电解锰行业硒及重金属污染物的环境风险研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着国际世界市场对锰需求的持续增加,电解锰行业不断发展,尤其是在中国的发展更为突出,然而也导致了诸多生态环境问题,主要表现为“三废”的潜在危害及对周边环境的污染和硒及重金属的环境风险。
     本文以10家典型电解锰企业为研究对象,采集锰矿石、锰渣和厂区周边土壤、植物及水等样品,以微波消解土壤样品,电解板消解植物样品,ICP-MS(电感耦合等离子体)分析其中的Se及Cr、Mn、Co、Ni、Cu、Zn、As、Cd、Pb等10种有毒有害重金属元素的相对含量,土壤中元素的分析结果与全国土壤背景值比较,水体分类检测,并于生活饮用水及地下水卫生标准比较,分析了电解锰企业对土壤和水体的环境风险,根据植物各部位对土质中监测元素的富集程度分析了植物受电解企业的污染情况;以SES法提取锰渣中10种监测元素的六种形态,并结合HPLC-ICP-MS(高效液相色谱-电感耦合等离子体)分析结果探索锰渣中监测元素的迁移转化特性,通过同步辐射XANES进一步研究锰渣中Se的毒理学特性。
     结果表明:电解锰企业的原料-锰矿石品位普遍偏低、伴生元素多、伴生情况复杂、硒及重金属元素相对含量高,潜在环境风险较大。企业“三废”对周边土壤、植物和水体的污染严重,主要为Se、Cd的污染,并已经威胁到了企业周边人的健康,存在极大的环境隐患和风险。
     陆地土壤受污染程度较水稻田土壤重,主要为Se和Cd污染,监测元素含量随采样点离渣库距离的增大呈现递减趋势。植物各部位对监测元素的富集能力普遍较强,Se尤为突出,Cd其次,植物根附带土壤中监测元素超标程度与该元素在植物体内的富集程度成正比;农产品受该行业的污染较为严重。锰渣库周边河水中Mn含量超地下水质Ⅲ类标准高达143.49倍;农田水中受污染程度低于河水;企业附近居民集聚区的地下水中Mn和Se的含量均已超出了国家规定的生活饮用水卫生标准中关于这两种元素的安全值上限;水体也因此存在着很大的环境风险。
     锰渣是环境污染的最大源头,10种监测元素的含量相对较高。在自然条件下,锰渣中Se及重金属元素主要以水溶态、交换态和酸溶态这3种形式迁移到外环境,且随着周围环境pH值的减小,从锰渣中迁移和转化到外环境中的量就越大;通过同步辐射定性分析可知,锰渣中Se主要以Se032-形式存在,且毒性最大,与工艺过程中添加Se02有密切关系,除了产品锰片中夹带着少量的含硒物之外,其余大部份的含硒物质均随着滤渣进入到渣库,在长期的雨水浸泡和冲刷作用,大量有毒害的含硒物流入外环境,污染河流、地下水源,使得农作物体内富集更多的有毒有害元素。
     图[21]表[29]参考文献[80]
With the increase of foreign and domestic market demand for manganese, the development in industry of electrolysis manganese was rapid in the world. And above all in our country, this development was also improved by leaps and bounds. However, it also leads to many ecological environment problems. Three wastes existed potential risks to environment. Se and heavy metals pollution also damaged environment nearby in industry of electrolysis manganese.
     Manganese ore stone, manganese residues and surrounding soil, plants and water which comes from10typical electrolysis manganese industries was used in this paper. This paper used microwave and electrolytic plate digestion for pretreat samples and quantitative analyzed10types of elements by ICP-MS technology, including Se, Cr, Mn, Co, Ni, Cu, Zn, As, Cd, Pb. It further comprehensive analyzed pollution which came from electrolysis manganese industry affected on neighboring soil, plant and water. Testing results of soil samples based on the national background average value. And the results of water sample based on standard of drinking water and groundwater. Enrichment extent of monitored elements in accessory soil with plants was researched in this paper. Six kind species of10types of elements were extracted in manganese residues by SES technology. The characteristics about migration and transformation of monitored elements in manganese residues were studied by combining analysis results of HPLC-ICP-MS. Finally, it further studied toxicologic characteristics of Se was studied furtherly by synchrotron radiation XANES technology.
     Results showed that raw materials about the industry of electrolysis manganese had potential risk. Many associated elements existed in manganese ore stone and its grade was generally low. However, the situation of association was very complex. Relative content of Se and heavy metal elements was higher. Soil, plants and water near by electrolysis manganese industry suffered serious pollution by three wastes which from industry. This pollution of Se and Cr was mainly showed. It had affected human health and safety living in surrounding in industry of electrolysis manganese and also was a great environmental risk and potential troubles.
     By the extent of the pollution about land soil was more serious than rice paddies. It mainly showed Se and Cr pollution. But the content of monitored elements was gradually decreased with the increase of distance between sample point and manganese residues library. Capacity of the enrichment was generally stronger to monitored elements each part of plant. This capacity of Se was strongest and secondly was Cr. The extent of exceeding standard on monitored elements in accessory soil with plants proportional to it's enrichment in plant. This extent to the edible part of crops was more serious. Content of Mn in the river water surrounding manganese residues library was143.49times than that in the groundwater III type of standard. Generally, the exceeding multiple of farmland water was lower than river water. The content of Mn and Se in resident drinking water was beyond national sanitary standard for living and drinking water. Therefore, there was a huge water environmental risk.
     The biggest source of environmental pollution was manganese residues. But the content of monitored elements was relatively bigger. In the natural conditions, Se and some heavy metal elements, including water dissolves species, exchangeable species and sour dissolves species, could migrate and transform to external environment. With acidity increase in environment, the capacity of migration and transformation was increased gradually. Qualitative analysis by synchrotron radiation technology was showed that the species of Se in manganese residues was mainly SeO32-, but the toxicity of this species was largest. It closely related to add SeO2to the process of technology. Only a small amount of Se was contained in products but most of rest accessed to manganese residues library along with filter residues. A large number of materials containing Se were sent to the environment under the long-term soaked and scoured action of rain. It not only polluted groundwater and crops even threaten human life.
     Figure [21] table [29] reference [80]
引文
[1]安汉民.中国硅锰及锰铁生产和市场分析[A].2006年北京国际铁合金交流洽谈会暨展览会论文集[C],2006.
    [2]Grossman, G M, & Krueger, A B. Environmental impacts of a North American Free Trade Agreement [A]. National Bureau of Economic Research Working Paper,1991-3914.
    [3]张华,肖波,黄炳龙,等.我国电解锰行业循环经济对策研究[J].环境科学保护,2009,35(5):62-65.
    [4]谭柱中.发展中的中国金属锰工业[J].中国锰业,2003,21(4):1-5.
    [5]周长波,于秀玲,周爽.电解金属锰行业推行清洁生产的迫切性及建议[J].中国锰业,2006,24(3):15-18.
    [6]曾湘波.2008年中国电解金属锰发展态势浅析[J].中国锰业,2008,26(4):27-29.
    [7]熊素玉,张在峰.我国电解金属锰工业存在的问题与对策[J].中国锰业,2005,23(1):10-22.
    [8]Grossman, G. M., Krueger, A. B.. Environmental Impacts of a North American Free Trade Agreements. In:Garber, P.(Ed.) [M]. The Mexico US Free Trade Agreement, MIT Press, Cambridge,1993,13-56.
    [9]段宁,但智钢,宋丹娜.中国电解锰行业清洁生产技术发展现状和方向[J].环境工程技术学报,2011,1(1):75-81.
    [10]王允雨,聂容春,降林华,等.微波消解ICP-MS测定尿样中硒及其它重金属元素[J],光谱实验室.2012,29(1):320-323
    [11]韩少华,唐浩,黄沈发.重金属污染土壤螯合诱导植物修复研究进展[J].环境科学与技术,2011,34(6G):157-163.
    [12]崔锐,吕伟,刘广明,等.重金属污染土壤的螯合诱导植物修复技术研究进展[J].农业环境与发展,2009,(2):69-73.
    [13]施时迪,白义,马勇军.重金属污染对土壤动物的毒性效应研究进展[J].中国农学通报,2010,26(14):288-293.
    [14]朱雅兰.重金属污染土壤植物修复的研究进展与应用[J].湖北农业科学,2010,49(6):1495-1499.
    [15]魏莲.浅谈电解锰项目环境影响评价重点[J].铁道劳动安全卫生与环保,2005,32(1):48-50.
    [16]高海燕.电解锰企业清洁生产及其废渣资源化制浆工艺研究[D].贵州师范大学,2008.
    [17]梅光贵,等编著.中国锰业技术[M].长沙:中南大学出版社,2011.
    [18]蒋宏国,罗琳.电解锰企业的环境风险评价研究[J].湖南有色金属,2011,27(3):60-64.
    [19]唐敏.电解锰复合添加剂的实验研究[D].重庆:重庆大学,2010:5-6.
    [20]段宁,但智钢,宋丹娜.中国电解锰行业清洁生产技术发展现状和方向[J].环境工程技术学报,2011,1(1):75-81.
    [21]周长波,何捷,孟俊利,等.电解锰废渣综合利用研究进展[J].环境科学研究,2010,23(8):1044-1048.
    [22]谭柱中.2006年中国电解金属锰工业的发展和2007年运行态势及市场形势展望[J].中国锰业,2007,25(3):3-6.
    [23]沈华.湘西地区锰渣污染及防治措施[J].中国锰业,2007,25(2):46-49.
    [24]Victoria Besada, JoseManuel Andrade, Fernando Schultze, et al.. Heavy metals in edible seaweeds commercialized for human consumption [J]. Journal of Marine Systems,2009,10(75): 305-313.
    [25]马振锋,彭骏,高文良,等.近40年西南地区的气候变化事实[J].高原气象,2006,25(4):633-642.
    [26]杜兵,周长波.电解锰废水处理技术现状与展望[J].工业水处理,2010,30(12):34-37.
    [27]石平.辽宁矿区尾矿废弃地及土壤重金属污染评价研究[J].金属矿山,2008,2(380):118-121.
    [28]P. Sivaperumal, T. V. Sankar, P. G. Viswanathan Nair. Heavy metal concentrations in fish, shellfish and fish products from internal markets of India vis-a-vis international standard [J]. Food Chemistry,2007,102(3):612-620.
    [29]M. Dernovics, Zs. Stefanka, P. Fodor. Improving selenium extraction by sequential enzymatic processes for Se-speciation of selenium-enriched Agaricus bisporus [J]. Analytical Bioanalytical Chemistry,2002,372(3):473-480.
    [30]王静,张杨珠.土壤中重金属的形态区分法与环境风险评价方法研究进展[J].湖南农业科学,2010,(1):46-48.
    [31]Petru Jitaru, et al. Speciation analysis of selenoproteins in human serum by microbore affinity-HPLC hyphenated to ICP-Sector field-MS using a high efficiency sample introduction system [J].Microchimica Acta,2009,166:319-327.
    [32]Olajire A A, Ayodele E T, Oyedirdan G O, et al. Levels and speciation of heavy metals in soils of industrial southern Nigeria[J]. Environmental Monitoring and Assessment,2003,85(2):135-155.
    [33]Wang H, Wang C X, Wang Z J, et al. Fractionation of heavy metals in surface sediments of Taihu Lake, East China [J]. Environmental Geochemistry and Health,2004,26(2):303-309.
    [34]曹媛媛.不同环境下水稻土硫和重金属形态转化及微生物生态研究[D].杭州:浙江大学,2008.
    [35]Tessier A, Campbell P G C, Bisson M. Sequential extraction procedure for the speciation of particulate trace metals [J]. Analytical Chemistry,1979,51(7):844-851.
    [36]Forstner U. Metal speciation:general concepts and applications [J]. International Journal of Environmental Analytical Chemistry,1993,51(1):5-23.
    [37]Shuman L M. Fractionation method for soil microelements [J]. Soil Science,1985,140(1): 11-22.
    [38]Davidson C M, Thomas R P, McVey S E, et al. Evaluation of a sequential extraction procedure for the speciation of heavy metals in sediments [J]. Analytica Chimica Acta,1994, 291(3):277-286.
    [39]僮祥英,杨玉琼,刘红.百里杜鹃矿区附近土壤重金属潜在生态风险及环境容量研究[J].安徽农业科学,2011,39(4):2146-2148.
    [40]章海波,骆永明,赵其国,等.香港土壤研究Ⅶ.BCR提取法研究重金属的形态及其潜在环境风险[J].土壤学报,2010,47(5):865-871.
    [41]Li X D, Poon C S, Liu P S. Heavy metal contamination of urban soils and street dusts in Hong Kong [J]. Applied Geochemistry,2001, (16):1361-1368.
    [42]陈守莉,孙波,王平祖,等.污染水稻土中重金属的形态分布及其影响因素[J].土壤,2007,39(3):375-380.
    [43]樊颖果,冯焕银.CRC-ICP-MS在重金属突发环境事件中的半定量方法研究[J].中国环境监测,2009,25(1):33-36.
    [44]陈丰,刘芳.微波消解/ICP-OES法测定土墩中的环境有效态金属元素[J].上海环境科学,2003,22(12):967-970.
    [45]刘培陶,崔龙鹏,沈卫星,等.粉煤灰堆放场土壤环境微量元素分析与风险评价[J].农业环境科学学报,2008,27(1):207-211.
    [46]吴宏,黄德乾,金焰,等.环境样品中铅、锑、汞、硒形态分析研究进展[J].环境监测与管理技术,2008,20(4):9-17.
    [47]庞雪华.万源市茶产区土壤硒的形态研究[D].成都:成都理工大学,2008.
    [48]S. Rollin, H. Sahli, R. Holzer et al. PU and NP analysis of soil and sediment samples with ICP-MS [J]. Applied Radiation and Isotopes,2009,67(5):821-827.
    [49]朱维晃,黄廷林,柴蓓蓓,等.环境条件变化下汾河水库沉积物中重金属形态分布特征及 潜在生态风险评价[J].干旱区资源与环境,2009,23(2):35-40.
    [50]郝莹.电感耦合等离子体原子发射光谱法在环境分析中的应用[J].理化检验-化学分册,2010,47(6):749-752.
    [51]刘雷,杨帆,刘足根,等.微波消解ICP-AES法测定土壤及植物中的重金属[J].环境化学,2008,27(4):511-514.
    [52]杨丽,邓洪平,韩敏,等.入侵植物对重庆生态环境的风险分析评价[J].西南师范大学学报(自然科学版),2008,33(1):72-76.
    [53]顾立江,李燕玲,杜克久.转基因毛白杨外源基因转移的环境风险分析[J].环境化学,2009,28(6):838-841.
    [54]李刚,高明远,诸堃.微波消解-电感耦合等离子体质谱法测定植物样品中微量元素[J].岩矿测试,2010,29(1):17-22.
    [55]Marguia E, Queraltb I, Carvalhoc M L, et al. Comparison of EDXRF and ICP-OES after microwave digestion for element determination in plant specimens from an abandoned mining area [J]. Analytica Chimica Acta,2005,549(1-2):197-204.
    [56]C. Baffi, et al. Comparison of different analytical procedures in the determination of trace elements in lichens [J]. Chemosphere,2002,48(3):299-306.
    [57]Georgia C.L Araujo, et al. Effect of acid concentration on closed-vessel microwave-assisted digestion of plant materials [J]. Spectrochimica Acta Part B:Atomic Spectroscopy,2002,57(12): 2121-2132.
    [58]Niyogi S, Wood C M. Biotic ligand model, a flexible tool for developing site-specific water quality guidelines for metals [J]. Environmental Science Technology,2004,38:6177-6192.
    [59]朱程,马陶武,周科,等.湘西河流表层沉积物重金属污染特征及其潜在生态毒性风险[J]生态学报,2010,30(15):3982-3993.
    [60]朱晨燕.ICP-OES测定水中锰的结果不确定度评定[J].中国给水排水,2008,24(4):86-88.
    [61]朱文川,耿勇超.电感耦合等离子质谱仪(ICP-MS)测定地表水中痕量钒[J].环境科学与管理,2009,34(4):126-130.
    [62]彭德海,吴攀,曹振兴,等.赫章土法炼锌区水-沉积物重金属污染的时空变化特征[J].农业环境科学学报,2011,30(5):979-985.
    [63]Knor I B, Naumova E N, Trounova V A, et al. Nucl Instr&Meth,1995, A359:324-326.
    [64]Jalilehvand F. Sulfur:not a "silent" element any more [J]. Chemical society reviews,2006,35: 1256-1268.
    [65]Ravel B, Newville M. ATHENA, ARTEMIS, HEPHAESTUS:data analysis for X-ray absorption spectroscopy using IFEFFIT [J]. Synchrotron Radiat,2005,12(4):537-541.
    [66]曹清晨,娄玉霞,张元勋,等.同步辐射XRF和XANES研究重金属污染环境中小羽藓体内硫元素的生物指示作用[J].环境化学,2009,30(12):3663-3668.
    [67]张元勋,曹同,杨传俊,等.同步辐射X荧光分析用于苔藓植物监视大气污染的初步研究[J].核技术,2007,30(9):730-734.
    [68]降林华,段宁,王允雨,等.我国硒污染分析与电解锰行业控制对策[J].环境科学与技术,2011,S2:393-396.
    [69]杨洁,毕军,张海燕,等.中国环境污染事故发生与经济发展的动态关系[J].中国环境科学,2010,30(4):571-576.
    [70]周赛春,韦菲菲,曾平龙.土壤消解方法的对比和研究[J].分析化学,2009,37(S1):A016-A017.
    [71]罗乐,降林华,段宁,等.微波密闭消解-ICP-MS测定土壤中铬的研究[J].现代化工,2011,31(8):93-95.
    [72]罗乐,降林华,段宁,等.环境中微量元素硒的形态学研究进展[J].安徽农业科学,2011,39(30):1861-1863.
    [73]STT RUP S. The use of ICPMS for stable isotope tracer studies in humans:a review [J]. Analytical and Bioanalytical Chemistry,2004,378(2):273-282.
    [74]D'ILIO S, VIOLANTE N, CAIMI S, et al. Determination of trace elements in serum by dynamic reaction cell inductively coupled plasma mass spectrometry:developing of a method with a desolvating system nebulizer [J]. Analytica Chimica Acta,2006,573-574:432-438.
    [75]刘传娟,刘凤枝,蔡彦明,等.不同前处理方法-ICP-MS测定土壤中的重金属[J].分析试验室,2009,28(S1):91-94.
    [76]任成忠,毛丽芬.加标回收实验的实施及回收率计算的研究[J].工业安全与环保,2006,32(2):9-11.
    [77]Stoltz E, Ggreger M. Accumulation properties of As, Cd, Cu, Pb and Zn by four wetland plant species growing on submerged mines tailing [J]. Environmental and experimental botany,2002,47: 271-280.
    [78]Samecka-Cymerman A, Kolon K, Kempers A J. Heavy metals in aquatic bryophytes from the ore mountains(Germany) [J]. Ecotoxicology and Environmental Safety,2002,52:203-210.
    [79]陈广志,苏明跃,王昊云.微波消解-电感耦合等离子体发射光谱法测定煤中磷[J].岩矿测试,2011,30(4):477-480.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700