芴类衍生物蓝光材料的合成与表征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,有机电致发光材料(Organic Light-Emitting Materials)已经成为海内外公认的下一代照明、显示技术的主要代表。有机电致发光材料最重要的组成部分是发光材料,而为了实现全彩色发光,获得红绿蓝三原色的发光材料就显得十分重要。相对红光材料和绿光材料相对成熟的发展,蓝色荧光发光材料还存在着色纯度不高、载流子传输不平衡等诸多问题。
     蒽和芴作为两种常用的蓝色发光材料,以其高荧光量子效率,结构易修饰等优点引起了人们的广泛注意,但是它们都存在色度不纯、易结晶,热稳定差、玻璃化温度较低等缺点。直到寡聚芴的出现,才在一定程度上克服了上述缺点,引起了人们广泛的关注。
     本文结合寡聚芴类小分子蓝光材料相对于聚合物类蓝光材料在合成、提纯、以及光谱色纯度等方面的优势,以及芴、蒽用于构建蓝光材料时所表现的优点,选择芴、蒽、萘作为构建目标分子的结构单元,分别在芴或者联芴的苯环两端连接萘基蒽,来设计并合成新型的小分子蓝色荧光材料A和B,以期获得结构新颖、性能优良的蓝色荧光小分子材料;另外,基于发光分子内引入强缺电子基团一般会使分子禁带宽度增大进而使发光蓝移这一经验事实,我们以强缺电子性的三杜烯烷硼为中心,在其外围通过Suzuki偶联反应引入芴或者联芴,设计、合成了新型结构化合物C和D,以期获得可能具有电子传输性质的深蓝色荧光材料。目标化合物A、B、C、D都通过了MALDI-TOF-MS和1H NMR等表征手段验证了化学结构,并利用重结晶、柱层析等方法进行提纯。
     利用紫外-可见吸收光谱和荧光光谱研究了本论文所得的四个目标分子在稀溶液中的光谱性质,目标化合物A、B发射蓝色荧光,发光峰分别位于429 nm和436 nm,C和D的荧光发射峰分别位于389和394 nm,是典型的蓝紫光。利用循环伏安技术测量,了C和D的氧化还原电势,并利用“吸收边”技术计算了分子的禁带宽度,从而计算得到C和D的离子化能(IP)和电子亲合势(EA)分别为5.63eV、1.98eV以及5.74eV、2.38eV,它们分别与发光器件中常用的阳极和阴极材料的能级很好匹配。这些初步的发光和能级数据显示,化合物A、B有望用作蓝色发光材料,化合物C和D具有较高的激发态能量可作为蓝光分子的能量给体,因而有望用作掺杂型蓝光发光器件中的主体材料。
In recent years, Organic light-emitting materials and devices have attracted more and more research attentions since they have the potentials to use in large-area flat-panel displays and lighting. As the need of full color displays is growing, it is necessary to get red-, green-and blue-emitting materials. Compared with red-and green-emitting materials, blue-emitting materials still have some problems such as poor color purity and imbalance of carrier transporting.
     Anthracene and fluorene are taken as the blue-emitting materials or the building blocks of blue emitters all the time. They have attracted much attention due to their high fluorescent quantum yield and ease to be modified. However neither of them has good color purity nor stable thermal stability. Both of them are easy to recrystallize and have low glass transition temperature. This situation didn't change until the appearance of oligomer light-emitting materials such as oligo-fluorenes.
     In this thesis, based on the merits of enthracene and fluorine as building blocks of luminescent molecules and the advantages of small molecular light-emitting molecules over the luminescent polymers, we designed and synthesized fluorene-or bifluorene-based novel molecules A and B by introducting naphthalylanthracene-10-yl into the terminal sides of fluorene chain. Furthermore, in order to tune the emitting wavelength into deep-blue or violet region, we chose triarylsubstituted boron as the core and introduced fluorene and bifluorene as the periphery groups to constructed novel light-emitting molecules C and D. All these four novel molecules were reported for the first time. They were characterized by 1H NMR and MALDI-TOF-MS spectra.
     The photophysical properties of these four compounds were investigated by means of UV-Vis absorption and fluorescence spectroscopy. A and B emit blue fluorescence with the maximum emission peaks at 429 nm and 436 nm, while C and D in deep-blue or violet range with peaks at 389 and 394 nm. The frontier molecular energy levels were measured and calculated by the cyclovoltametry technique together with "absorption edge " technique. The ionized potential (IP) and electron affinity (EA) were calculated as 5.63eV,1.98eV for C and 5.74eV、2.38eV for D. All these preliminary data implied that compound A and B are potential blue fluorescent materials, and C and D are potential host materials used in doped blue light-emitting devices due to their high excited state energy.
引文
[1]Pope M, Kallmann H P, Magnante P. Electroluminescence in organic crystals [J]. J Chem Phys,1963,38:2042-2043
    [2]Tang C W, VanSlyke S A. Organic electroluminescent diodes [J]. Appl Phys Lett,1987, 51(12):913-915
    [3]J. R. Sheats, H. Antoniadis, M. Hueschen, Organic electroluminescent Devices [J]. Science,1996,273:884,
    [4]M. G. Mason, L. S. Hung, C. W. Tang, S. T. Lee, K. W. Wong, M. Wang. Characterization of treated indium-tin-oxide surfaces used in electroluminescent devices [J]. J Appl Phys,1999,86:1688-1693
    [5]A. R. Schlatmann, D. Wilms Floet, A. Hilberer, F. Garten, P. J. M. Smulders, T. M. Klapwijk, G. Hadziioannou. Indium contamination from the indium-tin-oxide electrode in polymer light-emitting diodes [J]. Appl Phys Lett,1996,69:1764-1767
    [6]Freeman A J, Poeppelmeier K R, Mason T 0, Chang R P H.Marks T J. Chemical and thin-film strategies for new transparent conducting oxides [J].2000,25:45
    [7]王丽辉,徐征,孙力,陈小红[M].半导体光电,1999,20:409
    [8]J Cui, A Wang, N. L. Edleman, J Ni, P Lee, N. R. Armstrong, T. J. Marks. Indium Tin Oxide Alternatives-High Work Function Transparent Conducting Oxides-as Anodes for Organic Light-Emitting Diodes [J]. Adv Mater,2001,13(19):1476-1480
    [9]Y. Gao, Ken T. Park, and Bing R.Hsieh. Interface formation of Ca with poly(p-phenylene vinylene) [J]. J Appl Phys,1993,73:7894-7900
    [10]E.I. Haskal,A. Curioni, P. F. Seidler, W. Andreoni. Lithium-aluminum contacts for organic light-emitting devices [J]. Appl Phys Lett,1997,71:1151-1154
    [11]S. A. Van Slyke, C. H. Chen, C. W. Tang. Organic electroluminescent devices with improved stability [J]. Appl Phys Lett,1996,69:2160
    [12]Yasuhiko Shirotal, Yoshiyuki Kuwabaral, Hiroshi Inadal, Takeo Wakimoto, Hitoshi Nakada, Yoshinobu Yonemoto, Shin Kawami, Kunio Imai. Multilayered organic electroluminescent device using a novel starburst molecule,4,4',4"-tris(3-methylphenylphenylamino)triphenylamine, as a hole transport material [J]. Appl Phys Lett,1994,65:807
    [13]Dirk Heithecker, Anis Kammoun, Thomas Dobbertin, Thomas Riedl, Eike Becker, Dirk Metzdorf, Daniel Schneider, Hans-Hermann Johannes, Wolfgang Kowalsky. Low-voltage organic electroluminescence device with an ultrathin, hybrid structure [J]. Appl Phys Lett,2003,82:4178
    [14]Yuji Hamada, Noriyuki Matsusue, Hiroshi Kanno, Hiroyuki Fujii, Tsuyoshi Tsujioka, Hisakazu Takahashi. Improved Luminous Efficiency of Organic Light-Emitting Diodes by Carrier Trapping Dopants [J]. Jpn. J. Appl. Phys. Part2,2001,40:L753-L755
    [15]A. Elschner, F. Bruder, H. W. Heuer, F. Jonas, A. Karbach, S. Kirchmeyer, S. Thurm, R. Wehrmann. PEDT/PSS for efficient hole-injection in hybrid organic light-emitting diodes [J]. Synth Met,2000,111:139-143
    [16]D. B. Romero, M. Schaer, L. Zuppiroli, B. Cesar, B. Francois. Effects of doping in polymer light-emitting diodes [J]. Appl Phys Lett,1995,67:1659
    [17]X. Zhou, M. Pfeiffer, J. Blochwitz, A. Werner, A. Nollau, T. Fritz, K. Leo. Very-low-operating-voltage organic light-emitting diodes using a p-doped amorphous hole injection layer [J]. Appl Phys Lett,2001,75:410
    [18]Yasuhiko Shirota, Kenji Okumoto, Hiroshi Inada. Thermally stable organic light-emitting diodes using new families of hole-transporting amorphous molecular materials [J]. Synth Met,2000,111:387-391
    [19]Yuji Hamada, Hiroshi Kanno, Tsuyoshi Tsujioka, Hisakazu Takahashi, Tatsuro Usuki. Red organic light-emitting diodes using an emitting assist dopant [J]. Appl Phys Lett,1999,75:1682
    [20]L. C. Picciolo, H. Murata, Z. H. Kafafi. Organic light-emitting devices with saturated red emission using 6,13-diphenylpentacene [J]. Appl Phys Lett,2001,78:2378
    [21]Satoru Toguchi, Yukiko Morioka, Hitpshi Ishikawa, Atsushi Oda, Etsuo Hasegawa. Novel red organic electroluminescent materials including perylene moiety [J]. Synth Met,2000,111-112:57-61
    [22]K. R. J. Thomas, J. T. Lin, Y. T. Tao, C. H. Chuen. Star-Shaped Thieno-[3,4-b]-Pyrazines:A New Class of Red-Emitting Electroluminescent Materials [J]. Adv Mater,2002,14:822-826
    [23]W. C. Wu, H. C. Yeh, L. H. Chan, C. T. Chen. Red Organic Light-Emitting Diodes with a Non-doping Amorphous Red Emitter [J]. Adv Mater,2002,14:1072-1075
    [24]S. A. VanSlyke, US Patent 5151629,1992
    [25]J.M.Shi,C.W. Tang, C.H.Chen, US Patent 5935721,1999
    [26]Chung-chih Wu, et al. Unusual Nondispersive Ambipolar Carrier Transport
    and High Electron Mobility in Amorphous Ter(9,9-diarylfluorene)s [J]. J Am Chem Soc,2003,125:3710
    [27]C. Hosokawa, H. Tokailin, H. Higashi, T. Kusumoto, Efficient electro-luminescence of distyrylarylene with hole transporting ability [J]. J Appl Phys Lett,1995,78:5831
    [28]Y. H. Kim, D. C. Shin, S. H. Kim, C. H. Ko, H. S. Yu, Y. S. Chae, S. K. Kwon. Novel Blue Emitting Material with High Color Purity [J].Adv Mater,2001,13:1690-1693
    [29]Krzysztof Danel, Tai Hsiang Huang, Jiann T. Lin, Yu Tai Tao, Chang-Hao Chuen. Blue-Emitting Anthracenes with End-Capping Diarylamines [J]. Chem Mater,2002,14:3860-3865
    [30]Baijun Chen, X. H. Zhang, X. Q. Lin, H. L. Kwong, N. B. Wong, C. S. Lee, W. A. Gambling, S.T. Lee. Improved color purity and efficiency of blue organic light-emitting diodes via suppression of exciplex formation [J]. Synth Met,2001,118:193-196
    [31]Soon Wook Cha, Jung-Il Jin. A field-dependent organic LED consisting of two new high Tg blue light emitting organic layers:a possibility of attainment of a white light source [J]. J Mater Chem,2003,13:479-484
    [32]Yasuhiko Shirota. Organic materials for electronic and optoelectronic devices [J]. J Mater Chem,2000,10:1-25
    [33]Li Hsin Chan, Rong Ho Lee, Chia Fen Hsieh, Hsiu Chih Yeh, Chin Ti Chen. Optimization of High-Performance Blue Organic Light-Emitting Diodes Containing Tetraphenylsilane Molecular Glass Materials [J]. J Am Chem Soc,2002,124:6469-6479
    [34]Ken Tsung Wong, Yuh Yih Chien, Ruei Tang Chen, Chung Feng Wang, Yu Ting Lin, Huo Hsien Chiang, Ping Yuan Hsieh, Chung Chih Wu, Chung Hsien Chou, Yuhlong Oliver Su, Gene Hsiang Lee, Shie Ming Peng. Ter(9,9-diarylfluorene)s:Highly Efficient Blue Emitter with Promising Electrochemical and Thermal Stability [J]. J Am Chem Soc,2002,124:11576-11577
    [35]Po Lam Wu, Ping Fang Xia, Zhong Hui Li, Xin Jiang Feng, Hoi Lam Tam, King Fai Li, Yong Jiao, Man Shing Wong, Kok Wai Cheah. Non-coplanar 9,9-diphenyl-substituted oligofluorenes with large two-photon absorption enhancement [J]. Chem Commun,2009,36:5421-5423
    [36]Kim, Joo Hyun; Herguth, Petra; Kang, Mun-Sik; Jen, Alex K.-Y.; Tseng, Ya-Hsien; Shu, Ching-Fong. Bright white light electroluminescent devices based on a dye-dispersed polyfluorene derivative [J]. Appl Phys Lett,2004,85:1116-1118
    [37]Zhiqiang Guo; Shuo Jin; Bo Liu. Synthesis and photophysical processes of 9-bromo-10-naphthalen-2-yl-anthracene [J]. Spectrochimica Acta Part A,2007,66:672-675
    [38]Louis A,Carpino. Convenient preparation of (9-fluorenyl)methanol and its 2,7-dihalo derivatives [J]. J. Org. Chem,1980,45,4250-4252
    [39]Grisorio, Roberto; Mastrorilli, Piero; Nobile, Cosimo Francesco; Romanazzi, Giuseppe; Suranna, Gian Paolo; Acierno, Domenico; Amendola, Eugenio. New spiro-functionalized polyfluorenes:synthesis and properties [J]. Macromolecular Chemistry and Physics,2005,206:448-455
    [40]Sawatzky, Henry; Wright, George F. The electrical polarization of bismercurials [J], Canadian Journal of Chemistry,1958,36:1555-1569
    [41]Shigehiro Yamaguchi, Toshiaki Shirasaka, Kohei Tamao. Tridurylboranes Extended by Three Arylethynyl Groups as a New Family of Boron-Based π-Electron Systems [J], Organic Lett,2000,2:4129-4132

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700