电解锰渣资源化利用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电解锰渣是硫酸法浸取碳酸锰矿制备电解锰液后产生的一种含水率高的固体废弃物。近些年来,随着我国电解锰工业的快速发展,电解锰废渣的处理和资源化利用问题日益突出。目前,由于经济和技术等原因许多电解锰企业对电解锰渣并未做任何处理而将其直接堆放于渣场,但经过长期堆积这些废渣会对周围环境造成严重污染。因此锰渣的综合利用不但可以消除环境污染,而且还能够创造巨大的经济效益,是可持续发展的有效途径。
     本文针对重庆某公司生产的电解锰渣,首先利用多种分析手段从电解锰渣资源化利用的角度对其基本性质进行了初步分析,在此基础上分别对锰渣预处理、回收锰及回收氨氮的工艺过程及条件进行探索和讨论,并检测和评价了剩余残渣的资源化利用情况。结论如下:
     电解锰渣颗粒比较细,粒径大部分在80μm以下。它主要包括二水石膏相、石英相、软锰矿相及水锰矿相等矿相;渣中主要含有Si、Al、Fe、N、Mn、Ca等元素,以氧化物计算含量如下:二氧化硅(35.43%)、三氧化二铝(11.48%)、三氧化二铁(5.40%)、硫酸铵(7.9%)、一氧化锰(3.79%)、氧化钙(8.44%);锰渣中所含元素种类较多,主要是针、柱状外形规则晶体颗粒与其他物质形成的混杂交织堆积结构,各种特征颗粒之间交错搭接。
     在洗渣过程中,探索了浸锰的方法和条件,确定了清水作为浸取剂的可行性及相应工艺条件。通过实验可知:当m(渣):v(水)=1:5时,常温搅拌下反应2 h,电解锰渣中Mn2+的浸出率可达到93.8%。
     在回收锰阶段,采用碳酸锰沉淀法回收溶液当中的二价锰,根据对影响锰回收率各个参数的考察可知,采用碳酸铵做沉淀剂,当n(CO32+):n(Mn2+)=1.3:1,转速为80 r/min,絮凝剂浓度为0.4 mg/L,pH值为7,沉淀时间为60 min时,锰回收率可高达99.8%以上。回收得到的碳酸锰纯度达88.9%,可用此碳酸锰代替锰矿石进行电解锰的生产。
     采用硫酸铝铵结晶法从电解锰废渣中回收可溶性氨氮,探讨了沉淀剂投加量、反应温度、pH值及时间对氨氮回收率的影响,结果显示:在n((NH4)2SO4):n(Al2(SO4)3)= 1:1,溶液pH 2.5,反应温度95℃,反应时间2 h的条件下,氨氮回收率可高达95.2%以上。且所得晶体颗粒呈无规则形状,分散性能良好,无团聚现象,其纯度达93.1%。
     探究了不同水洗时间对硫酸盐溶解特性的影响。实验表明,当水洗时间为60 min时,渣中可溶性硫酸盐已基本溶解。
Electrolytic manganese residue, containing high water content, is a kind of industrial solid waste generated from leaching manganese carbonate with sulfuric acid. In recent years, with the rapid development of electrolytic manganese industry in China, it has increasingly become a critical problem about the treatment and utilization of electrolytic manganese residue. At present, due to the economic and technical reasons, most of the electrolytic manganese residues are deposited in store yards without any treatment. By the accumulation, the untreated waste residue becomes seriously dangerous pollution sources for the environment. Therefore, comprehensive utilization of electrolytic manganese residue can not only reduce environmental pollution, but also bring huge benefits. And it is an effective way for sustainable development.
     In this thesis, the electrolytic manganese residue was from a plant in Chongqing. In order to utilize the electrolytic manganese residue, various analytic methods were required to characterize its basic properties firstly. Secondly, based on the analysis results, the process and its operation conditions on the electrolytic manganese residue pretreatment, manganese and ammonium recovery were studied. At last, the utilization on the residue from the second procedure above was analyzed and evaluated.
     Conclusions are as follows.
     The particle size of electrolytic manganese residue is small, and most particle is less than 80μm. It is mainly composed of gypsum phase, quartz phase, pyrolusite phase and manganite phase, etc., and the elements mainly contain Si、Al、Fe、N、Mn、Ca, of whose percentage calculated by the content of oxide are as follows,silica (35.43%), aluminum oxide (11.48%), ferric oxide (5.40%), ammonium sulfate (7.9%), manganese oxide (3.79%), calcium oxide (8.44%). Kinds of elements are contained in the electrolytic manganese residue, which mainly presents mixed stacking structure formed by needle, columnar shaped crystal particles with other substances,and the various particles are staggered and overlapped with each other.
     The new method's conditions on leaching manganese from the residue were studied in the process of washing. And the feasibility with distilled water as the leaching agent was identified. By the experiments, It is known that when m(residue): v(distilled water) = 1:5, the reaction stirred at room temperature for 2h, the leaching rate of manganese element from manganese residue reaches 93.8%.
     In the stage of recovery manganese, divalent manganese in the solution could be recovered through manganese carbonate precipitation. During the precipitation with ammonium carbonate as the precipitant, the factors impacting the recovery of manganese were investigated, The results show that when n(CO32+):n(Mn2+)=1.3:1,C(flocculant)=0.4 mg/L,pH =7, stirring speed is 80 r/min and reaction time reaches60 min, the recovery rate of Mn2+ is up to 99.8%. The purity of the recovered manganese carbonate comes to 88.9%, which can be used to produce electrolytic manganese instead of manganese ore well.
     In the stage of recovering soluble nitrogen from electrolytic manganese residue, aluminum ammonium sulfate crystallization was applied, and the influence of precipitant dosage, reaction temperature, pH value and reaction time on ammonia nitrogen recovery rate was discussed. The results show that when n((NH4)2SO4):n(Al2(SO4)3)= 1:1,pH =2.5, reaction temperature is 95℃, and reaction time maintains 2h, the recovery rate of ammonia nitrogen is more than 95.2%. And the crystal particles obtained are of irregular shape, with good dispersion, no agglomeration, and the purity is up to 93.1%.
     The impact of different washing time on characteristics of dissolved sulfate was explored. Results show that when the washing time is 60 min, the soluble sulfate in electrolytic manganese residue has been almost dissolved.
引文
[1] H.Q. Yu, G.W. Gu, L.P. Song. Posttreatment of effluent from coke-plant wastewater treatment system in sequencing batch reactors[J]. Environ. Eng, 1997, 123: 305-308.
    [2]汪锦瑞,方刚,杨浙云.富锰渣制备工业硫酸锰的工艺研究[J].中国锰业, 2008, 26(4): 24-26.
    [3]杨林,张洪波,曹建新.硅锰渣理化性质的分析与表征[J].环境科学与技术, 2007, 30(2): 39-42.
    [4]谭柱中. 2005年中国电解金属锰工业回顾与展望[J].中国锰业, 2006, 24(2): 1-4.
    [5]李坦平,周学忠,曾利群,等.电解锰渣的理化特征及其开发应用的研究[J].中国锰业, 2006, 24(2): 13-16.
    [6]刘胜利.电解金属锰废渣的综合利用[J].中国锰业, 1998, 16 (4): 34-36.
    [7]刘惠章,江集龙.电解锰渣替代石膏生产水泥的实验研究[J].水泥工程, 2007,(2): 78-80.
    [8]覃峰.锰渣水泥稳定基层路用性能的试验研究[J].混凝土, 2009, 232(02): 84-86.
    [9]邓建奇.利用废锰渣制造锰肥的工艺[J].磷肥与复肥, 1997, 03: 14-15.
    [10] Si P.Z, Li D, Lee J.W, Choi C.J, et al. Unconventional exchange bias in oxide-coated manganese nanoparticles[J]. Appl. Phys. Lett, 2005, 87(13): 133122-133123.
    [11] Bernard M.C., Goff A.H.L., Thi B.V. Electrochromic reactions in manganese oxides[J]. J. Electrochem. Soc, 1993, 140(11): 3065-3070.
    [12]谭柱中,梅光贵,李维建,等.锰冶金学[M].湖南:中南大学出版社, 2004.
    [13]丁楷如,余逊贤.锰矿开发与加工技术[M].长沙:湖南科学技术出版社, 1992, 85-89.
    [14]徐肇锡.碳酸锰的制备方法[J].无机盐工业, 1987, 25(5): 40-41.
    [15]原金海,谭世语,贾云,等.以富锰渣为原料制备碳酸锰[J].中国矿业, 2007, 16(2): 90-92.
    [16]彭清净.菱锰矿制高纯碳酸锰的研究[J].无机盐工业, 1998, (4): 11-13.
    [17]赵立新.含锰废水制备高纯度碳酸锰的研究[D].西安:西北大学, 2001.
    [18]胡国荣,周玉琳,彭忠东.用工业硫酸锰制取高纯碳酸锰的工艺研究[J].中国锰业, 2007, 25(2): 14-17.
    [19]杨幼平,黄可龙,桑商斌.软锰矿浸出制备软磁铁氧体用碳酸锰的研究[J].精细化工中间体, 2003, 33(6): 51-53.
    [20] P H Liao, A Chen, K V Lo. Removal of nitrogen from swine manure wastewaters by ammonia stripping [J]. Biore-source Technology, 1995, 54: 17-21.
    [21] S.Uludag-Demirer, G.N. Demirer, S.Chen. Ammonia removal from anaerobically digested dairy manure by struvite precipitation [J]. Process Biochem, 2005, 40: 3667-3674.
    [22] Rozic M, Stefanovic S C, Kurajica S, et al. Ammoniacal nitrogen removal from water by treatment with clays and zeolites[J]. Water Research, 2000, 34(14): 3675-3681.
    [23] H. Mecler, S. Nutt, I. Marvan, P. Sutton. Combined treatment of coke plant wastewater and blast furnace blow down water in a coupled biological fluidized bed system[J]. Water Pollut. Control Fed, 1984, 56: 192-198.
    [24] Scrimshaw M D, Lester J N. Condition influencing the precipitation of magnesium ammonium phosphate[J]. Water Science and Technology,2001, 35(17): 4191-4194.
    [25]闫茹梅,戴学谦,魏绪俭.锰矿中碳酸锰的测定[J].山西化工, 1998, (2): 32-33.
    [26]国家环境保护总局《水和废水监测分析方法》编委会.水和废水监测分析方法[M].第4版.北京:环境科学出版社, 2002.
    [27]中华人民共和国国家标准. GB/T14949.9-1994.
    [28]原金海.富锰渣的综合利用工艺研究[D].重庆大学硕士论文, 2005.
    [29]钱觉时,侯鹏坤,王智,章一颖.可用于建筑材料的电解锰渣性能试验研究[J].材料导报, 2009, 23(5): 59-61.
    [30] Connell L.H, Moe L.A. Apparatus for treatment of ore[P], 1966. US Patent No. 3261959.
    [31]徐东慧,陈志宾,蔡固平.硫酸锰废渣特性及综合利用研究[J].湖南有色金属, 2005, (01).
    [32] Arsent’ev, V. A. Experimental processing of vorkutinsk manganese ores by hydrometallurgical methods[J]. Obogashch. Rud, 1992(6): 17-18.
    [33] Jung Changwan, Osako Masahiro. Leaching characteristics of rare metal elements and chlorine in fly ash from ash melting plants for metal recovery[J]. Waste Management, 2009, 29(5): 1532-1540.
    [34]方兆珩.浸出[M].北京:冶金工业出版社.2006.
    [35]陈炳炎.稀土浸渣资源化利用技术研究[D].四川大学硕士论文, 2003.
    [36]原金海.富锰渣的综合利用工艺研究[D].重庆大学硕士论文, 2005.
    [37]钟学明.用钨渣提钪废液制备高纯碳酸锰[J].化工环保, 2004(24):301-303.
    [38]赵立新.含锰废水制备高纯度碳酸锰的研究[D].西北大学硕士论文, 2001.
    [39]陈红冲.电解锰渣回收锰及处理含铜废水的研究[D].重庆大学硕士论文, 2008.
    [40]唐华应,杨君臣,郑华峰.从锰除尘灰中湿法回收锰[J].湿法冶金, 2003 (3): 39-40.
    [41]张玉灿,余进,李如宏.四氧化三锰工业废水中锰离子的回收[J].金属矿山, 2007 (7): 77-79.
    [42]朱裕贞.工科无机化学[M].上海:华东理工大学出版社, 1993.
    [43] Kruesi P.R, Frahm V.H. Process for the recovery of copper from its ores[P]. 1982.US Patent: 4324582.
    [44]华东化工学院分析化学教研组,成都科学技术大学分析化学教研组编.分析化学[M]..高等教育出版社, 1991.
    [45]原金海,谭世语,贾云,等.以富锰渣为原料制备碳酸锰[J].中国矿业, 2007, 16(2): 91-92.
    [46]陈飞宇.从银锰矿的浸锰液中制取硫酸锰和碳酸锰的工艺研究[D].中南大学硕士论文, 2004.
    [47]杜军,刘晓波,刘作华,等.菱锰矿浸取及除杂工艺的研究进展[J].中国锰业, 2008, 26(2): 15-19.
    [48] Choong Jeon. Adsorption of heavy metals using magnetically modified alginic acid[J]. Hydrometallurgy, 2007(86): 140-146.
    [49] Zhang W, Yu L, Hutchinson S M, et al.Chinaps Yangtze Estuary: I. Geomorphic influence on heavy metal accumulation in intertidal sediments[J]. Geomorphology, 2001, 41(23): 195-205.
    [50] LI Weitian. Review for recovery technique of silver-manganese oxide ores[J].Guangxi Geology, 2001,12(3): 63-66.
    [51]陈徉,陈英文,彭慧,等.磷酸铵镁沉淀法处理氨氮废水及沉淀剂的回用[J].化工环保, 2008, (01):16-19.
    [52] WU Wenwei. The concentration of silver from oxidative silver-manganese ore with united technologies of beneficiation and metallurgy[J]. Nonferrous Metals(Mineral Processing), 2003, 55(5): 22-24.
    [53] LU Zhicheng, ZHANG Peiping, DUAN Guozheng, e tal. Study on manganese minerals of E’rentaolegai silver deposit[J]. Mineral Petrol, 2002, 22(3): 1-3.
    [54] Shi Caijun, Christian Meyer, Ali Behnood, et al. Utilization of copper residue in cement and concrete[J]. Resources, Conservation and Recycling, 2008, 52(10): 1115-1120.
    [55] Shen Jianguo, Guo Chun-Yuan, Chen Min, et al. Utilization of Metallurgical Residue as Resource Materials in China[J]. Dev. Chem. Eng. Mineral Process, 2006, 14(3/4): 487-493.
    [56] YUE Tiebing, LI Yingguo,WEI Dezhou, et al. A technical research on concentrating silver and manganese ores of one lower grade[J]. China’s Manganese Industry, 2004, 22(3): 4-7.
    [57] Pagnanelli F., Garavini M., Veglio F., et al. Preliminary screening of purification processes of liquor leach solutions obtained from reductive leaching of low-grade manganese ores[J]. Hydrometallurgy, 2004, 71(3-4): 319-327.
    [58]李汶军,施尔畏,郑燕青.晶体的生长习性[J].人工晶体学报, 2000, 29(5): 24-27.
    [59]杜慧玲,冯世宏,贾太轩.晶体生长机理的研究进展[J].有色矿冶, 2004, 20(5): 48-50.
    [60]李琳.冷却速率对蔗糖连续冷却结晶过程的影响研究[J].中国甜菜糖业, 1995, 10(5): 11?13.
    [61]屈雄.碳酸锰微晶制备过程的形貌控制研究[D].广西大学硕士论文, 2008.
    [62] Arend H, Hulliger J. Crystal Growth in Science and Technology [M]. New York: Plenum Press,1989: 57?64.
    [63]陈莉荣,武文斐,戴宝成.稀土硫铵废水高浓度氨氮回收试验研究[J].环境科学与技术, 2009, 32(2): 149-150.
    [64]穆大刚.化肥工业高浓度氯化铵废水的处理技术研究[D].中国海洋大学硕士论文, 2004.
    [65]张建云,松全元.废水中氨氮沉淀的影响因素[J].北京科技大学学报, 2004, 26(1): 11-14.
    [66]徐耀兵,王勤辉,施正伦,等.含钒灰渣酸浸液结晶铵明矾的工艺条件[J].过程工程学报, 2009, 9(05): 927-931.
    [67] Péra Jean, Ambroise Jean, Chabannet Michel, et al. Properties of blast-furnace residues containing high amounts of manganese[J]. Cement and Concrete Research, 1999, 29(2): 171-177.
    [68]殷永泉.高纯超细氧化铝的清洁生产[J].化工环保, 2001, (1): 18-19.
    [69]蒋啸.不同细度煤粉燃烧特性及粉煤灰酸浸处理中硫酸铝铵循环利用试验研究[D].浙江大学博士论文, 2008.
    [70]陈波.锰渣生产化学二氧化锰的研究[J].中国锰业, 1996, 14(2): 32-36.
    [71] Abou-El-Sherbini Kh.S. Simultaneous extraction of manganese from low grade manganese dioxide ore and beneficiation of sulphur residue[J]. Separation and Purification Technology, 2002, 27(1): 67-75.
    [72] Trifoni M.,Toro L.,Veglio F., et al. Reductive leaching of manganiferous ores by glucose and H2SO4: effect of alcohols[J]. Hydrometallurgy, 2001, 59(1): 1-14.
    [73] P H Liao, A Chen, K V Lo. Removal of nitrogen from swine manure wastewaters by ammonia stripping[J]. Biore-source Technology, 1995, 54: 17-21.
    [74] Lin K.L., Wang K.S., Tzeng B.Y., et al. The hydration characteristics and utilization of residue obtained by the vitrification of fly ash [J]. Waste Management, 2004, 24(2): 199-205.
    [75]蒋冬青,刘湘欣,陈亚军.用锰渣代替熟料晶种配料生产水泥[J].新世纪水泥导报, 1999, 5(02): 49-50.
    [76]冯云,刘飞,包先诚.电解锰渣部分代石膏作缓凝剂的可行性研究[J].水泥, 2006, (02):22-24.
    [77]李坦平,谢华林,何晓梅,周学忠.煅烧电解锰渣-粉煤灰复合掺合料的试验研究[J].硅酸盐通报, 2007, 26(03): 567-571.
    [78]王坚,严广庆.复合矿物功能掺合料对粉煤灰激活增强的研究[J].粉煤灰综合利用, 2005, (01): 26-28.
    [79]柯国军,耿鸿芝.煅烧锰渣的胶凝性和水化机理[J].房材与应用, 1995, (05).
    [80]侯鹏坤.电解锰渣制备类硫铝酸盐水泥初步研究[D].重庆大学硕士论文, 2009.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700