镁及其合金氢化物吸放氢性能及电子机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
镁及其合金由于储氢量大、价格低廉、质量轻等而被认为是最具应用前景的储氢材料之一。然而,镁基储氢合金体系吸放氢温度高以及吸放氢速率相对缓慢限制了其实际应用。为改善镁及其合金氢化物较差的吸放氢热、动力学性能,人们在实验方面作了大量的改性研究,并取得了显著学术成果,而在吸放氢性能理论机制方面研究却较少。为致力于将镁及其合金氢化物发展为实际应用的储氢材料,本论文选择Mg,Mg_2Ni及两者的氢化物为研究对象,从理论计算与实验研究两方面,系统研究了Mg及其氢化物吸放氢的微观物理过程,吸放氢的催化机理,Mg_2Ni合金及其氢化物的组织结构、放氢性能及其微观电子机制。基于对Mg吸氢的微观物理过程模拟,研究了H_2分子在清洁Mg(0001)表面的吸附、解离及扩散性能,发现H_2在镁表面较差的解离能力以及H原子由表面向体内的缓慢扩散是镁及其储氢合金体系吸氢动力学缓慢的主要因素。
     考察了H_2分子在空位缺陷及Pd原子共吸附Mg(0001)表面的吸附、解离及扩散性能,发现表面空位缺陷的存在有利于增强Mg表面对H_2的物理吸附能力,并使H_2在Mg表面的解离能垒有所降低;而Pd原子共吸附于Mg(0001)表面,Pd则会与H_2产生较强的化学吸附作用,极大地降低了H_2的解离能垒;此外,表面空位缺陷的存在还为H原子向Mg体内扩散提供了更多通道,极大降低了H原子透过Mg表层的能垒。
     基于MgH_2放氢的微观物理过程模拟,研究了H_2分子在清洁、具有Mg原子空位及Pd原子掺杂MgH_2(001)/(110)表面的脱附、H原子在MgH_2表面及体内不同位置间的扩散性能,发现H原子在MgH_2表面结合成H_2而发生脱附的较高能垒是MgH_2体系放氢动力学缓慢的主要因素;而表面Mg原子空位缺陷及Pd原子掺杂均可明显降低H原子在MgH_2表面结合成H_2所需克服的能垒。
     提出过渡金属氧化物改善MgH_2体系放氢动力学主要来源于过渡金属元素与O元素共同作用的结果,选取实验上公认催化作用最为优异的TiO_2,V_2O_5与Nb_2O_5三种过渡金属氧化物,研究过渡金属Ti,V,Nb掺杂以及Mg原子空位对MgH_2体系放氢性能的影响,发现Ti,V,Nb掺杂MgH_2体系,其相结构稳定性降低,放氢性能提高;Mg原子空位的存在,使得MgH_2体系的相结构稳定性进一步降低;TiO_2,V_2O_5与Nb_2O_5利于改善MgH_2体系的放氢动力学,而Ti,V,Nb取代Mg所表现的催化作用占主导地位。
     构建NbH_x/MgH_2相界模型考察第二相氢化物NbH_x对MgH_2体系放氢性能的影响,发现NbH_x相的存在,使得相界模型中MgH_2相所包含的Mg,H原子均朝NbH_x/MgH_2相界处发生偏移,体现明显的“界面效应”,利于增强H原子在MgH_2体内扩散以及α-Mg形核的驱动力;NbH_x/MgH_2相界的结构稳定性明显差于MgH_2,NbH_x/MgH_2相界的存在利于MgH_2体系放氢能力的增强。研究了Mg_2Ni合金及其氢化物的结构特性及放氢性能,发现HT-Mg_2NiH_4比LT相具有更低的相结构稳定性及较强的放氢能力;HT/LT-Mg_2NiH_4氢化物的成键特性均为Ni-H间以混合的离子-共价键成键方式结合形成[NiH_4]~(4-)阴离子,而形成的[NiH_4]~(4-)阴离子又与Mg~(2+)阳离子间形成离子键。
     采用元素取代法研究了合金化效应对Mg_2NiH_4氢化物体系放氢性能的影响,并选择掺杂效果最为显著的Cu元素作为考察对象,通过机械合金化法在氢气氛下球磨2Mg-Ni与2Mg-0.75Ni-0.25Cu混合物体系,对其组织结构及放氢性能进行了研究,发现Al、Ti、Fe、Co、Cu部分取代Mg_2Ni中的Mg或Ni,均不同程度地削弱了Mg_2NiH_4氢化物体系的相结构稳定性;Al、Ti、Cu掺杂提高了Mg_2NiH_4氢化物体系的放氢能力,而Fe、Co掺杂则降低了该体系的放氢能力;Fe,Co元素掺杂之所以不能提高Mg_2NiH_4体系放氢性能的主要原因在于掺杂体系形成比Mg_2NiH_4更为稳定的Mg_2CoH_5与Mg_2FeH_6氢化物;进一步的实验研究发现,Cu掺杂不仅降低了Mg_2NiH_4体系的放氢温度,而且还加快了该体系的放氢速率,实验研究进一步证实了理论计算的可靠性与预测的准确性。
Magnesium and its alloys have been considered to be one of the most promising materials for hydrogen storage because of their high storage capacity, low cost and light weight. However, the high desorption temperature and slow sorption kinetics limit their pratical applications. In order to improve the hydrogenation/dehydrogenation thermodynamic and kinetics properties of Mg and its alloy hydrides, many modifying studies have been experimentally performed, and some remarkable academic achievements have been obtained. However, the theoretical mechanisms related to hydrogenation/dehydrogenation properties of Mg-based hydrogen storage alloys are scarce up to now. In order to design the adavanced practical magnesium-based hydrogen storage materials, Mg, Mg_2Ni as well as their respective hydrides are systematically investigated in this dissertation. Based on theoretical calculations and experimental investigations, the microphysical processes of H adsorption and desorption in Mg and its hydride systems, and the corresponding catalytic mechanisms are studied. Besides, the microstructures, dehydrogenation properties and micromechanisms of Mg_2Ni and its hydrides are also investigated.
     Based on the simulations of microphysical processes for the hydrogenation of Mg, the adsorption, dissociation and diffusion properties of H_2 on clean Mg (0001) surface are systematically investigated. It is found that the weak dissociation ability of H_2 and slow diffusion velocity of H from surface into bulk are the main rate-limiting steps for the adsorption kinetics of MgH_2 system.
     The adsorption, dissociation and diffusion of H_2 on vacancy defective and Pd atom coadsorption Mg (0001) surface are investigated systematically. The results show that vacancy defects benefit enhancing the physisorption interaction between H_2 and Mg surface, and the dissociation energy barrier of H_2 reduces to some extent. Whereas, for the Mg (0001) surface with Pd atom coadsorption, it is noted that there is a strong chemisorption interaction between the Pd atom and H_2 adsorbed, and the dissociation energy barrier of H_2 reduces remarkably. The vacancy defect on Mg (0001) surface not only benefits H atom diffusion in Mg bulk with relatively more diffusion paths compared with that of clean surface, but also decreases significantly the energy barrier of H penetrating the topmost layer Mg atoms.
     Based on the simulations of microphysical prosesses for the dehydrogenation of MgH_2, the hydrogen desorption properties from clean, Mg atom vavancy defective and Pd atom doping MgH_2(001)/(110) surfaces are investigated systematically. It is found that H recombination and desorption are the main rate-limiting steps for the dehydrogenation kinetics of MgH_2 system. Comparatively, Mg atom vacancy and doping Pd atom both benefit decreasing the energy barriers of H recombination on MgH_2 surface.
     It is put forward that the catalytic mechanisms of transition metal oxides improving the dehydrogenation properties of MgH_2 system mainly come from the catalytic effects of transition metal Tm and O element. TiO_2,V_2O_5 and Nb_2O_5, well-known experimentally as the most excellent catalysts, are chosen and the influences of Tm(Tm=Ti, V, Nb) doping atoms as well as Mg atom vacacny on the dehydrogenation properties and electronic structures of MgH_2 system are investigated. It is shown that Ti, V and Nb doping can weaken the structural stability of MgH_2 phase and is favorable for improvement of the dehydrogenation properties of MgH_2 system. Mg atom vacancy further decreases the structural stability of MgH_2 system. Comparatively, the substitutions of Mg for Ti, V and Nb play the major role in improving the dehydrogenation properities of MgH_2 system.
     The influences of second phase hydride NbH_x on the dehydrogenation properties of MgH_2 system are investigated by devising a supercell model of NbH_x/MgH_2 interface. The results show that NbH_x phase makes Mg and H atoms in MgH_2 phase move to the inferface, and the NbH_x/MgH_2 interface presents evident“interface effect”, enhancing the drive force of H diffusion in MgH_2 bulk and nucleation ofα-Mg phase. The NbH_x/MgH_2 interface weakens the structural stability of MgH_2 phase and improves the dehydrogenating properties of MgH_2 system.
     The structural characteristics and dehydrogenation properties of Mg_2Ni phase as well as its high/low temperature (HT/LT-) Mg_2NiH_4 hydrides are systematically investigated. It is found that HT-Mg_2NiH_4 presents a lower structural stability and higher dehydrogenation ability than LT phase. There is a mixed ionic-covalent bonding between Ni and H in [NiH_4]~(4-) anions embedded in the matrix of Mg~(2+) cations in both hydrides.
     By means of component substitution, the influences of alloying elements on the dehydrogenation properties of Mg_2NiH_4 hydride are investigated systematically. Following the theoretical calculations, 2Mg-Ni and 2Mg-0.75Ni-0.25Cu mixture powder are ball-milled at hydrogen atmosphere, and their microstructures and dehydrogenation properties are studied. It is found that Al, Ti, Fe, Co and Cu doping atoms are all found to weaken the stabilities of Mg_2NiH_4 hydrides. Al, Ti and Cu doping atoms improve the dehydrogenation abilities of Mg_2NiH_4 hydrides, whereas, the roles of Fe and Co doping atoms are reverse. Mg_2CoH_5 and Mg_2FeH_6 hydrides, which are more stable than Mg_2NiH_4, can easily form in the Mg_2NiH_4 systems with Fe or Co doping. This may be the main reason that Fe and Co doping Mg_2NiH_4 systems have worse dehydrogenation properties. The following experimental researches show that Cu doping not only decreases the desorption temperature of Mg_2NiH_4 system, but also elevates its dehydrogenation velocity. The experimental results further confirm the reliability of theoretical calculations as well as the accuracy of forecasting.
引文
[1]胡子龙.贮氢材料.北京:化学工业出版社,2002,9-10
    [2]张春香,石广新,关绍康等.储氢材料的研究进展.汽车工艺与材料, 2005, (5): 10-13
    [3] Johnston B,Mayo M C,Khare A.Hydrogen:the energy source for the 21st century. Technovation,2005,25(6):569-585
    [4]肖建民.论氢能源和氢能源系统.世界科技研究与发展,1997,19(1):82-86
    [5]周建伟.储氢材料的研究进展.化学教育,2008,29(1):5-15
    [6]李中秋,张文丽.储氢材料的研究发展现状.化工新型材料,2005,5(10):38-41
    [7] Schlapbach L,Züttel A.Hydrogen-storage materials for mobile applications.Nature, 2001,414(15):353-358
    [8]谢昭明.镁基储氢材料的制备、表征与性能研究:[重庆大学博士学位论文].重庆,重庆大学材料科学与工程学院,2005,2-3
    [9]Liang G,Huot J,Schulz R.Hydrogen storage properties of the mechanically alloyed LaNi5-based materials.J Alloys Comp,2001,320(1):133-139
    [10]Jankowska E,Jurczyk M.Electrochemical behaviour of high-energy ball-milled TiFe alloy.J Alloys Comp,2002,346(1-2):L1-L3
    [11]Kodama T.Proposal for new indexes describing the degree of hysteresis and those applications to the ZrMn2-H2 systems.J Alloys Comp,1998,278(1-2):194-200
    [12]Janot R,Aymard L,Rougier A,et al.Fast hydrogen sorption kinetics for ball-milled Mg2Ni alloys.J Physics Chemistry Solids,2004,65(2-3):529-534
    [13]胡业奇,张海峰,王爱民等. TiMn1.5非晶在镁氢化过程中催化作用的研究.金属学报, 2003,39(10):1094-1098
    [14]马建新,潘洪革,王新华等.FeTi1.3(Mm)y合金的储氢性能及其放氢机理的研究.金属学报,1999,35(8):805-808
    [15]Huot J,Liang G,Boily S,et al.Structural study and hydrogen sorption kinetics of ball-milled magnesium hydride.J Alloys Comp,1999,293-295(6):495-500
    [16]Dehouche Z,Djaozandry R,Huot J,et al.Influence of cycling of the thermodynamic and structure properties of nanocrystalline magnesium based hydride.J Alloys Comp,2000,305(1-2):264-271
    [17]Siegel D J,Wolverton C,Ozolin? V.Thermodynamic guidelines for the prediction of hydrogen storage reactions and their application to destabilized hydride mixtures.Phys Rev B,2007,76(13):134102-134107
    [18]Nambu T,Ezaki H,Yukawa H,et al.Electronic structure and hydriding property of titanium compounds with CsCl-type structure.J Alloys Comp,1999,293-295(2) :213-216
    [19]Dehouche Z,Djiaozandry R,Goyette J,et al.Evalution techniques of cycling effect on thermodynamic and crystal structure properties of Mg2Ni alloys.J Alloys Comp,1999,288(1-2):269-276
    [20]Sivakumar R,Ramaparbhu S,Rama K V S,et al.Hydrogen adsorption-desorption characteristics,kinetics of hydrogen adsorption and thermodynamic dissolved hydrogen in Zr0.1Tb0.9Fe1.5Co1.5.J Alloys Comp,2000,302(1-2):146-154
    [21]Martin M,Fromm E.Absorption and desorption kinetics of hydrogen storage alloys.J Alloys Comp,1996,238(1-2):193-201
    [22]Bloch J.Analysis of the kinetics of hydride formation during the activation of massive intermetallic samples.J Alloys Comp,1998,270(1-2):194-202
    [23]Stampfer J F,Holley J R,C E,et al.The magnesium-hydrogen system.J Am Chem Soc,1960,82(14):3504-3508
    [24]Reilly J J,Wiswall R H.Reaction of hydrogen with alloys of magnesium and copper.Inorg Chem,1967,6(12):2220-2223
    [25]Reilly J J,Wiswall R H.The reaction of hydrogen with alloys of magnesium and nickel and the formation of Mg2NiH4.Inorg Chem,1968,7(11):2254-2256
    [26]Adzic G D,Hohnson J R.Cerium content and cycle life of multi-component AB5 hydride electrochem.J Electrochem Soc,1995,142(10):3429-3433
    [27]袁华堂,冯艳,宋赫男等.镁基储氢合金改性的研究进展.化工进展,2003,22(4): 454-458
    [28]王芳.机械合金化Mg基复合储氢材料性能研究:[上海大学硕士学位论文].上海:上海大学材料科学与工程学院, 2006, 8-19
    [29]王秀丽.镁基复合储氢材料的制备及气态储氢性能研究:[浙江大学博士学位论文].杭州:浙江大学材料科学与工程学院, 2006,7-9
    [30]Reiser A,Bogdanovic B,Schlichte K.The application of Mg-based metal-hydrides as heat energy storage systems.Int J Hydrogen Energy,2000,25(5):425-430
    [31]Vigeholm B,Kjoller H,Larsen B.Formation and decomposition of magnesium hydride.J Less-Common Met,1983,89(1):135-144
    [32]Stander C M.Kinetics of formation of magnesium hydride from magnesium and Hydrogen.Z Phys Chem N F,1977,104(5):229-238
    [33]Song M Y,Manaud J P,Darriet B.Dehydriding kinetics of a mechanically alloyed mixture Mg-10wt%Ni.J Alloys Comp,1999,282(1-2):243-247
    [34]Martin M,Gommel C,Borkhart C,et al.Absorption and desorption kinetics of hydrogen storage alloys.J Alloys Comp,1996,238(1-2):193-201
    [35]Zeppelin F,Reule H,Hirscher M.Hydrogen desorption kinetics of nanostructured MgH2 composite material.J Alloys Comp,2002,330-332(6):723-726
    [36]Shao H Y,Liu T,Li X G,et al.Preparation of Mg2Ni intermetallic compound from nanoparticles.Scripta Materialia,2003,49(6):595-599
    [37]Mohamad A A,Mohamed N S,Alias Y,et al.Mechanically alloyed Mg2Ni for metal-hydride-air secondary battery.J Power Sources,2003,115(1):161-166
    [38]Morinaga M,Yukawa H.Nature of chemical bond phase stability of hydrogen storage compounds.Mater Sci Eng A,2002,329-331(3):268-275
    [39]徐光亮.镁镍储氢合金的氢化燃烧制备技术及掺杂改性研究:[四川大学博士学位论文].成都:四川大学材料科学与工程学院, 2006, 24-26
    [40]Hirata I,Matsumoto T,Amano M,et al.Dehydriding reaction kinetics in the improved intermetallic Mg2Ni-H system.J Less-Common Metals,1983,89(1):85- 91
    [41]Wang L B,Yuan H T,Wang Y J,et al.The hydrogenation properties of Mg1.8Ag0.2Ni alloy.J Alloys Comp,2002,336(1-2):297-300
    [42]吕光烈,陈林深,胡秀荣等.Mg3MNi2(M=Ti,Al)的晶体结构.金属学报,2001,37(5): 459-462
    [43]Yang H B,Yuan H T,Ji J T,et al.Characteristics of Mg2Ni0.75M0.25 (M=Ti,Cr,Mn, Fe,Co,Ni,Cu and Zn)alloys after surface treatment.J Alloys Comp,2002,330-332(6): 640-644
    [44]Zaluski L,Zaluska A,Str?m-Olsen J O.Hydrogen absorption in nanocrystalline Mg2Ni formednby mechanical alloying.J Alloys Comp,1995,217(2):245-249
    [45]Dehouche Z,Djaozandry R,Goyette J,et al.Evaluation techniques of cycling effect on thermodynamic and crystal structure properties of Mg2Ni alloy.J Alloys Comp,1999,288(1-2):269-276
    [46]王毅,邱晓航,申泮文.镁基储氢材料研究新进展.化学通报,2004,67(5):327-332
    [47]Tsushio Y,Akiba E.Hydrogen desorption properties of the quantenary alloy system Mg2-xM1xNi1-yM2y.J Alloys Comp,1998,267(1-2):246-251
    [48]Seiler A,Schlapbach L,Waldkirch T V,et al.Surface analysis of Mg2Ni-Mg,Mg2Ni and Mg2Cu.J Less-Common Met,1980,73(1):193-199
    [49]Andreasen A.Hydrogen properties of Mg-Al alloys.Int J Hydrogen Energy,2008, 33(24):7489-7497
    [50]Shaltiel D.Hydride properties of AB2 Laves phase compounds.J Less-CommonMetals,1978,62(2):407-416
    [51]Zolliker P,Yvon K,Fischer P,et al.Dimagnesium Cobalt(I) pentahydride, Mg2Co H5 containing square-pyramidal CoH54- anions.Inorg Chem,1985,24(24):4177- 4180
    [52]Didisheim J J,Zolliker P,Yvon K,et al.Dimagnesium iron(II) hydride,Mg2FeH6, containing octahedral FeH4- anions.Inorg Chem,1984,23(13):1953-1957
    [53]李松林,刘燚 ,崔建民等.高容量储氢材料的研究进展.材料导报,2007,21(10):67-70
    [54]叶素云,朱敏.纳米添加物对镁基合金储氢性能的影响.自然科学进展,2007,17 (8):1105-1113
    [55]Orimo S,Fujii H.Materials science of Mg-Ni based new hydrides.Applied Physics A,2001,72(2):167-186
    [56]Kirchheim R,Müstschele T,Kieninger W,et al.Hydrogen in amorphous and nanocrystalline metals.Mater Sci Eng,1988,99(3):457-462
    [57]Dornheim M,Eigen N,Barkhordarian G,et al.Tailoring hydrogen storage materials towards application.Adv Eng Mater,2006,8(5):377-385
    [58]Fujii H,Orimo S,Ikeda K.Cooperative hydriding properties in nanostructured Mg2Ni-H system.J Alloys Comp,1997,253-254(1-2):80-83
    [59]房文斌,张文丛,于振兴等.镁基储氢材料颗粒尺寸对吸放氢动力学性能的影响.稀有金属材料与工程,2005,34(7):1017-1020
    [60]Zaluski L,Zaluska A,Str?m-Olsen J O.Nanocrystalline metal hydrides.J Alloys Comp,1997,253-254(1-2):70-79
    [61]张健,周惦武,刘金水等.镁基储氢材料的研究进展与发展趋势.材料导报, 2007,21(6):70-74
    [62]周惦武.镁基储氢合金与Mg-Al(Ce)合金的相结构稳定性及相关性能研究:[湖南大学博士学位论文].长沙:湖南大学材料科学与工程学院, 2006,7-8
    [63]Liang G,Huot J,Boily S,et al.Catalytic effect of transition metals on hydrogen sorption in nanocrystalline ball milled MgH2-Tm(Tm=Ti,V,Mn,Fe and Ni).J Alloy Comp,1999,292(1-2):247-252
    [64]Pelletier J F,Huot J,Sutton M,et al.Hydrogen desorption mechanism in MgH2-Nb nanocomposites.Phys Rev B,2001,63(5):052103-052106
    [65]Janot R,Rougier A,Aymard L,et al.Enhancement of hydrogen storage in Mg2Ni by Pd-coating.J Alloys Comp,2003,356-367(3):438-441
    [66]迟洪忠,陈长聘,李弘波等.镁基储氢材料研究进展.材料工程,2002,8: 44-47
    [67]Oelerich W,Klassen T,Bormann R.Metal oxides as catalysts for improvedhydrogen sorption in nanocrystalline Mg-based materials.J Alloys Comp,2001, 315(1-2):237-242
    [68]Wang E D, Yu Z X, Liu Z Y. Hydrogen storage properties of nanocomposite Mg-Ni-MnO2 made by mechanical milling.Trans Nonferrous Met Soc China,2002,12(2):227-232
    [69]Liang G,Huot J,Boily S,et al.Hydrogen storage in mechanically milled Mg-LaNi5 and MgH2-LaNi5.J Alloys Comp,2000,297(1-2):261-265
    [70]Mandal P,Srivastava O N.Hydrogen behavior of the new composite storage material Mg-x%FeTi.J Alloys Comp,1994,205(1-2):111-118
    [71]Wang P,Zhang H F,Ding B Z,et al.Structural and hydriding properties of composite Mg-ZrFe1.4Cr0.6.Acta Mater,2001,49(5):921-926
    [72]Zaluska A,Zaluski L,Str?m-Olsen J O.Nanocrystalline magnesium for hydrogen storage.J Alloys Comp,1999,288(1-2):217-225
    [73]Stander C M,Pacey R A.The lattice energy of magnesium hydride.J Phys Chem Solids,1978,39(8):829-832
    [74]周惦武,刘金水,卢远志等.镁基储氢材料的吸放氢性能.机械工程材料,2008,32(4):5-10
    [75] Chen C H, Huang C C. Hydrogen storage by KOH-modified multi-walled carbon nanotubes. Int J Hydrogen Energy, 2007,32(2):237-246
    [76]Liang G,Huot J,Boily S,et al.Hydrogen storage properties of the mechanically milled MgH2-V nanocomposite.J Alloys Comp,1999,291(1-2):295-299
    [77]Huot J,Pelletier J F,Lurio L B,et al.Investigation of dehydrogenation mechanism of MgH2-Nb nanocomposites.J Alloys Comp,2003,348(1-2):319-324
    [78]Janot R,Darok X,Rougier A,et al.Hydrogen sorption properties for surface treated MgH2 and Mg2Ni alloys.J Alloys Comp,2005,404-406(4):293-296
    [79]Zaluska A,Zakuski L,Str?m-Olsen J O.Synergy of hydrogen sorption in ball- milled hydrides of Mg and Mg2Ni.J Alloys Comp,1999,289(1-2):197-206
    [80]Higuchi K,Yamamoto K,Kajioka H,et al.Remarkable hydrogen storage properties in three-layered Pd/Mg/Pd thin films.J Alloys Comp,2002,330-332(1-2):526-530
    [81]Ouyang L Z,Wang H,Zhu M,et al.Microstructure of MmM5/Mg multi-layer films prepared by magnetron sputtering.J Alloys Comp,2005,404-406(1-2):485-489
    [82]Zhu M,Zhu W H,Gao Y,et al.The effect of Mg content on microstructure and hydrogen absorption properties of mechanical alloyed MmNi3.5(CoAlMn)1.5-Mg. Mater Sci Eng A, 2000, 286(1): 130-134
    [83]Ouyang L Z,Ye S Y,Dong H W,et al.The effect of interfacial free energy onhydriding reaction of Mg-Ni thin films prepared by direct current magnetron sputtering.Appl Phys Lett,2007,90(2):021917-021919
    [84]Zhang Z J,Jin O,Liu B X.Anomalous alloying behavior induced by ion irradiation in a system with a large positive heat of mixing.Phys Rev B,1995,51(13):8076-8085
    [85]郭俊梅,邓德国,潘建生等.计算材料学与材料设计.贵金属,1999,20(4):62-68
    [86]Palummo M,Reining L,Ballone.First principle simulations.J DE Physique IV, 1993,3(3):1955-1964
    [87]Song Y,Guo Z X,Yang R.Influence of titanium on the hydrogen stirage characteristics of magnesium hydride:a first principle investigation.Mater Sci Eng A,2004,365(1-2):73-79
    [88]罗旋,费维栋,李超等.材料科学中的分子动力学模拟研究进展.材料科学与工艺,1996,4(1):124-128
    [89]Daw M S,Baskes M I.Semiempirical, quantum mechanical calculation of hydrogen embrittlement in metals.Phys Rev Lett,1983,50(17):1285-1288
    [90]于海青,刘英才.蒙特卡罗法模拟Pb-Sn共晶合金.材料开发与应用,2008,23(4): 43-46
    [91]胡明娟,潘健生.界面条件剧变的淬火过程三维温度场的计算机模拟.金属热处理学报,1996,17 (A00):90-97
    [92]李春霞.中小尺寸(CdS)<,n>和(CdTe)<,n>团簇结构和电子性质的第一性原理研究:[重庆大学硕士学位论文].重庆:重庆大学材料科学与工程学院, 2006, 1-18
    [93]吴兴惠,项金钟.现代材料计算与设计教程.北京:电子工业出版社,2002,57-68
    [94]Born M,Oppenheimer J R.Zur Quantentheorie der Molekeln.Ann Phys,1927,84: 457
    [95]Born M,Huang K.Dynamical Theory of Crystal Lattices Oxford:Oxford University Press,1954,201-210
    [96]Hatree D R.The wave mechanics of an atom with a non-Coulomb central field. Proc Comb Pit Soc,1928,24(5):111-113
    [97](a) Fock V.Noherungsmethode zur losung des quantenmechanischen mehrk?rper problems.Z Phys,1930,61:126-148;Fock V.N?herungsmethoden zur L?sung des Quantenmechanischen mehrk?rper problems.1930,62(6):795-805 (b) Fock V, Petrashen M J.On the numerical solution of generalised equations of the self-consistent field. Phys Z, Sowjetunion,1934,6(3):368-414
    [98]Hohenberg P,Kohn W.Inhomogeneous Electron Gas.Phys Rev,1964,136(3B):864- 871
    [99]葛桂贤.过渡金属M(M=Fe,Co,Ni)掺杂纯铍团簇的第一性原理研究:[河南大学硕士学位论文].开封:河南大学物理与电子学院, 2007,18-21
    [100]周世勋.量子力学教程.北京:高等教育出版社,1992,21-32
    [101]Thomas L H.The calculation of atomic fields. Proc Cambridge Philos Soc,1927, 23(3):542-548
    [102]Fermi E.A statistical method for the determination of some atomic properties and the application of this method to the theory of the periodic system of elements Z.Phys,1928,73(48):73-79
    [103]Hedin L,Lundqvist B I.Explicit local exchange-correlation potentials.J Phys C: Solid State Phys,1971,14(4):2064-2083
    [104]Ceperley D M,Alder B J.Ground state of the electron gas by a stochastic method.Phys Rev Lett,1980,45(7):566-569
    [105]Perdew J P,Wang Y.Accurate and simple analytic representation of the electron- gas correlation energy.Phys Rev B,1992,45(23):13244-13249
    [106]Becke A D.Density functional exchange energy approximation with correct asymptotic behavior.Phys Rev A,1988,38(6):3098-3100
    [107]Burke K,Perdew J P,Wang Y.Electronic Density Functional Theory:Recent Progress and New Directions,E d.Dobson J F,Vignale G,Das M P,Plenum,New York,1998,:177-182
    [108]Adamo C,Barone V.Exchange functionals with improved long-range behavior and adiabatic connection methods without adjustable parameters:The mPW and mPWIPW models.J Chem Phys,1998,108(2):664-675
    [109]Perdew J P,Burke K,Ernzerhof M.Generalized gradient approximation made simple.Phys Rev Lett,1996,77(18):3865-3868
    [110]Perdew J P.Density functional approximation for correlation energy of the inhomogeneous electron gas.Phys Rev B,1986,33(12):8822-8828
    [111]Lee C,Yang W,Parr R G.Development of the Colle-Salvetti correlation energy and correlation.Phys Rev B,1988,37(2):785-789.
    [112]Filippi C,Umrigar C J,Taut M.Comparison of exact and approximate density functionals for an exactly soluble model.J Chem Phys,1994,100(2):1290-1296
    [113]Xu X,Goddard III W A,Proc.The X3LYP extended density functional for accurate descriptions of nonbond interactions,spin states,and thermochemical properties.Natl Acad Sci USA,2004,101(9):2673-2677
    [114]Becke A D.Density-functional thermochemistry.III.The role of exact exchange.J Chem Phys,1993,98(7):5648-5652
    [115]Perdew J P,Burke K,Ernzerhof M.Generalized Gradient Approximation Made Simple.Phys Rev Lett,1997,78(7):1396-1396
    [116]王丽平.内包金属富勒烯结构与性能的密度泛函研究:[太原理工大学硕士学位论文].太原:太原理工大学材料科学与工程学院, 2006, 18-25
    [117]Delley B.Analytic energy derivatives in the numerical local-density-functional approach.J Chem Phys, 1991,94(11):7245-7250
    [118]Delley B.An all-electron numerical method for solving the local density functional for polyatomic molecules.J Chem Phys,1990,92(1):508-517
    [119]Delley B.Fast calculation of electrostatics in crystals and large molecules.J Phys Chem,1996,100(15):6107-6110
    [120]Ben N A,MarcusY.Solvation thermodynamics of nonionic solutes.J Chem Phys, 1984,81(4):2016-2027
    [121]Puska M J.Point defects in silicon,first-principles calculations.Comp Mater Sci, 2000,17(2):365-373
    [122]Press W H,Flannery B P,Teukolsky SA,et al.Numerical recipes,the art of scientific computing, CambridgeUniversityPress, NewYork, 1986, :111-115
    [123]Bradley C R,Cracknell A P.The MathematicaI Theory of Symmetry in solids, Clarendon Press:Oxford, 1972,:201-203
    [124]Merz K M.Analysis of a large data base of electrostatic Potential derived atomic charges.J Comput Chem,1992,13(6):749-767
    [125]Stroud A H.Approximate calculation of multiple integrals, Prentice-Hall: Englewood Cliffs, 1971,:314-316
    [126]Tomasi J,Persico M.Molecular interactions in solution:An overview of methods based on continuous distributions of the solvelt.Chem Rev,1994,94(7):2027- 2094
    [127]Ziegler T.Approximate density functional theory as a practical tool in molecular energetics and dynamics.Chem Rev,1991,91(5):651-667
    [128]Lindan P L D,Segall M D,Probert M J,et al.First-principles simulation:ideas, illustrations and the CASTEP code.J Phys:Condens Matter,2002,14(11):2717- 2744
    [129]Barchelet G B,Hamann D R,Schluter M.Pseudopotentials that work:From H to Pu.Phys Rev B, 1982,26(8):4199-4228
    [130]Vanderbilt D.Soft self-consistent pseudopotentials in a generalized eigenvalue formalism.Phys Rev B,1990,41(11):7892-7895
    [131]Perdew J P,Zunger A.Self-interaction correction to density-functionalapproximations for many-electron systems.Phys Rev B,1981,23(10):5048-5079
    [132]Dornheim M,Doppiu S,Barkhordarian G,et al.Hydrogen storage in magnesium- based hydrides and hydride composites.Scripta Materialia,2007,56(10):841-846
    [133]Sakintuna B,Lamari-Darkrim F,Hirscher M.Metal hydride materials for solid hydrogen storage:A review.Int J Hydrogen Energy,2007,32(9):1121-1140
    [134]Barkhordarian G,Klassen T,Bormann R.Effect of Nb2O5 content on hydrogen reaction kinetics of Mg.J Alloys Comp,2004,364(1-2):242-246
    [135]T?pler J,Buchner H,S?ufferer H,et al.Measurements of the Diffusion of Hydrogen Atoms in Magnesium and Mg2Ni by Neutron Scattering.J Less- Common Met,1982,88(2):397-404
    [136]Sprunger P T,Plummer E W.The interaction of hydrogen with simple metal surfaces.Surf Sci,1994,307-309(1):118-123
    [137]Renner J,Grabke H J.Determination of Diffusion Coefficients in the Hydriding of Alloys.Z Metallkd,1978,69(2):639-642
    [138]Wu G X, Zhang J Y, Wu Y Q, et al. First-principle calculations of the adsorption, dissociation and diffusion of hydrogen on the Mg(0001) surface. Acta Phys-Chim Sinica, 2008, 24(1): 55-60
    [139]N?rskov J K,Houm?ller A,Johansson P K,et al.Adsorption and dissociation of H2 on Mg surfaces.Phys Rev Lett,1981,46(4):257-260
    [140]Bird D M,Clarcke L J,Payne M C,et al.Dissociation of H2 on Mg(0001).Chem Phys Lett,1993,212(5):518-524
    [141]Vegge T.Locating the rate-limiting step for the interaction of hydrogen with Mg (0001) using density-functional theory calculations and rate theory.Phys Rev B, 2004,70(3):035412-035418
    [142]Kittel C.Introduction to Solid State Physics,Ch.13,John Wiley and Sons,Inc, NewYork,1986,Ch.13:35-36
    [143]Perdew J P,Wang Y.Accurate and simple analytic representation of the electron- gas correction energy.Phys Rev B,1992,45(23):13244-13249
    [144]Pack J D,Monkhorst H J. Special points for brillouin-zone integrations-a reply. Phys Rev B,16(4):1748-1749
    [145]Halgren T A,Lipscomb W N.The synchronous-transit method for determining reaction pathways and locating molecular transition states. Chem Phys Lett,1977, 49(2):225-232
    [146]Henkelman G,Uberuaga B P,Jónsson H.A climbing image nudged elastic band method for finding saddle points and minimum energy paths. Chem Phys,2000,113(22):9901-9904
    [147]Hou Z F.First-principles investigation of Mg(AlH4)2 complex hydride.J Power Sources,2006,159(1):111-115
    [148]Fukai Y.The Metal-Hydrogen System,vol.21 of Springer Series in Material Science,Springer-Verleg,Berlin,1993,:216-217
    [149]Boettger J C.Nonconvergence of surface energies obtained from thin-film calculation.Phys Rev B,1994,49(23):16798-16800
    [150]Hu Q M,Yang R,Xu D S,et al.Energetics and electronic structure of grain boundaries and surfaces of B- and H-doped Ni3Al.Phys Rev B,2003,67(22): 224203-224211
    [151]Wachowicz E,Kiejna A.Bulk and surface properties of hexagonal-close-packed Be and Mg.J Phys:Condens Matter,2001,13:10767-10776
    [152]Guangxin Wu,Jieyu Zhang,Yongquan Wu,et al.First-Principle Calculations of the Adsorption,Dissociation and Diffusion of Hydrogen on the Mg(0001) Surface. Acta Physico-Chimica Sinica,2008,24(1):55-60
    [153]陶向明,谭明秋,徐小军等.c(2×2)O吸附Cu(001)表面结构、电子态与STM图像的研究.物理学报,2004,53(11):3858-3862
    [154]陈文斌,陶向明,赵新新等.氢原子在Ti(0001)表面吸附的密度泛函理论研究.物理化学学报,2006,22(4):445-450
    [155]赵新新,陶向明,陈文斌等.Ni(111)表面一氧化碳和氢共吸附的密度泛函理论研究.物理学报,2006,55(7):3629-3635
    [156]Staikov P, Rahman T S.Multilayer relaxations and stresses on Mg surfaces.Phys Rev B,1999,60(23):15613-15616
    [157]Jensen P,BlaséX,Ordejón P.First principles study of gold adsorption and diffusion on graphite.Surf Sci,2004,564(1):173-178
    [158]Bortz M,Bertheville B,B?ttger G,et al.Structure of the high pressure phaseγ-MgH2 by neutron powder diffraction. J Alloys Comp,1999,287(1-2):L4-L6
    [159]Vakhney A G,Yaresko A N,Antonov V N,et al.The effect hydrogen on the electronic structure and cohesive properties of iron-based alloys doped by chromium and nickel.Int J Hydrogen Energy,2001,26(5):453-456
    [160]Xu Y J,Li J Q,Zhang Y F.O2 adsorption on MgO (001) surface with oxygen and magnesium vacancies.Acta Phys Chim Sin,2003,19(9):815-818
    [161]Jacobson N,Tegner B,Schr?der E,et al.Hydrogen dynamics in magnesium and graphite.Comp Mater Sci,2002,24(1-2):273-277
    [162]Schimmel H G,Kearley G J,Huot J,et al.Hydrogen diffusion in magnesium (αphase) studied by ab initio computer simulations.J Alloys Comp,2005,404-406 (1-2):235-237
    [163]Jurczyk M,Smardz L,Okonska I,et al.Nanoscale Mg-based materials for hydrogen storage.Int J Hydrogen Energy,2008,33(1):374-380
    [164]Zhu M,Wang H,Ouyang L Z,et al.Composite structure and hydrogen storage properties in Mg-based alloys.Int J Hydrogen Energy,2006,31(2):251-257
    [165]Parlinski K,Jochym P T,Kozubski R.Atomic modeling of Co,Cr,Fe,antisite atoms and vacancies in B2-NiAl.Intermetallics,2003,11(2):157-160
    [166]Jensen P,BlaséX,Ordejón P.First principles study of gold adsorption and diffusion on graphite.Surf Sci,2004,564(1):173-178
    [167]曾振华,邓辉球,李微雪等.O在Au(111)表面吸附的密度泛函理论研究.物理学报,2006,55(6):3157-3164
    [168]Xu Y J,Li J Q,Zhang Y F.O2 adsorption on MgO(001) surface with oxygen and magnesium vacancies.Acta Phys Chim Sin,2003,19(9):815-818
    [169]Dag S,Ozturk Y,Ciraci S,et al.Adsorption and dissociation of hydrogen molecules on bare and functionalized carbon nanotubes.Phys Rev B,2005, 72(15):155404-155411
    [170]Imai Y,Mukaida M,Tsunoda T.Comparison of density of states of transition metal disilicides and their related compounds systematically calculated by a first-principle pseudopotential method using plane-wave basis.Intermetallics, 2000,8(4):381-390
    [171]Ealet B,Goniakowski J,Finocchi F.Water dissociation on a defective Mg (100) surface:Role of divacancies.Phys Rev B,2004,69(19):195413-195421
    [172]Bououdina M,Grant D,Walker G.Review on hydrogen absorbing materials- structure,microstructure and thermodynamic properties.Int J Hydrogen Energy, 2006,31(2):177-182
    [173]Vojtěch D,Novák P,?í?kovsky,J,et al.Properties of Mg-based materials for hydrogen storage.J Phys Chem Solids,2007,68(5-6):813-817
    [174]Gross K J,Chartouni D,Leroy E,et al.Mechanically milled Mg composites for hydrogen storage:the relationship between morphology and kinetics.J Alloys Comp, 1998,269(1-2):259-270
    [175]Gutfleisch O,Schlorke-de B N,Ismail N,et al.Hydrogenation properties of nanocrystalline Mg-and Mg2Ni-based compounds modified with platinum group metals (PGMs).J Alloys Comp,2003,356-357(1-2):598-602
    [176]Jensen T R,Andreasen A,Vegge T,et al.Dehydrogenation kinetics of pure andnickel-doped magnesium hydrode investigated by in situ time-resolved powder X-ray diffraction.Int J Hydrogen Energy,2006,31(14):2052-2062
    [177]Hanada N,Ichikawa T,Fujii H.Catalytic effect of nanoparticle 3d-transition metals on hydrogen storage properties in magnesium hydride MgH2 prepared by mechanical milling.J Phys Chem B,2005,109(15):7188-7194
    [178]Shang G X,Bououdina M,Song Y,et al.Mechanical alloying and electronic simulations of (MgH2+M) systems (M=Al,Ti,Fe,Ni,Cu and Nb) for hydrogen storage.Int J Hydrogen Energy,2004,29(1):73-80
    [179]Du A J, Smith S C, Yao X D, et al. Ab initio studies of hydrogen desorption from low index magnesium hydride surface. Surf Sci, 2006,600(9): 1854-1959
    [180]Kelkar T,Kanhere D G,Pal S. First principles calculations of thermal equations of state and thermodynamical properties of MgH2 at finite temperatures.Comp Mater Sci,2008,42(3):510-516
    [181]陈文斌,陶向明,赵新新等.吸附O的Cu(110)c(2×1)表面原子结构和电子态.物理化学学报,2005,21(10):1086-1090
    [182]Wang J,Wang G,Zhao J.Density-functional study of Aun (n= 2-20) clusters: Lowest-energy structures and electronic properties.Phys Rev B,2002,66(3): 035418-035423
    [183]Kr?mar M,Fu C L,Janotti A,et al.Diffusion rates of 3d transition metal solutes in nickel by first-principles calculations.Acta Mater,2005,53(8):2369-2376
    [184]Nylen J,Garcia F J,Mosel B D,et al.Structural relationships, phase stability and bonding of compounds PdSnn (n=2,3,4).Solid State Sci,2004,6(1):147-155
    [185]Chen D,Wang Y M,Chen L,et al.Alloying effects of transition metals on chemical bonding in magnesium hydriding MgH2.Acta materialia,2004,52(2): 521-528
    [186]Song Y,Guo Z X,Yang R.Influence of selected alloying elements on the stability of magnesium dihydride for hydrogen storage applications:A first-principles investigation.Phys Rev B,2004,69(9):094205-094215
    [187]Li S, Jena P. Dehydrogenation mechanism in catalyst-activated MgH2. Phys Rev B, 2006, 74(14): 132106-132109
    [189]Aguey-Zinsou K F,Nicolaisen T,Ares Fernandez J R,et al.Effect of nanosized oxides on MgH2 (de)hydriding kinetics.J Alloys Comp,2007,434-435(2):738-742
    [190]Hanada N,Ichikawa T,Fujii H.Catalytic of Ni nano-particle and Nb oxide on H- desorption properties in MgH2 prepared by ball milling.J Alloys Comp,2005, 404-406(4):716-719
    [191]Marlo M,Milman V.Density-functional study of bulk and surface properties of titanium nitride using different exchange-correlation functionals.Phys Rev B,2000,62(4):2899-2907
    [192]Hammer B,Hansen L B,Norkov J K.Improved adsorption energetics withen density-functional theory using revised Perdew-Burke-Ernzerh of functionals. Phys Rev B,1999,59(11):7413-7421
    [193]Francis G P,Payne M C.Finite basis set corrections to total energy pseudopotential calcaulations.J Phys Condens Matter,1990,2(19):4395-4404
    [194]Monkhorst H J,Pack J D.Special points for Brillouin-zone integrations.Phys Rev B,1976,13(12):5188-5192
    [195]Nakamura H,Nguyen-Manh D,Pettifor D G.Electronic structure and energetics of LaNi5,α-La2Ni10H andβ-La2Ni10H14.J Alloys Comp,1998,281(2):81-91
    [196]Bogdanoví? B,Bohmhammel K,Christ B,et al.Thermodynamic investigation of the magnesium-hydrogen system.J Alloys Comp,1999,282(1-2):84-92
    [197]Moysés Araújo C,Li S,Ahuja R,et al.Vacancy-mediated hydrogen desorption in NaAlH4.Phys Rev B,2005,72(16):165101-165106
    [198]周惦武,彭平,刘金水.MgH2-Ti体系解氢能力的第一原理计算.中国有色金属学报,2005,15(9):1403-1410
    [199]周惦武,彭平,刘金水.MgH2-V体系解氢能力的第一原理计算.中国科学E,2006, 36(1):1-8
    [200]Plackowski T,Wlosewòcz D,Sorokina N I.Specific heat of NbHx with high hydrogen concentration.Physica B,1995,212(2):119-124
    [201]Bolcich J C,Yawuy A A,Corso H L,et al.Hydrogen storage employing Mg- 10wt% Ni alloy.Int J Hydrogen Energy,1994,19(7):605-609
    [202]Dutta K,Mondal P,Ramakrishna K,et al.The synthesis and hydrogenation b ehaviour of some new composite storage materials:Mg-xwt%FeTi(Mn) and La2Mg17-xwt%LaNi5.Int J Hydrogen Energy,1994,19(3):253-257
    [203]Iwakura C,Hazui S,Inoue H.Effect of temperature on electrochemical characteristics of Mg2Ni alloy.Electrochimica Acta,1996,41(3):471-472
    [204]Dantzer P.Topics in Applied Phystics,Hydrogen in Metals III,vol.73,Springer, Berlin,1997,:279-281
    [205]Gupta M,Shlapbach L.Electronic properties of metal hydrides,in:Shlapbach L (Ed.),Topics in Applied Physics,Hydrogen in Intermetallic Compounds,vol.63, Springer, Berlin,1988,139-217
    [206]Yvon K,Schefer J,Stucki F.Structural studied of hydrogen storage materialMg2NiH4.1.Cubic high-temperature structure.Inorg Chem,1981,20(9):2776-2778
    [207]Zolliker P,Yvon K,Jorgensen J D,et al.Structural studied of hydrogen storage material Mg2NiH4.2.Monoclinic low-temperature structure,Inorg Chem,1986, 25(20):3590-3593
    [208]Kohno T,Kanda M.Effect of partial substitution on hydrogen storage properties of Mg2Ni alloy.J Electrochem Soc,1997,144(6):2384-2390
    [209]Goo N H,Woo J H,Lee K S.Mechanism of rapid degradation of nanostructured Mg2Ni hydrogen storage alloy electrode synthesized by mechanical alloying and the effect of mechanically coating with nickel.J Alloys Comp,1999,288(1): 286-293
    [210]Liang G,Huot J,Boily S,et al.Hydrogen storage properties of nanocrystalline Mg1.9Ti0.1Ni made by mechanical alloying.J Alloys Comp,1999,282(1-2):286- 290
    [211]Zaluski L,Zaluska A,Tessier P,et al.Catalytic effect of Pd on hydrogen absorption in mechanically alloyed Mg2Ni,LaNi5 and FeTi.J Alloys and Comp, 1995,217(2):295-300
    [212]Simi?i? M V,Zduji? M,Dimitrijevi? R,et al.Hydrogen absorption and electrochemical properties of Mg2Ni-type alloys synthesized by mechanical alloying.J Power sources,2006,158(1):730-734
    [213]García G N,Abriata J P,Sofo J O.Calculation of the electronic and structural properties of cubic Mg2NiH4.Phys Rev B,1999,59(18):11746-11754
    [214]Takahashi Y,Yukawa H,Morinaga M.Alloying effects on the electronic structure of Mg2Ni intermetallic hydride.J Alloys Comp,1996,242(1):98-107
    [215]Noréus D,Olsson L G.The structure and dynamics of hydrogen in Mg2NiH4 studied by elastic and inelastic neutron scattering.J Chem Phys,1983,78(5): 2419-2427
    [216]Zhuang J,Hastings J M,Corliss L M,et al.An order-disorder transition in Sr2IrD5: evidence for square pyramidal IrD5 units from powder neutron diffraction data. J Solid State Chem,1981,40(3):352-360
    [217]Zeng K J,Klassen T,Oelerich W,et al. Thermodynamics of the Ni-H system.J Alloys Comp,1999,283(1-2):151-161
    [218]Jasen P V,González EA,Brizuela G,et al.A theoretical study of the electronic structure and bonding of the monoclinic phase of Mg2NiH4.Int J Hydrogen energy,2007,32(18):4943-4948
    [219]Kohno T,Yamamoto M,Kanada M.Electrochemical properties of mechanicallyground Mg2Ni alloy.J Alloys Comp,1999,293-295(4):643-647
    [220]Gasiorowski A,Iwasieczko W,Skoryna D,et al.Hydriding properties of nanocrystalline Mg2-xMNi alloys synthesized by mechanically alloying(M= Mn,Al).J Alloys Comp,2004,364(1-2):283-288
    [221]Zhang Y S,Yang H B,Yuan H T,et al.Dehydriding properties of ternary Mg2Ni1-xZrx hydrides synthesized by ball milling and annealing.J Alloys Comp, 1998,269(1-2):278-283
    [222]Michiel J V S,Gilles A D W,Geert B.Ab initio study of the effects of transition metal doping of Mg2NiH4.Phys Rev B,2007,76(7):075125-075132
    [223]Selvam P,Viswanathan B,Swamy C S,et al.Studies on the thermal characteristics of hydrides of Mg,Mg2Ni,Mg2Cu and Mg2Ni1-xMx(M=Fe,Co,Cu or Zn;0    [224]Li L Q,Saita I,Saito K,et al.Effect of synthesis temperature on the hydriding n behaviors of Mg-Ni-Cu ternary hydrogen storage alloys synthesized by hydriding combustion synthesis.J Alloys Comp,2004,372(1-2):218-223
    [225]Varin R A,Li S,Wronski Z,et al.The effect of sequential and continuous high-energy impact mode on the mechano-chemical synthesis of nanostructured complex hydride Mg2FeH6.J Alloys Comp,2005,390(1-2):282-296
    [226]Gennari F C,Castro F J.Formation,composition and stability of Mg-Co compounds.J Alloys Comp,2005,396(1-2):182-192
    [227]Han Y K,Jung J.Structure and stability of Al13I clusters.J Chem Phys,2004, 121(17):8500-8502
    [228]Khanna S N,Rao B K,Jena P.Electronic signature of the magicity and ionic bonding in Al13X(X=Li-K)clusters.Phys Rev B,2002,65(12):125105-125109
    [229]Mulliken R S.Electronic population analysis on LCAO-MO molecular wave functions.I,J Chem Phys,1955,23(10):1833-1840
    [230]Matumura T,Yukawa H,Morinaga M.Alloying effects on the electronic structures of VH2 and V2H.J Alloys Comp,1999,284(1-2):82-88
    [231]Noréus D,Werner P E.Structural studies of hexagonal Mg2NiHx.Acta Chemica Scandinavica A,1982,36(2):847-851

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700