用户名: 密码: 验证码:
(La,Nd)_(0.7)Sr_(0.3)MnO_3外延膜的应力与厚度效应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自从1990’s年代发现钙钛矿结构的锰氧化物具有巨磁电阻效应以来,有关它的研究已成为当前强关联电子体系的一个研究热点。由于巨磁电阻效应在工业上具有广泛的应用背景,如信息存储领域中的磁记录元件,磁随机存储和传感器,以及在自旋极化的全氧化物器件上的应用。然而,这些应用主要是基于薄膜的特性。从基础研究上来讲,这些锰氧化物表现出丰富的物理内容,如顺磁-铁磁相变伴随绝缘-金属相变,电荷轨道有序,相分离,Jahn-Teller畸变,以及各种相互作用之间的耦合,这些复杂的现象激发了物理学研究人员的研究兴趣。更重要的是,从应用研究上来讲,对巨磁阻薄膜的研究和探索,不仅对当前的自旋电子学的应用有重要意义,而且为全氧化物或氧化物-金属原型薄膜器件的研制提供了有效途径。
     本论文通过对钙钛矿锰氧化物外延膜的应力、氧含量与厚度效应的研究,探索了锰氧化物外延膜的结构畸变对磁性和输运性质的影响,特别是原位沉积氧压与超薄薄膜的结构与输运性质的关系,晶格失配应变与厚度效应,角度畸变引起的应变与输运行为,以及结构畴宽度随薄膜厚度的变化等进行了深入的分析和讨论。部分研究结果已在国际刊物上发表。
     整篇论文分为五章。
     第一章全面介绍了巨磁阻锰氧化物的物理和薄膜的研究状况。首先回顾了锰氧化物的各种性质,如晶体结构,电子结构,交换作用,电荷有序,输运性与巨磁效应,磁各向异性,相分离,掺杂效应,及理论模型。最后讨论了锰氧化物外延薄膜的制备方法,及影响锰氧化物薄膜结构和电磁性质的相关因素(如氧含量,晶格失配应变,薄膜厚度,角度畸变及热膨胀系数等)以及期待解决的问题。
     第二章主要讨论氧含量与巨磁阻锰氧化物薄膜的微结构及电磁性能的关系。以Nd_(0.7)Sr_(0.3)MnO_3(NSMO)外延薄膜为研究对象,通过研究原位沉积氧压与外延膜的厚度效应的关系,指出超薄薄膜的结构和电阻/磁转变主要依赖于原位沉积氧压;而对于较厚的薄膜,其结构和电磁性既受原位氧压也受后处理过程控制,这可归因于厚膜中柱界的出现提供了氧原子进出的通道。因此,为了制备高质量的巨磁阻超薄薄膜,需要高的制备氧压。真空退火引起薄膜单胞沿着c轴方向膨胀,而薄膜平面内的结构不随氧缺失而变化。
     第三章研究了晶格失配应变引起的晶格畸变(即Jahn-Teller畸变)对NSMO外延膜的结构和电磁性质的影响。我们的研究指出薄膜的应变状态直接地影响薄膜的输运行为。对共格外延的薄膜,其结构和电磁性质主要依赖于晶格失配应变(即J-T)和薄膜厚度。薄膜与衬底的晶格失配越大,发生晶格驰豫的厚度越小,且随着膜厚的增加,金属-绝缘体转变温度T_P更快的趋近于单晶块材的T_P。因此,为制备高性能的巨磁阻薄膜,晶格失配必须被考虑。
     第四章研究菱形结构的La_(0.7)Sr_(0.3)MnO_3(LSMO)生长在立方衬底上引起的角度畸变对薄膜的微结构和电磁性质的影响。首先讨论锰氧化物(LSMO)外延膜的厚度与角度畸变的关系;由于LSMO具有菱形对称性,当晶体结构转变为赝立方时,其赝立方夹角为90.26°。因此,菱形的LSMO匹配生长在立方单晶衬底上,除了受晶格参数失配引起的应变外,还存在另一种应变(即角度畸变)来自于LSMO匹配生长在立方衬底上引起的。实验结果指出对应变的薄膜其转变温度T_P强列的依赖于晶格失配应变和膜厚;对较厚的薄膜,随着厚度的增加,薄膜的转变温度T_P快速接近其单晶块材的T_p值,这可归因于角度畸变的弛豫;角度弛豫和晶格失配应变的弛豫是相互独立的。
     第五章研究了共格生长的La_(0.7)Sr_(0.3)MnO_3(LSMO)外延膜的厚度与畴宽的关系。结果指出外延的LSMO薄膜生长在(LaAlO_3)_(0.3)(Sr_2AlTaO_6)_(0.7)(LSAT)衬底上出现周期性结构畴,随着膜厚的增加畴宽变大,这个畴宽随与厚度的关系与一维孪晶畴模型的结果相一致。这个结构畴可解释为角度畸变弛豫引起的超晶格结构。对生长在SrTiO_3衬底上的LSMO薄膜,没有观察到周期畴结构,这可归因于LSMO和STO之间较大的晶格失配(+0.83%),从而使较厚的LSMO/STO薄膜中的弹性应变能更容易以晶格缺陷(如:失配位错)的形式释放。
The studies of perovskite manganese oxides have attracted much renewed attention in strongly correlated electron system since the discovery of colossal magnetoresistance (CMR) effect in the mid-1990s. Because CMR effects are great valuable in industrial demand, such as the magnetic memory, magnetic random access memories, magnetic sensors and the spin-polarized dependent of all oxide devices; however, these demands mainly depend on the properties of the thin-films. As a fundamental physics research, the manganite system exhibits many intriguing physical behaviors; e.g. paramagnetic-ferromagnetic phase transition together with insulator-metal transition, charge-orbital ordering, phase separation, Jahn-Teller distortion and the coupling between them; especially, the investigation in the manganite films not only have important significance for the spintronic application, but also stimulate the great progress in the growth of epitaxial thin films for all oxide or oxide-metal device.
     In this thesis, the influence of the lattice-misfit strain and oxygen contents on the thickness effects of CMR manganite thin films was carefully investigated. Specially, the in-situ deposition oxygen pressure affects on the structural and transport properties of the ultra-thin films, and effects of the angle-distortion induced strain on the transport behavior of epitaxial thin films is also studied in details. It is discussed that the domain width induced from the angle relaxation is closely correlated to the thickness of the coherent epitaxial films.
     The whole thesis consists of five chapters.
     Chapter 1: The general review of the history and present research situation of the perovskite manganite physics and thin films is given. Some related properties, such as the crystal and electronic structure, exchange interactions, charge-ordering, electronic transport, CMR effect, magnetic anisotropy, phase separation, effects of doping level and theoretical model, are introduced. In the end, we sum up the current research in the manganite thin films (such as the influence of oxygen stoichiometry, lattice-misfit strain and angle distortion induced strain on the thickness effects) and some existent issues.
     Chapter 2: The oxygen content effects on the structural and physical properties of the CMR films are discussed. Based on the relation between the in-situ deposition oxygen pressures and thickness effects in epitaxial Nd_(0.7)Sr_(0.3)MnO_3 (NSMO) thin films, it is indicated that the structural and transport properties of ultra-thin films strongly depend on the deposition oxygen pressures; but for the partially relaxed thicker films, the structure and transport behaviors is affected by both in-situ deposition and the post-annealing process, due to the column boundaries in thicker films could take-up a atomic oxygen from the ex-situ oxygen annealed. To get a higher electrical conductivity in the ultra-thin films, a higher deposition oxygen pressure is crucial. For the thicker NSMO films, a single cell volume expansion along c* axis induced from the vacuum processing is observed.
     Chapter 3: Effects of the lattice-misfit strain induced from the substrate on the electro-magnetic properties of the NSMO thin films was studied. It was found that the strain state of the NSMO films is closely related to the transport behaviors. The structural and transport properties of the thin strained films depend strongly on the Jahn-Teller term of lattice distortion and the thickness. For the thicker NSMO films, the large is the lattice misfit between the film and substrate, the small is the strain relaxation thickness, and the metal-insulator transition temperature T_P rapidly approaches that T_P of the bulk materials with increasing of the film thickness. So, the biaxial strain is an important factor for the thickness effect in epitaxial manganite films, and it should be considered for fabricating a high quality of CMR films.
     Chapter 4: Influence of the angle distortion induced from rhombohedral La_(0.7)Sr_(0.3)MnO_3 (LSMO) grown on the cubic substrates on the structure and transport properties of CMR thin films is carefully studied. The La_(0.7)Sr_(0.3)MnO_3 (LSMO) bulk is rhombohedral at room temperature with the pseudocubic parameter a of 3.873 A and a large distorted pseudocubic angle α of 90.26 °; when it grown at the cubic substrates, besides the elastic normal strains due to the lattice mismatch between the film and substrate, there is a further type of distortion in coherent LSMO films, namely, elastic shear. This angle distortion results from the rhombohedral symmetry of LSMO, when it is matched onto a cubic substrate. As the distortion angle is partially recovered in coherently LSMO films, the transition temperature T_P of the films almost approaches to that value of the LSMO bulk. It indicates that the angle relaxation is independent of the lattice-mismatch strain relaxation with the increasing of the thickness.
    Chapter 5: The correlation between the thickness and domain width in coherent epitaxial LSMO thin films is also studied. It is found that the periodic structural domain only occurred in the LSMO thin films on (LaAlO_3)_(0.3)(Sr_2AlTaO_6)_(0.7 (LSAT) substrates. As the film thickness was changed from 22 nm to 100 nm, a monotonic increasing of domain width is observed, this relation of the thickness and the domain width is consistent with the twin modeling of epitaxial La_(0.67)Sr_(0.33)MnO_3 thin films. The structural domain is not observed in coherently LSMO films on SrTiO_3 (STO) substrate. It is explained as a larger lattice-mismatch strain between the LSMO and STO substrate inducing the elastic strain energy is mainly relieved by the formation of misfit dislocation in the thicker LSMO/STO films.
引文
[1] R. M. Kusters, J. Singleton, D. A. Keen, R. McGreevy, and W. Hayes, Physica B 155, 362 (1989).
    [2] R. von Helmolt, J. Wecker, B. Holzapfel, L. Schultz, and K. Samwer, Phys. Rev. Lett. 71, 2331 (1993).
    [3] K. Chahara, T. Ohno, M. Kasai, and Y. Kozono, Appl. Phys. Lett. 63, 1990 (1993).
    [4] S. Jin, T. H. Tiefei, M. Mc Cormack, R. A. Fastnacht, R. Ramesh, and L. H. Chen, Science 264, 413 (1994).
    [5] G. H. Jonker, and J. H. Van Santen, Physica 16, 337 (1950); J. H. Van Santen, and G. H. Jonker, Physica 16, 559 (1950); G. H. Jonker, Physica 20, 1118 (1954).
    [6] E. O. Wollan, and W. C. Koehler, Phys. Rev. 100, 545 (1955).
    [7] C. Zener, Phys. Rev. 81, 440 (1951).
    [8] P. W. Anderson, and H. Hasegawa, Phys. Rev. 100, 675 (1955).
    [9] P. G. de Gennes, Phys. Rev. 118, 141 (1960).
    [10] J. B. Goodenough, Phys. Rev. 100, 564 (1955).
    [11] A. P. Ramirez, J. Phys. : Condens. Matter 9, 8171 (1997).
    [12] C. N. R. Rao, and A. K. Raychaudhuri, Colossal Magnetoresistance, Charge Ordering and RelatedProperties of Maaganese Oxides ed C. N. R. Rao and B. Raveau (Singapore: World Scientific) (1998) p1.
    [13] J. M. D. Coey, M. Viret and S. Von Molnar. Adv. Phys. 48, 167 (1999).
    [14] Y. Tokura. And Y. Tomioka. J. Magn. Magn. Mater. 200, 1 (1999).
    [15] C. N. R. Rao, A. Arulraj, A. K. Cheetham, and B. Raveau. J. Phys.: Condens. Matter. 12 R83 (2000).
    [16] V. Goldschmidt, Geochemistry, Oxford University Press, (1958).
    [17] H. A. Jahn and E. Teller, Proc. Roy. Soc. A 161, 220 (1937).
    [18] W. E. Pickett and D. J. Singh, Phys. Rev. B 53, 1146 (1996).
    [19] Y. Tokura, in Colossal Magnetoresistive Oxodes, Edited by Y. Tokura (Gordon and Breach Science Publishers) p. 11, (2000).
    [20] C. Zener, Phys. Rev. 82, 403 (1951).
    [21] E. Dagotto, T. Hotta, A. Moreo. Phys. Rep. 344, 1(2001).
    [22] G. H. Jonker, Physica 22, 707 (1956).
    [23] K. Kubo, N. J. Ohata. Phys. Soc. Jpn. 33, 21 (1972).
    [24] A. Lanzara, N. L. Saini, M. Brunelli, F. Natali, A. Bianconi, P. G. Radaclli, S. W. Cheong. Phys. Rev. Lett. 81, 878 (1998).
    [25] J. D. Lee, B. I. Min. Phys. Rev. B 55, 12454 (1997).
    [26] P. Schiffer, A. P. Ramirez, W. Bao, S. W. Cheong. Phys. Rev. Lett. 75, 3336 (1995).
    [27] M. Viret, L. Ranno and J. M. D. Coey, Phys. Rev. B 55, 8067 (1997).
    [28] P. S. Anil Kumar, P. A. Joy and S. K. Date, J. Phys. : Condens. Matter. 10, L269 (1998)
    [29] M. Jaime, M. B. Salamon, K. Pettit, M. Rubinstein, R. E. Treece, J. S. Horwitz, and D. B. Chrisey, Appl. Phys. Lett. 68, 1576 (1996).
    [30] Baoxing Chen, C. Uher, D. T. Morelli, J. V. Mantese, A. M. Mance, and A. L. Micheli, Phys. Rev. B 53, 5094 (1996).
    [31] J. -S. Zhou, J. B. Goodenough, A. Asamitsu, and Y. Tokura, Phys. Rev. Lett. 79, 3234 (1997).
    [32] S. Ishihara, J. Inoue, S. Maekawa. Phys. Rev. B 55, 8280 (1997).
    [33] Guo Meng Zhao, et. al. Nature 386, 676 (1996).
    [34] J. -S. Zhou, and J. B. Goodenough, Phys. Rev. Lett. 80, 2665 (1998).
    [35] K. H. Kim, J. Y. Gu, H. S. Choi, G. W. Park, and T. W. Noh, Phys. Rev. Lett. 77, 1877 (1996).
    [36] S. J. L. Billinge, R. G. DiFrancesco, G. H. Kwei, J. J. Neumeier, and J. D. Thompson, Phys. Rev. Lett. 77, 715 (1996).
    [37] J. M. De Teresa, M. R. Ibarra, P. A. Algarabel, C. Ritter, C. Marquina, J. Blasco, J. Garcia, A. del Moral, and Z. Arnold, Nature 386, 256 (1997)
    [38] T. Holstein Ann. Phys. 8, 343 (1959).
    [39] P. M. Kusters, J. Singleton, D. A. Keen, R. McGreevy and W. Hayes, Physica B, 155, 362 (1996).
    [40] M. R. Ibarra, P. A. Algarabel, C. Marquina, J. Blasco and J. Garcia, Phys. Rev. Lett. 75, 3541 (1995).
    [41] R. B. Griffiths, Phys. Rev. Lett. 23, 17 (1969).
    [42] A. J. Bray, Phys. Rev. Lett. 59, 586 (1987).
    [43] G. C. Xing, Q. Li, R. L. Greene, and T. Venkatesan, Appl. Phys. Lett. 66, 1427 (1995).
    [44] J. S. Helman and B. Abeles, Phys. Rev. Lett. 37, 1429 (1976).
    [45] Z. Arnold, K. Kamenev, M. R. Ibarra, P. A. Algarabel, C. Marquina, J. Blasco, and J. Garcia, Appl. Phys. Lett. 67, 2875 (1995).
    [46] Y. Moritomo, A. Asamitsu, and Y. Tokura, Phys. Rev. B 51, 16491 (1995).
    [47] G. C. Xiong, Q. Li, H. L. Ju, S. M. Bhagat, S. E. Lofland, R. L. Greene, and T. Venkatesan, Appl. Phys. Lett. 67, 3031 (1995).
    [48] R. von Helmolt, J. Wecker, T. Lorenz and K. Samwer, Appl. Phys. Lett. 67, 2093 (1995).
    [49] A. Urushibara, Y. Moritomo, T. Arima, A. Asamitsu, G. Kido, and Y. Tokura, Phys. Rev. B 51, 14103 (1995).
    [50] N. Furukawa, J. Phys. Soc. Jpn. 63, 3124 (1994).
    [51] M. F. Hundley, M. Hawley, R. H. Helner, Q. X. Jia, J. J. Neumeier, J. Tesmer, J. D. Thompson, X. D. Wu, Appl. Phys. Lett. 67, 860 (1995).
    [52] A. J. Millis, P. B. Littlewood, and B. I. Shraiman, Phys. Rev. Lett. 74, 5144 (1995).
    [53] H. Kawano, R. kajimoto, M. Kubota, and H. Yoshizawa, Phys. Rev. B 53, R14709 (1996).
    [54] A. J. Millis, R. Mueller, and Boris I. Shraiman, Phys. Rev. B 54, 5405 (1996).
    [55] P. Dai, Jiandi Zhang, H. A, Mook, S. -H. Liou and P. A. Dowben, and E. W. Plummer, Phys. Rev. B 54, R3694 (1996).
    [56] C. M. Varma, Phys. Rev. B 54, 7328 (1996).
    [57] M. Kataoka, and M. Tachiki, Physica B 237-238, 24 (1997).
    [58] R. Valenzuela, Magnetic Ceramics (Cambridge: Cambridge University Press), 1994.
    [59] H. Kuwahara, Y. Tomioka, Y. Moritomo, and Y. Tokura, Y. Science 270, 961 (1995).
    [60] A. P. Ramirez, P. Schiffer, S. W. Cheong, C. H. Chen, W. Bao, T. T. M. Palstra, P. L. Gammel, D. J. Bishop, and B. Zegarski, Phys. Rev. Lett. 76, 3188 (1996).
    [61] S. Mori, C. H. Chen, and S. W. Cheong, Nature 392, 473 (1998).
    [62] C. N. R. Rao, and A. K. Cheetham, Science 276, 911 (1997).
    [63] P. Schiffer, A. P. Ramirez, W. Bao, and S-W. Cheong, Phys. Rev. Lett. 75, 3336 (1995).
    [64] Y. Tokura, and Y. Tomoika, J. Mag. Mag. Mater. 200, 1-23 (1999).
    [65] S. Ishihara, M. Yamanaka, and N. Nagaosa, Phys. Rev. B 56, 686 (1997).
    [66] Y. Murakami, H. Kawada, H. Kawata, M. Tanaka, T. Arima, Y. Moritomo and Y. Toura, Phys. Rev. Lett. 80, 1932 (1998).
    [67] Y. Murakami et. al. Phys. Rev. Lett. 81, 582 (1998).
    [68] M. Benfatto, Y. Joly, and C. R. Natoli, Phys. Rev. Lett. 83, 636 (1999).
    [69] E. Saitoh, S. Okamoto, K. T. Takahashi, K. Tobe, K. Yamamoto, T. Kimura, S. Ishihara, S. Maekawa, and Y. Tokura, Nature 410, 180 (2001).
    [70] H. Kuwahara, A. Tomioka, A. Asamitsu, Y. Moritomo, Y. Tokura. Science 270, 1 (1995).
    [71] Y. Tokura, H. Kuwahara, Y. Moritomo, Y. Tomioka, A. Asamitsu. Phys. Rev. Lett. 73, 3184 (1996).
    [72] E. L. Nagaev, Pis'ma Zh. Eksp. Thor. Fiz, 6, 484 (1967).
    [73] J. Vitins and P. Wachter, Phys. Rev. B 12, 3829 (1975).
    [74] S. Yunoki, A. Moreo, N. Furukawa, and E. Dagotto, Phys. Rev. Lett. 80, 845 (1998).
    [75] S. Yunoki, A. Moreo, and E. Dagotto, Phys. Rev. Lett. 81, 5612 (1998).
    [76] S. Yunoki and A. Moreo, Phys. Rev. B 58, 6403 (1998).
    [77] E. Dagotto et al, Phys. Rev. B 58, 6414 (1998).
    [78] S. -Q. Shen and Z. D. Wang, Phys. Rev. B 58, R8877 (1998).
    [79] E. L. Nagaev, Phys. Rev. B 58, 2415 (1998).
    [80] T. Akimoto, Y. Maruyama, Y. Moritomo, A. Nakamura, K. Hirota, K. Ohoyama, and M. Ohashi, Phys. Rev. B 57, R5594 (1998).
    [81] A. L. Malvezzi, S. Yunoki, and E. Dagotto, Phys. Rev. B 59, 7033 (1999).
    [82] K. H. Kim, J. H. Jung, and T. W. Noh, Phys. Rev. Lett. 81, 1517 (1998).
    [83] Y. Endoh, K. Hirota, S. Ishihara, S. Okamoto, Y. Murakami, A. Nishizawa, T. Fukuda, H. Kimura, H. Nojiri, K. Kaneko, and S. Maekawa, Phys. Rev. Lett. 82, 4328 (1999)
    [84] M. Hennion, F. Moussa, G. Biotteau, J. Rodriguez Carvajal, L. Pinsard, and A. Revcolevschi, Phys. Rev. Lett. 81, 1957 (1998).
    [85] G. Allodi, R. De Renzi, and G. Guidi, Phys. Rev. B 57, 1024 (1998).
    [86] J. M. De Teresa, M. R. Ibarra, P. A. Algarabel, C. Ritter, C. Marquina, J. Blasco, J. Garcia, A. del Moral, and Z. Amold, Nature 386, 256 (1997).
    [87] M. Jaime, M. B. Salamon, M. Rubinstein, R. E. Treece, J. S. Horwitz, and D. B. Chrisey, Phys. Rev. B 54, 11914 (1996).
    [88] C. H. Booth, F. Bridges, G. H. Kwei, J. M. Lawrence, A. L. Cornelius, and J. J. Neumeier, Phys. Rev. Lett. B 57, 10440 (1998).
    [89] S. Yoon, H. L. Liu, G. Schollerer, S. L. Cooper, P. D. Han, D. A. Payne, S. -W. Cheong, and Z. Fisk, Phys. Rev. B 58, 2795 (1998).
    [90] J. Zhang, P. Dai, J. A. Femandez-Baca, E. W. Plummer, Y. Tomioka, and Y. Tokura, Phys. Rev. Lett. 86, 3823 (2001).
    [91] J. M. Zuo and J. Tao, Phys. Rev. B 63, 060407 (2001).
    [92] T. Wu, S. B. Ogale, J. E. Garrison, B. Nagaraj, A. Biswas, Z. Chen, R. L. Greene, R. Ramesh, T. Venkatesan, and A. J. Millis, Phys. Rev. Lett. 86, 5998 (2001).
    [93] G. Papavassiliou, M. Fardis, M. Belesi, T. G. Mans, G. Kallias, M. Pissas, D. Niarchos, C. Dimitropoulos, and J. Dolinsek, Phys. Rev. Lett. 84, 761 (2000).
    [94] Ch. Renner, G. Aeppl, B. -G Kim, Yeong-Ah Soh, and S, -W. Cheong, Nature 416, 518(2002).
    [95] James C. Loudon, Neil D. Mathur, and Paul A. Midgley, Nature 420, 797 (2002).
    [96] Y. Murakami, J. H. Yoo, D. Shindo, T. Atou, and M. kikuchi, Nature 423, 965 (2003).
    [97] M. Uehara, S. Mori, C. H. Chen, and S. W. Cheong, Nature 399, 560 (1990).
    [98] M. Mayr, A. Moreo, J. VergeH s, J. Arispe, A. Feiguin, and E. Dagotto, Phys. Rev. Lett. 85, 26 (2000).
    [99] E. Dagotto, Rev. Mod. Phys. 66, 763 (1994).
    [100] S. Yunoki, A. Moreo, N. Furukawa, and E. Dagotto, Phys. Rev. Lett. 80, 845 (1998).
    [101] M. J. Calderon and L. Brey, Phys. Rev. B 58, 3286 (1998).
    [102] Y. Motome and N. Furukawa, J. Phys. Soc. Japan 68, 3853 (1999).
    [103] Y. Motome and N. Furukawa, Preprint, cond-mat/0007408 (2000).
    [104] M. Calderon, J. VergeH s, and L. Brey, Phys. Rev. B 59, 4170 (1999).
    [105] M. Kubota, H. Fujioka, K. Ohoyama, K. Hirota, and Y. Moritomo, et al, J. Phys. Chem. Solids. 60, 1161 (1999).
    [106] A. Moreo, M. Mayr, A. Feiguin, and E. Dagotto, Phys. Rev. Lett. 84, 5568, (2000).
    [107] A. J. Millis, Nature 392, 147 (1998).
    [108] A. J. Millis, Phys. Rev. Lett. 80, 4358 (1998).
    [109] H. Roder, J. Zang, andA. R. Bishop, Phys. Rev. Lett. 76, 1356 (1996).
    [110] M. Gerloch and R. C. Slade, Ligand-Field Parameters. Cambridge, London (1973).
    [111] K. Yoshida, Theory of Magnetism. Springer, Berlin (1998).
    [112] J. Kanamori, Prog. Theor. Phys. 30, 275 (1963).
    [113] C. Castellani, C. R. Natoli, and J. Ranninger, Phys. Rev. 18, 4945 (1978).
    [114] H. Tang, M. Plihal, and D. L. Mills, J. Magn. Mater. 187, 23 (1998).
    [115] Y. Okimoto, T. katsufuji, T. Ishikawa, A. Urushibara, T. Arima, and Y. Tokura, Phys. Rev. Lett. 75, 109 (1995).
    [116] M. Quijada, J. Ceme, J. R. Simpson, H. D. Drew, K. H. Ahn, A. J. Millis, R. Shreekala, R. Ramesh, M. Rajeswari, and T. Venkatesan, Phys. Rev. B 58, 16093 (1998).
    [117] A. Machida, Y. Moritomo, and A. Nakamura, Phys. Rev. B 58, R4281 (1998).
    [118] S. Satpathy, Z. S. Popovic, and F. R. Vukajlovic, Phys. Rev. Lett. 76, 960 (1996).
    [119] D. S. Dessau and Z. -X. Shen, In: Y. Tokura, (Ed), Contribution to Colossal Magnetoresistance Oxides, Monographs in Condensed Matter Science. Gordon & Breach, London (1999).
    [120] H. A. Jahn and E. Teller, Proc. Roy. Soc. London A 161, 220 (1937).
    [121] J. C. Slater and G. F. Koster, Phys. Rev. 94, 1498 (1954).
    [122] A. Bocquet, T. Mizokawa, T. Saitoh, H. Namatame, and A. Fujimori, A. Phys. Rev. B 46, 3771 (1992).
    [123] T. Arima, Y. Tokura, and J. B. Torrance, Phys. Rev. B 48, 17006 (1993).
    [124] T. G. Perring, G. Aeppli, T. Kimura, and M. A. Adams, Phys. Rev. B 58, R14693 (1998).
    [125] E. Dagotto, arxiv: cond-mat/0302550.
    [126] D. B. Chrisey, and G. K. Hubler, Pulsed Laser Depesition of Thin Films (New York: Wiley-Interscience), 1994.
    [127] L. M. Wang, H. H. Sung, B. T. Su, H. C. Yang, and H. E. Homg, J. Appl. Phys. 88, 4236 (2000).
    [128] J. O. Donnel, M. Onellion, M. S. Rzchowski, J. N. Eckstein, and L. Bozovic, Phys. Rev. B 54, R6841 (1996).
    [129] H. Tanaka, and T. Kawai, Solid State Commun. 112, 201 (1999).
    [130] A. -M. Haghiri-Gosnet, J. Wolfman, B. Mercey, Ch Simon, Ph Lecoeur, M. Korzenski, M. Hervieu, R. Desfeux, and G. Baldinozzi, J. Appl. Phys. 88, 4257 (2000).
    [131] G. Van Tendeloo, O. I. Lebedev, and S. Amelinckx, J. Magn. Magn. Mater. 211, 73 (2000).
    [132] B. Viedenhorst, C. Hofenher, Yafeng Lu, J. Klein, M. S. R. Rao, B. H. Freitag, W. Mader, L. Alff, and R. Gross, J. Magn. Magn. Mater. 211, 16 (2000).
    [133] A. J. Millis, T. Darling, andA. Migliori, J. Appl. Phys. 83, 1588 (1998).
    [134] T. Kanki, H. Tanaka, and T. Kawai, Phys. Rev. B 64, 224418 (2001).
    [135] F. S. Razavi, G. Gross, H. -U. Habermeier, O. Lebedev, S. Amelinckx, G. Van Tendeloo, and A. Vigliante, Appl. Phys. Lett. 76, 115 (2000).
    [136] B. Vengalis, A. Maneikis, E Anisimovas, R. Butkute, L. Dapkus, and A. Kindurys, J. Magn. Magn. Mater. 211, 35 (2000).
    [137] N. Farag, M. Bobeth, W. Pompe, A. E. Romanov, and J. S. Speck, J. Appl. Phys. 97, 113516 (2005).
    [138] J. -L. Maurice, F. Pailloux, A. Barthelemy, O. Durand, D. Imhoff, R. Lyonnet, A. Rocher, and J. -P. Contour, Phil. Mag. 83, 3201 (2003).
    [1] S. Mathews, R. Ramesh, T. Venkatensa, and J. Benedetto, Science 276, 238 (1997).
    [2] A. Goyal, M. Rajeswari, R. Shreekala, S. E. Lofland, S. M. Bhagat, T. Boettcher, C. Kwon, R. Ramesh, and T. Venkatesan, Appl. Phys. Lett. 71, 2535 (1997).
    [3] N. Kida, and M. Tonouchi, Appl. Phys. Lett. 78, 4115 (2001).
    [4] A. -M. Haghiri-Gosnet, and J. -P. Renard, J. Phys. D: Appl. Phys. 36, R127 (2003).
    [5] A. J. Millis, B. I. Shraimain, and R. Mueller, Phys. Rev. Lett. 77, 175 (1996).
    [6] J. Z. Sun, D. W. Abraham, R. A. Rao, and C. B. Eom, Appl. Phys. Lett. 74, 3017 (1999).
    [7] J. Zhang, H. Tanaka, T. Kanki, J. H. Choi, and T, Kawai, Phys. Rev. B 64, 184404 (2001).
    [8] A. Barman, and G. Koren, Appl. Phys. Lett. 77, 1674 (2000).
    [9] M. Ziese, H. C. Semmelhack, and K. H. Han, J. Appl. Phys. 91, 9930 (2002).
    [10] Y. G. Zhao, M. Rajeswari, R. C. Srivastava, A. Biswas, S. B. Ogale, D. J. Kang, W. Prellier, Zhiyun Chen, R. L. Greene, and T. Venkatesan, J. Appl. Phys. 86, 6327 (1999).
    [11] H. L. Ju, and K. M. Krishnan, Solid state Commun. 104, 419 (1997).
    [12] W. Wu, K. H. Wong, C. L. Mak, G. Pang, C. L. Choy, and Y. Zhang, J. Vac. Sci. Technol. A 18, 2378 (2000).
    [13] J. M. Liu, Q. Huang, J. Li, and C. K. Ong, Z. C. Wu, Z. G. Liu, and Y. W. Du, Phys. Rev. B 62, 8976 (2000).
    [14] P. Murugavel, J. H. Lee, K. -B. Lee, J. H. Park, J. -S. Chung, J. -G. Yoou, and Y. W. Noh, J. Phys. D: Appl. Phys. 35, 3166 (2002).
    [15] J. R. Sun, C. F. Yeung, K. Zhao, L. Z. Zhou, C. H. Leung, H. K. Wong, and B. G. Shen, Appl. Phys. Lett. 76, 1164 (2000).
    [16] S. W. Jin, et al. , J. Phys. D: Appl. Phys. 37, 1841 (2004).
    [17] F. Millange, V. Caignaert, G. Mather, E. Suard and B. Raveau, J. Solid State Chem. 127, 131 (1996).
    [18] Y. Lu, J. Klein, B. Hofener, B. Wiedenhorst, J. B. Philips, F. Herbstritt, A. Marx, L. Alff, and R. Gross, Phys. Rev. B 62, 15806 (2000).
    [19] Wenbin Wu, K. H. Wong, and C. L. Choy, J. Phys. D: Appl. Phys. 32, L57 (1999).
    [20] S W Jin, X Y Zhou, W B Wu, C F Zhou, H M Weng, H Y Wang, X F Zhang, B J Ye and R D Han, J. Phys. D: Appl. Phys. 37, 1841 (2004).
    [21] H. L. Ju, J. Gopalakrishnan, J. L. Peng, Qi Li, G. C. Xiong, T. Venkatesan, and R. L. Greene, Phys. Rev. B 51, 6143 (1995).
    [1]. R. Von Helmolt, J. Wecker, B. Holzapfel, L. Schultz, and K. Samwer, Phys. Rev. Lett. 71, 2331 (1993); S. Jin, T. H. Tiefei, M. McCormack, R. A. Fastnacht, R. Ramesh, and L. H. Chen, Science 264, 413 (1994).
    [2]. J. Z. Sun, W. J. Gallagher, P. R. Duncombe, L. Krusin-Elbaum, R. A. Altman, A. Gupta, Y. Lu, G. Q. Gong, and G. Xiao, Appl. Phys. Lett. 69, 3266 (1996),
    [3]. J. R. Sun, C. M. Xiong, T. Y. Zhao, S. Y. Zhao, Y. F. Chen, and B. G. Shen, Appl. Phys. Lett. 84, 1528 (2004).
    [4]. Y. Tsymbal and H. Kohlstedt, Science 313, 181 (2006).
    [5]. J. Millis, T. Darling, and A. Migliori, J. Appl. Phys. 83, 1588 (1998).
    [6]. R. A. Rao, D. Lavric, T. K. Nath, C. B. Eom, L. Wu, and F. Tsui, Appl. Phys. Lett. 73, 3294 (1998).
    [7]. A. Barman, and G. Koren, Appl. Phys. Lett. 77, 1674 (2000).
    [8]. M. Ziese, H. C. Semmelhack, K. H. Han, S. P. Sena, and H. J. Blythe, J. Appl. Phys. 91, 9930 (2002).
    [9]. J. Z. Sun, D. W. Abraham, R. A. Rao, and C. B. Eom, Appl. Phys. Lett. 74, 3017 (1999).
    [10]. T. Wu, S. B. Ogale, S. R. Shinde, Amlan Biswas, T. Polletto, R. L. Greene, and A. J. Millis, J. Appl. Phys. 93, 5507 (2003).
    [11]. H. S. Wang, E. Wertz, Y. F. Hu, Q. Li, and D. G. Schlom, J. Appl. Phys. 87, 7409 (2000).
    [12]. M. Bibes, S. Valencia, Ll. Balcells, B. Martinez, J. Fontcuberta, M. Wojcik, S. Nadolski, and E. Jedryka, Phys. Rev. B 66, 134416 (2002).
    [13]. M. Angeloni, G. Balestrino, N. G. Boggio, P. G. Medaglia, P. Orgiani, and A. Tebano, J. Appl. Phys. 96, 6387 (2004).
    [14]. J. Dvorak, Y. U. Idzerda, S. B. Ogale, S. Shinde, T. Wu, T. Venkatesan, R. Godfrey, and R. Ramesh, J. Appl. Phys. 97, 10C 102 (2005).
    [15]. Y. Suzuki, H. Y. Hwang, S. -W. Cheong, and R. B. Van Dover, Appl. Phys. Lett. 71, 140 (1997).
    [16]. J. S. Speck, and W. Pompe, J. Appl. Phys. 76, 466 (1994).
    [17]. F. Millange, V. Caignaert, G. Mather, E. Suard, and B. Raveau, J. Solid State Chem. 127, 131 (1996).
    [18]. Y. Lu, J. Klein, B. Hofener, B. Wiedenhorst, J. B. Philips, F. Herbstritt, A. Marx, L. Alff, and R. Gross, Phys. Rev. B 62, 15806 (2000).
    [1] R. Von Helmolt, J. Wecker, B. Holzapfel, L. Schultz, and K. Samwer, Phys. Rev. Lett. 71, 2331 (1993); S. Jin, T. H. Tiefei, M. McCormack, R. A. Fastnacht, R. Ramesh, and L. H. Chen, Science 264, 413 (1994).
    [2] A. Urushibara, Y. Moritomo, T. Arima, A. Asamitsu, G. Kido, and Y. Tokura, Phys. Rev. B 51, 14013 (1995).
    [3] H. Kawano, R. Kajimoto, M. Kubota, and H. Yoshizawa, Phys. Rev. B 53, R14709 (1996).
    [4] Y. Yamada, O. Hino, S. Nohdo, R. Kanao, T. Inami, and S. Katano, Phys. Rev. Lett. 77, 904 (1996).
    [5] A. -M. Haghiri-Gosnet, and J. -P. Renard, J. Phys. D: Appl. Phys. 36, R 127 (2003).
    [6] A. J. Millis, T. Darling, and A. Migliori, J. Appl. Phys. 83, 1588 (1998).
    [7] M. Bibes, S. Valencia, Ll Balcells, B. Martinez, J. Fontcuberta, M. Wojcik, S. Nadolski, and E. Jedryka, Phys. Rev. B 66, 134416 (2002).
    [8] T. Kanki, H. Tanaka, and T. Kawai, Phys. Rev. B 64, 224418 (2001).
    [9] A. K. Pradhan, D. R. Sahu, B. K. Roul, and Y. Feng, Appl. Phys. Lett. 81, 3597 (2002).
    [10] X. J. Chen, S. Soltan, H. Zhang, and H. -U. Habermeier, Phys. Rev. B 65, 174402 (2002).
    [11] B. Vengalis, A. Maneikis, F. Anisimovas, R. Butkute, L. Dapkus, and A. Kindurys, J. Magn. Magn. Mater. 211, 35 (2000).
    [12] F. S. Razavi, G. Gross, H. -U. Habermeier, O. Lebedev, S. Amelinckx, G. Van Tendeloo, and A. Vigliante, Appl. Phys. Lett. 76, 115 (2000).
    [13] S. I. Khartsev, P. Johnsson, and A. M. Grishin, J. Appl. Phys. 87, 2394 (2000).
    [14] J. Dho, N. H. Hur, I. S. Kim, and Y. K. Park, J. Appl. Phys. 94, 7670 (2003).
    [15] C. A. Perroni, V. Cataudella, G. De Filippis, G. Iadonisi, V. Marigliano Ramaglia, and F. Ventriglia, Phys. Rev. B 68, 224424(2003).
    [16] R. A. Rao, D. Lavric, T. K. Nath, C. B. Eom, L. Wu, and F. Tsui, Appl. Phys. Lett. 73, 3294 (1998).
    [17] H. S. Wang, E. Wertz, Y. F. Hu, Q. Li, and D. G. Schlom, J. Appl. Phys. 87, 7409 (2000).
    [18] M. Ziese, Rep. Prog. Phys. 65, 143 (2002); M. Ziese, H. C. Semmelhack, and K. H. Han, J. Appl. Phys. 91, 9930 (2002).
    [19] J. M. Liu, Q. Huang, J. Li, C. K. Ong, Z. C. Wu, Z. G. Liu, and Y. W. Du, Phys. Rev. B 62, 8976 (2000).
    [20] J. R. Sun, C. F. Yeung, K. Zhao, L. Z. Zhou, C. H. Leung, H. K. Wong, and B. G. Shen, Appl. Phys. Lett. 76, 1164 (2000).
    [21] J. -L. Maurice, F. Pailloux, A. Barthelemy, O. Durand, D. Imhoff, R. Lyonnet, A. Rocher, and J. -P. Contour, Phil. Mag. 83, 3201 (2003).
    [22] N. Farag, M. Bobeth, W. Pompe, A. E. Romanov, and J. S. Speck, J. Appl. Phys. 97, 113516 (2005).
    [23] Y. Lu, J. Klein, B. Hofener, B. Wiedenhorst, J. B. Philips, F. Herbstritt, A. Marx, L. Alff, and R. Gross, Phys. Rev. B 62, 15806 (2000).
    [24] S. S. Kim, T. Y. Seong, H. S. Kim and J. H. Je, J. Appl. Phys. 92, 4820 (2002).
    [25] M. Kanai, H. Tanaka, and T. Kawai, Phys. Rev. B 70, 125109 (2004).
    [26] F. Millange, V. Caignaert, G. Mather, E. Suard, and B. Raveau, J. Solid State Chem. 127, 131 (1996).
    [27] Q. Huang, A. Santoro, J. W. Lynn, R. W. Erwin, J. A. Borchers, J. L. Peng, K. Ghosh, and R. L. Greene, Phys. Rev. B 58, 2684 (1998).
    [1] A. -M. Haghiri-Gosnet, and J. -P. Renard, J. Phys. D: Appl. Phys. 36, R127 (2003).
    [2] A. Urushibara, Y. Moritomo, T. Arima, A. Asamitsu, G. Kido, and Y. Tokura, Phys. Rev. B 51, 14013 (1995).
    [3] J. F. Mitchell, D. N. Argyriou, C. D. Potter, D. G. Hinks, J. D. Jorgensen, and S. D. Bader, Phys. Rev. B 54, 6172 (1996).
    [4] H. Kawano, R. Kajimoto, M. Kubota, and H. Yoshizawa, Phys. Rev. B 53, R14709 (1996).
    [5] Y. Yamada, O. Hino, S. Nohdo, R. Kanao, T. Inami, and S. Katano, Phys. Rev. Lett. 77, 904 (1996).
    [6] J. Dho, Y. N. Kim, Y. S. Hwang, J. C. Kim, and N. H. Hur, Appl. Phys. Lett. 82, 1434 (2003).
    [7] A. J. Millis, T. Darling, and A. Migliori, J. Appl. Phys. 83, 1588 (1998).
    [8] N. Farag, M. Bobeth, W. Pompe, A. E. Romanov, and J. S. Speck, J. Appl. Phys. 97, 113516 (2005).
    [9] J. -L. Maurice, F. Pailloux, A. Barthelemy, O. Durand, D. Imhoff, R. Lyonnet, A. Rocher, and J. -P. Contour, Phil. Mag. 83, 3201 (2003).
    [10] O. I. Lebedev, J. Verbeeck, G. van Tendeloo, S. Amelinckx, F. S. Razavi, and H. -U. Habermeier, Phil. Mag. A 81, 797 (2001).
    [11] O. I. Lebedev, J. Verbeeck, G. van Tendeloo, S. Amelinckx, F. S. Razavi, and H. -U. Habermeier, Phil. Mag. A 81, 2865 (2001).
    [12] Y. Lu, J. Klein, B. Hofener, B. Wiedenhorst, J. B. Philips, F. Herbstritt, A. Marx, L. Alff, and R. Gross, Phys. Rev. B 62, 15806 (2000).
    [13] S. S. Kim, T. Y. Seong, H. S. Kim and J. H. Je, J. Appl. Phys. 92, 4820 (2002).
    [14] M. Kanai, H. Tanaka, and T. Kawai, Phys. Rev. B 70, 125109 (2004)。
    [15] A. E. Romanov, W. Pompe, and J. S. Speck, J. Appl. Phys. 79, 4037 (1996).
    [16] A. E. Romanov, M. J. Lefevre, J. S. Speck, W. Pompe, S. K. Streiffer, and C. M. Foster, J. Appl. Phys. 83, 2754 (1998).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700