Low-Lying Excited Singlet Electronic States of the DNA Base Pairs: A Theoretical Insight. J. Phys. Chem. A, 1999, 103(31): 6251-6256.
    [265] Marcus Y. Ionic radii in aqueous solutions. Chem. Rev., 1988, 88(8): 1475-1498.
    [266] Feller D, Glendening ED, de Jong WA. Structures and binding enthalpies of M + (H2O)n clusters, M = Cu, Ag, Au. J. Chem. Phys., 1999, 110(3): 1475-1491.
    [267] Dudev T, Lim C. Tetrahedral vs Octahedral Zinc Complexes with Ligands of Biological Interest: A DFT/CDM Study. J. Am. Chem. Soc., 2000, 122(45): 11146-11153.
    [268] Miehlich B, Savin A, Stoll H, et al. Results obtained with the correlation energy density functionals of becke and Lee, Yang and Parr. Chem. Phys. Lett., 1989, 157(3): 200-206.
    [269] Sponer J, Burda JV, Sabat M, et al. Interaction of the Adenine-Thymine Watson-Crick and Adenine-Adenine Reverse-Hoogsteen DNA Base Pairs with Hydrated Group IIa (Mg2+, Ca2+, Sr2+, Ba2+) and IIb (Zn2+, Cd2+, Hg2+) Metal Cations: Absence of the Base Pair Stabilization by Metal-Induced Polarization Effects. J. Phys.Chem. B, 1999, 103(13): 2528-2534.
    [270] Sponer J, Burda JV, Leszczynski J, et al. Interactions of hydrated IIa and IIb group metal cations with thioguanine-cytosine DNA base pair: Ab initio and density functional theory investigation of polarization effects, differences among cations, and flexibility of the cation hydration shell. J. Biomol. Struct. Dyn., 1999, 17(1): 61-77.
    [271] Biegler-K?nig F, Sch?nbohm J, Bayles D. AIM2000. J. Comput. Chem., 2001, 22(5): 545-559.
    [272] Sponer J, Leszczynski J, Hobza P. Structures and Energies of Hydrogen-Bonded DNA Base Pairs. A Nonempirical Study with Inclusion of Electron Correlation. J. Phys. Chem., 1996, 100(5): 1965-1974;
    [273] Uchimaru T, Korchowiec J, Tsuzuki S, et al. Importance of secondary electrostatic interactions in hydrogen-bonding complexes: an investigation using the self-consistent charge and configuration method for subsystems. Chem. Phys. Lett., 2000, 318(1-3): 203-209.
    [274] Florián J, Leszczynski J. Spontaneous DNA Mutations Induced by Proton Transfer in the Guanine·Cytosine Base Pairs: An Energetic Perspective. J. Am. Chem. Soc., 1996, 118(12): 3010-3017.
    [275] Bertran J, Oliva A, Rodriguez-Santiago L, et al. Asymmetric O- and C-Alkylation of Phenols. J. Am. Chem. Soc., 1998, 120(4): 815-816.
    [276] Basile LA, Barton JK. Metallonucleases: real and artificial. Met. Ions Biol. Syst., 1989, 25: 31-103.
    [277] Fazakerley GV. Zinc Z-DNA. Nucleic Acids Res., 1984, 12(8): 3643-3648.
    [278] Taboury JA, Bourtayre P, Liquier J, et al. Interaction of Z form poly(dG-dC). poly(dG-dC) with divalent metal ions: localization of the binding sites by I.R. spectroscopy. Nucleic Acids. Res., 1984, 12(10): 4247-4258.
    [279] Zimmer C, Luck G, Triebel H. Conformation and reactivity of DNA. IV. Base binding ability of transition metal ions to native DNA and effect on helix conformation with special reference to DNA-Zn (II) complex. Biopolymers, 1974, 13(3): 425-453.
    [280] Jia X, Zon G, Marzilli LG. Multinuclear NMR investigation of zinc(2+) binding to a dodecamer oligodeoxyribonucleotide: insights from carbon-13 NMR spectroscopy. Inorg. Chem., 1991, 30(2): 228-239.
    [281] Froystein NA, Davis JR, Reid ER, et al. Sequence-selective metal ion binding to DNA oligonucleotides. Acta Chem. Scand., 1993, 47(7): 649-657.
    [282] Fusch EC, Lippert B. [Zn3(OH)2(1-MeC-N3)5(1-MeC-O2)3]4+(1-MeC =1-Methylcytosine): Structural Model for DNA Crosslinking and DNA Rewinding by Zn(II)? J. Am. Chem. Soc., 1994, 116(16): 7204-7209.
    [283] Dudev T, Lim C. Metal Selectivity in Metalloproteins: Zn2+ vs Mg2+. J. Phys. Chem. B, 2001, 105(19): 4446-4452.
    [284] Rulí?ek L, Havlas Z. Theoretical Studies of Metal Ion Selectivity. 1. DFT Calculations of Interaction Energies of Amino Acid Side Chains with Selected Transition Metal Ions (Co2+, Ni2+, Cu2+, Zn2+, Cd2+, and Hg2+). J. Am. Chem. Soc., 2000, 122(42): 10428-10439.
    [285] Williams KM, Scarcia T, Natile G, et al. Imprinting Structural Information from a GpG Ligand into the Configuration of a Chiral Diamine Ligand through Second-Sphere Communication in Platinum(II) Complexes. Inorg. Chem., 2001, 40(3): 445-454.
    [286] Lanir A, Yu NT. A Raman spectroscopic study of the interaction of divalent metal ions with adenine moiety of adenosine 5'-triphosphate. J. Biol. Chem., 1979, 254(13): 5882-5887.
    [287] Tajmir-Riahi HA, Marc L, Savoie R. A laser Raman spectroscopic study of the interaction of the methylmercury cation with AMP, ADP and ATP. Biochim.Biophys. Acta, 1988, 956(3): 211-216.
    [288] Masoud MS, Soayed AA, Ali AE. Complexing properties of nucleic-acid constituents adenine and guanine complexes. Spectrochimica Acta Part A., 2004, 60(8-9): 1907-1915.
    [289] Hossain Z, Huq FJ. Studies on the interaction between Cd2+ ions and nucleobases and nucleotides. J. Inorg. Biochem., 2002, 90(3): 97-105.
    [290] Duguid J, Bloomfiel VA, Benevides J, et al. Raman spectroscopy of DNA-metal complexes. 1. Interactions and conformational effects of the divalent cations: Mg, Ca, Sr, Ba, Mn, Co, Ni, Cu, Pd, and Cd. Biophy. J., 1993, 65: 1916-1928.
    [291] Egli M, Williams LD. DNA-nogalamycin interactions. Biochemistry. 1991, 30(5): 1364-1372.
    [292] Grigoratou A, Katsaros N. The interaction of transition metal ions with adenosine 5'-monophosphate. J. Inorg. Biochem., 1985, 24(2): 147-154.
    [293] Gellert RW, Bau R. Structure of the [platinum(ethylenediamine)(guanosine)2]2+ cation. J. Am. Chem. Soc., 1975, 97(25): 7379-7380.
    [294] Swaminathan V, Sundaralingam M. The crystal structures of metal complexes of nucleic acids and their constituents. CRC Crit. Rev. Biochem., 1979, 6(3): 245-336.
    [295] Shipman MA, Price C, Gibson AE, et al. Monomer, Dimer, Tetramer, Polymer: Structural Diversity in Zinc and Cadmium Complexes of Chelate-Tethered Nucleobases. Chem. Eur. J. 2000,6(23): 4371-4378.
    [296] Abd El Wahed MG, Metwally SM. Physical studies of some adenine complexes, Mater. Chem. Phy., 2003, 78(2): 299-303.
    [297] Abrescia NGA, Malinina L, Fernandez LG, et al. Structure of the oligonucleotide d(CGTATATACG) as a site-specific complex with nickel ions. Nucleic Acids Res., 1999, 27(7): 1593-1599.
    [298] Huq F, Peter MCR. Interaction between NiCl2 and nucleobases, nucleosides and nucleotides. J. Inorg. Biochem., 2000, 78(9): 217-226.
    [299] ?těpánek J, Kowalewski J, Mojze? JLP. Spectroscopic investigation of nickelcation binding with adenine mononucleotides: stability and structure of the 1:2 complex with adenosine 5'-monophosphate. J. Biol. Inorg. Chem., 1998, 3(5): 543-556.
    [300] Muntean CM, Misselwitz R, Dostál L, et al. Mn2+-DNA interactions in aqueous systems: A Raman spectroscopic study. Spectroscopy, 2006, 20(1): 29-35.
    [301] Fichtinger-Schepman AMJ, van der Veer JL, den Hartog JHJ, et al. Adducts of the antitumor drug cis-diamminedichloroplatinum(II) with DNA: formation, identification, and quantitation. Biochemistry, 1985, 24(3): 707-713.
    [302] Leng M, Brabec V. DNA adducts of cisplatin, transplatin and platinum-intercalating drugs. In: Hemminki K, Dipple A, Shuker DEG, et al. editors. DNA Adducts: Identification and Biological Significance. IARC Scientific Publications. No. 125. International Agency for Research on Cancer. France: Lyon, 2001. P154-167.
    [303] Brabec V, Sip M, Leng M. DNA conformational change produced by the site-specific interstrand cross-link of trans-diamminedichloroplatinum(II). Biochemistry, 1993, 32(43): 11676-11681.
    [304] Burda JV, Leszczynski J. How strong can the bend be on a DNA helix from cisplatin? DFT and MP2 quantum chemical calculations of cisplatin-bridged DNA purine bases. Inorg. Chem., 2003, 42(22): 7162-7172.
    [305] He Q, Zhou LX. Theoretical Study on the Interaction of Platinum Compounds with DNA Base Pairs. Acta. Phys. Chim. Sin., 2005, 21(8): 846-851.
    [306] Sponer JE, Leszynski J, GlahéF, et al. Protonation of Platinated Adenine Nucleobases. Gas Phase vs Condensed Phase Picture. Inorg. Chem., 2001, 40(14): 3269-3278.
    [307] Shui X, McFail-Isom L, Hu GG, et al. The B-DNA Dodecamer at High Resolution reveals a Spine of Water on Sodium. Biochemistry, 1998, 37(23): 8341-8355.
    [308] Tereshko V, Minasov G, Egli M. A "Hydrat-Ion" Spine in a B-DNA Minor Groove. J. Am. Chem. Soc., 1999,121(15): 3590-3595.
    [309] Hud NV, Polak M. DNA-cation interactions: the major and minor grooves are flexible ionophores. Curr. Opion. Struc. Biolo., 2001, 11(3): 293-301.
    [310] Howerton SB, Sines CC, Vanderveer D, et al. Locating Monovalent Cations in the Grooves of B-DNA. Biochemistry, 2001, 40(34): 10023-10031.
    [311] Mocci F, Laaksonen A, Lyubartsev A, et al. Molecular Dynamics Investigation of 23Na NMR Relaxation in Oligomeric DNA Aqueous Solution. J. Phys. Chem. B, 2004, 108(41): 16295-16302.
    [312] Hud NV, Sklenar V, Feigon J. Localization of ammonium ions in the minor groove of DNA duplexes in solution and the origin of DNA A-tract bending. J. Mol. Biol., 1999, 286(3): 651-660.
    [313] Hud NV, Feigon J. Characterization of Divalent Cation Localization in the Minor Groove of the AnTn and TnAn DNA Sequence Elements by 1H NMR Spectroscopy and Manganese(II). Biochemistry, 2002, 41(31): 9900-9910.
    [314] Shui X, Sines CC, McFail-Isom L, et al. Structure of the Potassium Form of CGCGAATTCGCG: DNA Deformation by Electrostatic Collapse around Inorganic Cations. Biochemistry, 1998, 37(48): 16877-16887.
    [315] Chiu TK, Kaczor-Greskowiak M, Dickerson RE. Absence of Minor Groove Monovalent Cations in the Crosslinked Dodecamer C-G-C-G-A- -T-T-C-G-C-G. J. Mol. Biol., 1999, 292(3): 589-608.
    [316] Tereshko V, Minasov G, Egli M. The Dickerson-Drew B-DNA Dodecamer Revisited at Atomic Resolution. J. Am. Chem. Soc., 1999, 121(2): 470-471.
    [317] Woods KK, McFail-Isom L, Sines CC, et al. Monovalent Cations Sequester within the A-Tract Minor Groove of [d(CGCGAATTCGCG)]2. J. Am. Chem. Soc., 2000, 122(7): 1546-1547.
    [318] Sines CC, McFail-Isom L, Howerton SB, et al. Cations Mediate B-DNA Conformational Heterogeneity. J. Am. Chem. Soc., 2000, 122(45): 11048-11056.
    [319] Marincola FC, Denisov VP, Halle B, Competitive Na+ and Rb+ Binding in the Minor Groove of DNA. J. Am. Chem. Soc., 2004, 126(21): 6739-6750.
    [320] Mahnken RE, Billadeau MA, Nikonowicz EP, et al. Development of photo cis-platinum reagents. Reaction of cis-dichlorobis(1,10-phenanthroline)rhodium(III) with calf thymus DNA, nucleotides and nucleosides. J. Am. Chem. Soc., 1992, 114(24): 9253-9265.
    [321] Lui Y, Pacifico C, Natile G, et al. Antitumor trans Platinum Complexes can Form Cross-Links with Adjacent Purine Groups. Angew. Chem. Int. Ed., 2001, 40(7): 1226-1228.
    [322] Meiser C, Song B, Freisinger E, et al. The N3 position of N9-substituted adenine as a metal ion binding site: Structural and solution studies with PdII and PtII complexes of N6',N6',N9-trimethyladenine. Chems. Eur. J., 1997, 3(3): 388-398.
    [323] Amantia D, Price C, Shipman MA, et al. Minor groove site coordination of adenine by platinum group metal ions: Effects on basicity, base pairing, and electronic structure. Inorg. Chem. 2003, 42(9): 3047-3056.
    [324] Van Garderen CJ, Van Houte LPA. The solution structure of a DNA duplex containing the cis-Pt(NH3)2[d(-GTG-)-N7(G), N7(G)] adduct, as determined with high-field NMR and molecular mechanics/dynamics. Eur. J. Biochem., 1994, 225(3): 1169-1179.
    [325] Fuertes MA, Alonso C, Pérez JM. Biochemical Modulation of Cisplatin Mechanisms of Action: Enhancement of Antitumor Activity and Circumvention of Drug Resistance. Chem. Rev., 2003, 103(3): 645-662.
    [326] Yang XL, Wang AH. Structural studies of atom-specific anticancer drugs acting on DNA. J. Pharmacol. Ther., 1999, 83(3): 181-215.
    [327] Sigel RKO, Lippert B. PtII coordination to guanine-N7: enhancement of the stability of the Watson-Crick base pair with cytosine. Chem. Commun., 1999: 2167-2168.
    [328] Sigel RKO, Freisinger E, Lippert B. Effects of N7-methylation, N7-platination, and C8-hydroxylation of guanine on H-bond formation with cytosine: platinum coordination strengthens the Watson-Crick pair. J. Biol. Inorg. Chem., 2000, 5(3): 287-299.
    [329] Rodgers MT, Armentrout PB. Noncovalent Interactions of Nucleic Acid Bases (Uracil, Thymine, and Adenine) with Alkali Metal Ions. Threshold Collision-Induced Dissociation and Theoretical Studies. J. Am. Chem. Soc., 2000, 122(35): 8548-8558.
    [330] Rodgers MT, Armentrout PB. Influence of d Orbital Occupation on the Binding ofMetal Ions to Adenine. J. Am. Chem. Soc., 2002, 124(11): 2678-2691.
    [331] Gibons AE, Price C, Clegg W, et al. Inner- and outer-sphere binding of the minor groove site of adenine by alkali metal ions. J. Chem. Soc. Dalton Trans., 2002: 131-133.
    [332] Kabelá? M, Hobza P. Na+, Mg2+, and Zn2+ Binding to All Tautomers of Adenine, Cytosine, and Thymine and the Eight Most Stable Keto/Enol Tautomers of Guanine: A Correlated ab Initio Quantum Chemical Study. J. Phys. Chem. B, 2006, 110(29): 14515-14523.
    [333] Cotton FA, Wilkinson G. In: Advanced Inorganic Chemistry. A Comprehensive Text. Fourth editor. New York: John Wiley & Sons, 1980. P2-121.
    [334] Alberts IL, Nadassy K, Wodak S. Analysis of zinc binding sites in protein crystal structures. J. Protein Sci., 1998, 7(8): 1700-1716.
    [335] Hud NV, Plavec JA. Unified Model for the Origin of Sequence-Directed Curvature. Biopolymers, 2003, 69: 144-158.
    [336] Green RD. Hydrogen Bonding by C–H Groups. London: MacMillan, 1974. P2-79.
    [337] Desiraju GR, Steiner T. The Weak Hydrogen Bond in Structural Chemistry and Biology. New York: Oxford University Press, 1999. P21-68.
    [338] Budiman ME, Alexander RW, Bierbach U. Unique Base-Step Recognition by a Platinum-Acridinylthiourea Conjugate Leads to a DNA Damage Profile Complementary to That of the Anticancer Drug Cisplatin. Biochemistry, 2004, 43(26): 8560-8567.
    [339] Zakian VA. Telomerase beginning to understand the end. Science, 1995, 270(5242): 1601-1607.
    [340] Neidle S, Parkinson G. Telomere maintenance as a target for anticancer drug discovery. Nat. Rev. Drug Discov., 2002, 1(5): 383-393.
    [341] Hurley LH. DNA and its associated processes as targets for cancer therapy. Nat. Rev. Cancer, 2002, 2: 188-200.
    [342] Mergny JL, Riou JF, Mailliet P, et al. Natural and pharmacological regulation of telomerase. Nucleic Acids Res., 2002, 30(4): 839-865.
    [343] Klobutcher LA, Swanton MT, Donini P, et al. All Gene-Sized DNA Molecules inFour Species of Hypotrichs Have the Same Terminal Sequence and an Unusual 3' Terminus. Proc. Natl.Acad. Sci. U.S.A., 1981, 78(5): 3015-3019.
    [344] Henderson ER, Blackburn EH. An overhanging 3' terminus is a conserved feature of telomeres. Mol. Cell Biol., 1989, 9(1): 345-348.
    [345] McElligott R, Wellinger RJ. The terminal DNA structure of mammalian chromosomes. EMBO J. 1997, 16(12): 3705-3714
    [346] Patel DJ, Bouaziz S, Kettani A, et al. In: Neidle S, Editor. Oxford Handbook of Nucleic Acid Structures, Oxford: Oxford University Press, 1999: 389-453.
    [347] Davis JT. G-Quartets 40 Years Later: From 5’-GMP to Molecular Biology and Supramolecular Chemistry. Angew. Chem. Int. Ed., 2004, 43: 668-698.
    [348] Phan AT, Kuryavyi V, Patel DJ. DNA architecture: from G to Z. Curr. Opin. Struct. Biol., 2006, 16(3): 288-298.
    [349] Paeschke K, Simonsson T, Postberg J, et al. Telomere end-binding proteins control the formation of G-quadruplex DNA structures in vivo. Nat.Struct. Mol. Biol., 2005, 12(10): 847-854.
    [350] Makarov VL, Hirose Y, Langmore JP. Long G-tails at both ends of human chromosomes suggest a C strand degradation mechanism for telomere shortening. Cell, 1997, 88(5): 657-666.
    [351] Wright WE, Tesmer VM, Huffman KE, et al. Normal human chromosomes have long G-rich telomeric overhangs at one end. Genes Dev., 1997, 11(21): 2801-2809.
    [352] Greider CW, Blackburn EH, Identification of a specific telomere terminal transferase activity in Tetrahymena extracts. Cell, 1985, 43(2 Pt 1): 405-413.
    [353] Kim NW, Piatyszek MA, Prowse KR. Specific association of human telomerase activity with immortal cells and cancer. Science, 1994, 266(5193): 2011-2015.
    [354] Zahler AM, Williamson JR, Cech TR, et al. Inhibition of telomerase by G-quartet DNA structures. Nature, 1991, 350(6320): 718-720.
    [355] Zaug AJ, Podell ER, Cech TR. Human POT1 disrupts telomeric G-quadruplexes allowing telomerase extension in vitro. Proc. Natl. Acad. Sci. U.S.A., 2005, 102(31): 10864-10869.
    [356] Oganesian L, Moon IK, Bryan TM, et al. Extension of G-quadruplex DNA byciliate telomerase. EMBO J., 2006, 25(5): 1148-1159.
    [357] Tohl J, Eimer W. Interaction of a G-DNA quadruplex with mono-and divalent cations - A force field calculation. Biophys. Chem., 1997, 67(1-3): 177-186.
    [358] Guschlbauer W, Chantot JF, Thiele D. Four-stranded nucleic acid structures 25 years later: from guanosine gels to telomer DNA. J. Biomol. Struct. Dyn., 1990, 8(3): 491-511.
    [359] Darlow JM, Leach DRF. Secondary structures in d(CGG) and d(CCG) repeat tracts. J. Mol. Biol., 1998, 275(1): 3-16.
    [360] Harrington C, Lan Y, Akman SA. The Identification and Characterization of a G4-DNA Resolvase Activity. J. Biol. Chem., 1997, 272(39): 24631-24636.
    [361] Phillips K, Dauter Z, Murchie AIH, et al. B. The crystal structure of a parallel-stranded guanine tetraplex at 0.95 angstrom resolution. J. Mol. Biol., 1997, 273(1): 171-182.
    [362] Nagesh N, Chatterji D. Ammonium ion at low concentration stabilizes the G-quadruplex formation by telomeric sequence. J. Biochem. Biophys. Methods, 1995, 30(1): 1-8.
    [363] Hardin CC, Henderson E, Watson T, et al. Monovalent Cation Induced Structural Transitions in Telomeric DNAs: G-DNA Folding Intermediates?. Biochemistry, 1991, 30(18): 4460-4472
    [364] Chen FM. Sr2+ Facilitates Intermolecular G-Quadruplex Formation of Telomeric Sequencest. Biochemistry, 1992, 31(15): 3769-3776.
    [365] Smirnov I, Shafer RH. Lead is Unusually Effective in Sequence-specific Folding of DNA. J. Mol. Biol., 2000, 296(1): 1-5.
    [366] Kotch FW, Fettinger JC, Davis JT. A Lead-Filled G-Quadruplex: Insight into the G-Quartet’s Selectivity for Pb2+ over K+. Org. Lett., 2000, 2(21): 3277-3280.
    [367] Shi X, Fettinger JC, Davis JT. Homochiral G-Quadruplexes with Ba2+ but Not with K+: The Cation Programs Enantiomeric Self-Recognition. J. Am. Chem. Soc., 2001, 123(27): 6738-6739.
    [368] Hardin CC, Watson T, Corregan M, et al. Cation-Dependent Transition between the Quadruplex and Watson-Crick Hairpin Forms of d( CGCG3GCG).Biochemistry, 1992, 31(3): 833-841.
    [369] Williamson JR. G-quartet structures on telomeric DNA. Annu. Rev. Biophys. Biomol. Struct., 1994, 23: 703-730.
    [370] Kerwin SM. G-Quadruplex DNA as a target for drug design. Curr. Pharm. Des., 2000, 6(4): 441-478.
    [371] Hovath MP, Schultz SC. DNA G-Quartets in a 1.86 ? Resolution Structure of an Oxytricha nova Telomeric Protein-DNA Complex. J. Mol. Biol., 2001, 310(2): 367-377.
    [372] Haider S, Parkinson GN, Neidle S. Crystal structure of the potassium form of an Oxytricha nova G-quadr uplex. J. Mol. Biol, 2002, 320(2): 189-200.
    [373] Parkinson GN, Lee MPH, Neidle S. Crystal structure of parallel quadruplexes from human telomeric DNA. Nature, 2002, 417(6891): 876-880.
    [374] Forman SL, Fettinger JC, Pieraccini S, et al. Toward Artificial Ion Channels: A Lipophilic G-Quadruplex. J. Am. Chem. Soc., 2000, 122(17): 4060-4067.
    [375] Deng J, Xiong Y, Sundaralingam M. X-ray analysis of an RNA tetraplex (UGGGGU)4 with divalent Sr2+ ions at subatomic resolution (0.61 A). Pro. Natl. Acad. Sci. U.S.A, 2001, 98(19): 13665-13670.
    [376] Williamson JR, Raghuraman MK, Cech TR. Monovalent cation-induced structure of telomeric DNA: the G-quartet model. Cell, 1989, 59(5): 871-880.
    [377] Sundquist WI, Klug A. Telomeric DNA dimerizes by formation of quanine tetrads between hairpin loops. Nature, 1989, 342(6251): 825-829.
    [378] Schaffitzel C, Berger I, Postberg J, et al. In vitro generated antibodies specific for telomeric guanine-quadruplex DNA react with Stylonychia lemnae macronuclei. Proc. Natl. Acad. Sci. U.S.A., 2001, 98(15): 8572-8577.
    [379] Meyer M, Hocquet A, Sühnel J. Interaction of Sodium and Potassium Ions with Sandwiched Cytosine-, Guanine-, Thymine-, and Uracil-Base Tetrads. J. Comput. Chem., 2005, 26(4): 352-364.
    [380] Zhao Y, Truhlar DG. Hybrid Meta Density Functional Theory Methods for Thermochemistry, Thermochemical Kinetics, and Noncovalent Interactions: The MPW1B95 and MPWB1K Models and Comparative Assessments for HydrogenBonding and van der Waals Interactions. J. Phys. Chem. A, 2004, 108(33): 6908-6918.
    [381] Zhao Y, Truhlar DG. Benchmark Databases for Nonbonded Interactions and Their Use To Test Density Functional Theory. J. Chem. Theory Comput., 2005, 1(3): 415-432.
    [382] Burgess J. Metal Ions in Solution. Chichester, U.K.: Eillis Horwood, Ltd., 1978. P145-184.
    [383] Wiberg KB, Bader RFW, Lau CDH. Theoretical analysis of hydrocarbon properties. 2. Additivity of group properties and the origin of strain energy. J. Am. Chem. Soc., 1987, 109(4): 1001-1012.
    [384] Cramer CJ. Essentials of Computational Chemistry: Theories and Models. West Sussex, England: Willy, 2002. P1-126.
    [385] Rulí?ek L, ?poner J. Outer-shell and Inner-shell Coordination of Phosphate Group to Hydrated Metal Ions (Mg2+, Cu2+, Zn2+, Cd2+) in the Presence and Absence of Nucleobase. The Role of Nonelectrostatic Effects. J. Phys. Chem. B, 2003, 107(8): 1913-1923.
    [386] Noguera M, Bertran J, Sodupe M. A Quantum Chemical Study of Cu2+ Interacting with Guanine-Cytosine Base Pairs. Electrostatic and Oxidative Effects on Intermolecular Proton-Transfer Processes. J. Phys. Chem. A, 2004, 108(2): 333-341.
    [387] Radi R. Nitric oxide, oxidants, and protein tyrosine nitration. Proc. Natl. Acad. Sci. U.S.A., 2004, 101(12): 4003-4008.
    [388] Greenacre SAB, Ischiropoulos H. Tyrosine nitration: localisation, quantification, consequences for protein function and signal transduction. Free Radic. Res., 2001, 34(6): 541-581.
    [389] Turko IV, Murad F. Protein nitration in cardiovascular diseases. Pharmacol. Rev., 2002,54(4): 619-634.
    [390] MacMillan-Crow LA, Crow JP, Kerby JD, et al. Nitration and inactivation of manganese superoxide dismutase in chronic rejection of human rental allografts. Proc. Natl. Acad. Sci. U.S.A., 1996, 93(21): 11853-11858.
    [391] Zou M, Martin C, Ullrich V. Tyrosine nitration as a mechanism of selective inactivation of prostacyclin synthase by peroxynitrite. Biol. Chem. Hoppe-Seyler, 1997, 378(7): 707-713.
    [392] Crow JP, Ye YZ, Strong M, et al. Superoxide dismutase catalyzes nitration of tyrosines by peroxynitrite in the rod and head domains of neurofilament-L. J. Neurochem., 1997, 69(5): 1945-1953.
    [393] Knapp LT, Kanterewicz BI, Hayes EL, et al. Peroxynitrite-induced tyrosine nitration and inhibition of protein kinase C. Biochem. Biophys. Res. Commun., 2001, 286(4): 764-770.
    [394] Searfoss GH, Jordan WH, Calligaro DO, et al. Adipsin, a Biomarker of Gastrointestinal Toxicity Mediated by a Functional -Secretase Inhibitor. J. Biol. Chem., 2001, 276(46): 46107-46116.
    [395] Roberts ES, Lin H, Crowley JR, et al. Peroxynitrite-mediated nitration of tyrosine and inactivation of the catalytic activity of cytochrome P450 2B1. Chem. Res. Toxicol., 1998, 11(9): 1067-1074.
    [396] Cassina A, Hodara R, Souza J. Cytochrome c Nitration by Peroxynitrite. J. Biol. Chem., 2000, 275(28): 21409-21415.
    [397] Vadseth C, Souza JM, Thomson L, et al. Pro-thrombotic state induced by post-translational modification of fibrinogen by reactive nitrogen species. J. Biol. Chem., 2004, 279(10): 8820-8826..
    [398] Balafanova Z, Bolli R, Zhang J, et al. Nitric Oxide (NO) Induces Nitration of Protein Kinase C (PKC ), Facilitating PKC Translocation via Enhanced PKC-RACK2 Interactions J. Biol. Chem., 2002, 277(17): 15021-15027.
    [399] Creighton TE. Proteins: Structure and Molecular Properties, New York: Freeman, 1993. P47-96.
    [400] Aulak KS, Miyagi M, Yan L, et al. Proteomic method identifies proteins nitrated in vivo during inflammatory challenge. Proc. Natl. Acad. Sci. USA, 2001, 98(21): 12056-12061.
    [401] Souza JM, Daikhin E, Yudkoff M, et al. Factors Determining the Selectivity of Protein Tyrosine Nitration. Arch. Biochem. Biophys., 1999, 371(2): 169-178.
    [402] Ischiropoulos H. Biological selectivity and functional aspects of protein tyrosine nitration. Biochem. Biophys. Res.Comm., 2003, 305: 776-783.
    [403] Berlett BS, Friguet B, Yim MB, et al. Peroxynitrite-mediated nitration of tyrosine residues in Escherichia coli glutamine synthetase mimics adenylylation: relevance to signal transduction. Proc. Natl. Acad. Sci. USA, 1996, 93(5): 1776-1780.
    [404] Ischiropoulos H, Zhu L, Chen J, et al. Peroxynitrite-mediated nitration of tyrosine catalyzed by superoxide dismutase. Arch. Biochem. Biophys. 1992, 298(2): 431-437.
    [405] MacMillan-Crow LA, Crow JP. Thompson JA, Peroxynitrite-mediated inactivation of manganese superoxide dismutase involves nitration and oxidation of critical tyrosine residues. Biochemistry, 1998, 37(6): 1613-1622.
    [406] Lin H, Zhang H, Waskell L, et al. The Highly Conserved Glu149 and Tyr190 Residues Contribute To Peroxynitrite-Mediated Nitrotyrosine Formation and the Catalytic Activity of Cytochrome P450 2B1. Chem. Res. Toxicol., 2005, 18(8): 1203-1210.
    [407] Lin H, Kent UM, Zhang H, et al. Mutation of tyrosine 190 to alanine eliminates the inactivation of cytochrome P450 2B1 by peroxynitrite. Chem. Res. Toxicol. 2003, 16: 129-136.
    [408] Svensson B, Vass I, Styring S. Sequence analysis of the D1 and D2 reaction center proteins of photosystem II. Z. Naturforsch., 1991, 46C(9-10): 765-766.
    [409] Svensson B, Etchebest C, Tuffery P, et al. A model for the photosystem II reaction center core including the structure of the primary donor P680. Biochemistry, 1996, 35(46): 14486-14502.
    [410] Hays AMA, Vassiliev IR, Golbeck JH, et al. Role of D1-His190 in proton-coupled electron transfer reactions in photosystem II: a chemical complementation study. Biochemistry, 1998, 37(32): 11352-11365.
    [411] Mamedov F, Sayre RT, Styrosineing S. Involvement of Histidine 190 on the D1 Protein in Electron/Proton Transfer Reactions on the Donor Side of Photosystem II. Biochemistry, 1998, 37(40): 14245-14256.
    [412] Berthomieu C, Hienerwadel R, Boussac A, et al. Hydrogen Bonding ofRedox-Active Tyrosine Z of Photosystem II Probed by FTIR Difference Spectroscopy. Biochemistry, 1998, 37(30): 10547-10554.
    [413] Chu HA, Nguyen AP, Debus RJ. Amino Acid Residues That Influence the Binding of Manganese or Calcium to Photosystem II. 1. The Lumenal Interhelical Domains of the D1 Polypeptide. Biochemistry, 1995, 34(17): 5839-5858.
    [414] Brennan ML, Wu W, Fu X, et al. A tale of two controversies: defining both the role of peroxidases in nitrotyrosine formation in vivo using eosinophil peroxidase and myeloperoxidase-deficient mice, and the nature of peroxidase-generated reactive nitrogen species. J. Biol. Chem., 2002, 277(20): 17415-17427.
    [415] Van der Vliet A, Eiserich JP, Halliwell B, et al. Formation of reactive nitrogen species during peroxidase-catalyzed oxidation of nitrite. A potential additional mechanism of nitric oxide-dependent toxicity. J. Biol. Chem., 1997, 272(12): 7617-7625.
    [416] Wu W, Chen Y, Hazen SL. Eosinophil peroxidase nitrates protein tyrosyl residues. Implications for oxidative damage by nitrating intermediates in eosinophilic inflammatory disorders. J. Biol. Chem., 1999, 274(36): 25933-25944.
    [417] Radi R, Denicola A, Alvarez B, et al. In: Ignarro L, editor. Nitric Oxide. San Diego: Academic, 2000: 57–82.
    [418] Williams PA, Cosme J, Sridhar V, et al. Mammalian microsomal cytochrome P450 monooxygenase: Structural adaptations for membrane binding and functional diversity. Mol. Cell. 2000, 5: 121-131.
    [419] Scott EE, White MA, He YA, et al. Structure of mammalian cytochrome P450 2B4 complexed with 4-(4-chlorophenyl)imidazole at 1.9-A resolution: insight into the range of P450 conformations and the coordination of redox partner binding. J. Biol. Chem., 2004, 279(26): 27294-27301.
    [420] Hasemann CA, Kurumbail RG, Boddupalli SS, et al. Structure and function of cytochromes P450: a comparative analysis of three crystal structures. Structure, 1995, 3(1): 41-62.
    [421] Pace CN, Horn G, Hebert EJ, et al. Tyrosine hydrogen bonds make a large contribution to protein stability. J. Mol. Biol., 2001, 312(2): 393-404.
    [422] Steiner T. Unrolling the hydrogen bond properties of CH...O interactions. Chem. Commun. 1997:727-734.
    [423] Wang Y, Balbuena PB. Associations of Alkyl Carbonates: Intermolecular CH···O Interactions. J. Phys. Chem. A, 2001, 105(43): 9972-9982.
    [424] Wang YN, Eriksson LA. B3LYP Studies of the Formation of Neutral Tyrosyl Radical Y*Z and Regeneration of Neutral Tyrosine YZ in PSII. Inter. J.Quantum. Chem., 2001, 83(2): 220-229.
    [425] Sun LC, Burkitt M, Tamm M, et al. Hydrogen-Bond Promoted Intramolecular Electron Transfer to Photogenerated Ru(III): A Functional Mimic of TyrosineZ and Histidine 190 in Photosystem II. J. Am. Chem. Soc., 1999, 121(29): 6834-6842.
    [426] O’Malley P. Hybrid Density Functional Studies of the Oxidation of Phenol-Imidazole Hydrogen-Bonded Complexes: A Model for Tyrosine Oxidation in Oxygenic Photosynthesis. J. Am. Chem. Soc., 1998, 120(45): 11732-11737.
    [427] Wozniak K, He H, Klinowski J, et al. Attractive Inter- and Intramolecular N…O Interactions in N, N-Dipicrylamine and Its Ionic Complexes. J. Phys. Chem., 1994, 98(51): 13755-13765.
    [428] Wozniak K, Mallinson PR, Wilson CC, et al. Charge Density Studies of Weak Interactions in Dipicrylamine. J. Phys. Chem. A, 2002, 106(29): 6897-6903.
    [429] Yin Z, Jiang L, He J, et al. The first observation of nitrogen–carbonyl bonding: self-assembly of N-oxalyl 2,4-dinitroanilide assisted by a weak N…O=C interaction. Chem. Commun., 2003: 2326-2327.
    [430] Cerqueiraa NMFSA, Fernandesa PA, Erikssonb LA, et al. New insights into a critical biological control step of the mechanism of ribonucleotide reductase. J. Mol. Struc. (Theochem), 2004, 709(1-3): 53-65.
    [431] Bottoni A, Lanza CZ, Miscione GP, et al. New Model for a Theoretical Density Functional Theory Investigation of the Mechanism of the Carbonic Anhydrase: How Does the Internal Bicarbonate Rearrangement Occur?. J. Am. Chem. Soc., 2004, 126(5): 1542-1550.
    [432] Harris TK, Cole RN, Comer FI, et al. Proton Transfer in the Mechanism of Triosephosphate Isomerase. Biochemistry, 1998, 37(47): 16828-16838.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700