电解锰废渣中耐锰细菌Serratia sp.的鉴定及其浸锰能力的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
锰是我国国民经济的重要矿产资源。在我国,锰矿资源虽然十分丰富,但富矿少,贫矿、复杂矿和细粒难选矿多,富矿资源目前严重短缺。微生物湿法冶金是一种利用微生物从矿物中提取有价金属的经济方法,特别适用于处理贫矿、表外矿及废矿,并具有成本低、投入小、能耗低、环境污染小等突出优点。因此研究微生物浸锰具有相当现实和重大的意义。本研究运用彭小伟等筛选出一株锰抗性强的细菌,对该细菌及其浸出电解锰废渣中的锰作了进一步研究。通过扫描电镜观察细菌形态、细菌DNA的提取及16SrDNA的PCR扩增等,对细菌作了进一步的鉴定;从锰渣及该细菌的特性出发,通过摇瓶试验对其浸锰条件进行了优化,考察了不同金属离子对其浸锰效果的影响,同时还对比了化学萃取与生物浸出的效果及其浸取前后锰渣中锰的形态变化。
     从电解锰废渣中筛选分离到的一株锰抗性强的细菌,菌落湿润,较小、较薄、较透明,菌落表面呈圆形,边缘整齐,稍隆起,无光泽,无鞭毛。基于16S rDNA分析,测序结果表明该细菌菌株为Serratia sp.(沙雷氏菌属),将其编号为Serratia sp.A1。
     利用Serratia sp.A1菌进行锰渣摇瓶浸出试验,探讨其最佳浸锰条件,试验结果表明在初始pH 6.0,固液比10%,温度37℃时,浸出效果最好,浸出率高达80.8%。分别加入不同浓度的Fe2+、Fe3+、Mg2+和Hg2+,研究其对Serratia sp.A1菌浸锰效果的影响。研究表明一定量的金属离子的加入均有利于Serratia sp. A1菌对锰的浸出,过量的金属离子的加入则会对锰的浸出起到抑制作用。加入Fe2+ 15g/L时比较经济适宜,分别加入Fe3+6g/L、Mg2+ 10g/L、Hg2+ 0.15g/L时,锰浸出效果最好,浸出率分别达到82.7%、65.1%和51.2%。
     采用优化的BCR(European Community Bureau of Reference)连续萃取方法对生物浸出前后锰的形态进行了分析。考察了3种萃取剂EDTA、HNO3和CaCl2对锰的萃取效果,对比发现Serratia sp.A1茵对锰的浸出能力较显著,3天后锰浸出率达79.7%,而3种化学萃取剂对锰的萃取效果为EDTA>HNO3>CaCl2,萃取率依次为54.4%,34.1%和23.1%,说明生物浸锰具有广阔的应用前景。化学萃取前后,酸溶解态锰所占比例均显著下降,残渣态锰所占比例均显著上升;生物浸出前后,酸溶解态和硫化物及有机结合态锰所占比例变化比较显著,分别由浸出前的34.2%和18.9%变至浸出后的16.1%和36.9%,说明浸出后电解锰废渣中的锰将以比较稳定和安全的形态存在,对环境危害性小
Manganese is a kind of important mineral resource for our national economy. Manganese ore resources are rich in China, yet with fewer rich ores but more low-grade ores, complex ores and fine refractory ores. rich ore resources are in critical shortage presently. Microbiohydromtallurgy is a sort of economic method that utilizing microbe to extract valuable metals from minerals, which is particularly suitable for disposing low-grade ores, sub-marginal ores and spent ores and featuring merits like low cost, little investment, low energy consumption and little environmental pollution. Wherefore, it is of momentous practical significance for studying the bioleaching of manganese. In this study, a bacterium screened by Peng Xiaowei with strong manganese resistance was further studied, as well as the bioleaching of manganese in electrolytic manganese residue applying the bacterium. The characteristic of the bacterium was further identified by observing its phenotype with scanning electron microscope, extracting its DNA and PCR amplification of 16S rDNA; And the effect of different metal ions on manganese leaching rate was researched, as well as the optimized condition of bioleaching. Besides, the effect of chemistry extraction and bioleaching was contrasted as well as the variation in the binding forms of manganese before and after leaching. A bacterium of strong manganese resistance was screened from electrolytic manganese residue. The small round transparent colony is wet, thin, a little ridgy with regular edge and without flagellum or luster. Based on 16S rDNA, the sequencing result indicated that the bacteria strain is a species of Serratia sp., named as Serratia sp. A1.The shake-flask leaching experiments of manganese residue with serratia sp. Al indicated that the optimized condition of bioleaching was at initial pH value 6.0, solids concentration 10% and cultivated temperature 37℃,and when the leaching rate was up to 80.8%. To investigate the effect of metal ions on the bioleaching of serratia sp. A1, different concentrations of Fe2+, Fe3+, Mg2+ and Hg2+were put in the solution separately. The results showed that a given mass of metal ions were all in favor of the bioleaching, while superfluous metal ions would be inhibitory. It was economic and appropriate to add 15g/L of Fe2+, and the highest leaching rate of manganese was reached with 6g/L of Fe3+, 10g/L of Mg2+or 0.15g/L of Hg2+,up to 82.7%、65.1% and 51.2% respectively.
     The partitioning of manganese into different fractions was investigated before and after leaching by applying the sequential extraction procedures of the optimized European Community Bureau of Reference (BCR). Three kinds of extractant (EDTA, HN03 and CaCl2) were researched for manganese extraction, and compared with bioleaching, it was known that serratia sp.Al bacteria had a more prominent leaching ability with a manganese-leaching rate up to 79.7% after 3 days, while the rates of three chemistry extractants were 54.4%(EDTA), 34.1%(HNO3) and 23.1%(CaCl2) respectively, which indicated that bioleaching had a more extensive potential application. Before and after chemistry extraction, the proportion of manganese in acid-extraction fraction decreased prominently while the residual fraction increased. Before and after bioleaching, the proportion of manganese in acid-extraction and sulfide and organic matter/sulfide-bound fractions changed prominently, varied from 34.2% and 18.9% to 16.1% and 36.9% respectively, which showed that manganese in electrolytic manganese residue would stay in stable and nonbioavailable forms with low environmental hazard after leaching.
引文
[1]林平,陈方正.我国锰矿资源的需求态势和利用策略.中国市场,2007,(40):19-21
    [2]姚培慧.中国锰矿志.第1版.北京:冶金工业出版社,1995,10-20
    [3]曲辰.锰的主要用途.冶金经济分析,1988,(2):19-22
    [4]张烽.锰在钢铁工业中的地位和作用.中国锰业,1983,(1):25-29
    [5]李勇超,高凤仙,李伟等.微量元素锰在动物营养中的应用研究.广东畜牧兽医科技,2009,34(1):6-8
    [6]苏斌.微量元素锰与人体健康.世界元素医学,2008,15(4):17-20
    [7]严世铭.锰的生理作用及其与健康的关系.广东微量元素科学,2008,15(11):28
    [8]谭柱中.发展中的中国电解金属锰工业.中国锰业,2003,21(4):1-4
    [9]王运敏.中国的锰矿资源和电解金属锰的发展.中国锰业,2004,22(3):26-30
    [10]庾莉萍.破解我国锰资源贫乏困局.中国有色金属,2008,23:36-37
    [11]李宇清.谈电解锰的生产与设计.中国锰业,1989,(2):32-37
    [12]熊筱.对电解锰进行清洁生产效果及指标体系可行性分析.贵州大学学报(自然科学版),2009,26(1):137-139
    [13]姚俊,吴文学.电解锰生产过程中的环境污染问题及对策的研究.吉首大学学报,1997,18(4):60-62
    [14]胡武洪.电解金属锰生产中的污染问题及对策研究.中国西部科技,2007,(5):1-3
    [15]胡南,周军媚,刘运莲等.硫酸锰废渣的浸出毒性及无害化处理的研究.中国环境监测,2007,23(2):49-51
    [16]葛晓霞,蔡固平,曾光明.硫酸锰废渣无害化及资源化研究.中国锰业,2004,2(1):48-52
    [17]关振英.电解锰生产废渣用作水泥生产缓凝剂的研究.中国锰业,2000,5(2):51-52
    [18]谢显明.电解锰渣及其研制品的肥效特性分析.中国锰业,1999,17(4)45-49
    [19]徐风广.含锰废渣用于公路路基回填土的试验研究.中国锰业,2001,11(4):1-3
    [20]宁平,陈亚雄,孙佩石等.含锰废渣吸收低浓度SO2生产MnSO4·H2O研究.环境科学,1997,11(18):58-60
    [21]喻旗,罗洁,涂文忠.电解金属锰生产的污染及其治理.中国锰业,2006,24(3):42-45
    [22]姚俊,吴文学,杨小端等.电解锰中重金属元素与流域污染.吉首大学学报,1999,20(3):74-77
    [23]杨显万.微生物湿法冶金.第1版.北京:冶金工业出版社,2003,12-35
    [24]高海亮.国内外锰矿生产及消费现状.中国金属通报.2006,(07):33-36
    [25]孟运生.云南低品位贫锰矿细菌浸出研究:[昆明理工大学硕士学位论文].昆明:昆明理工大学,2009,9-13
    [26]殷志勇,成海芳,张文彬.生物技术在湿法冶金领域的应用现状及研究趋势.湿法冶金,2006,25(3):113-116
    [27]姜成林.微生物资源学,第1版.北京:科学出版社,1997,25-40
    [28]钟慧芳.浸锰微生物及其浸锰之研究.应用微生物,1986,(6):4-9
    [29]李同庆.电解二氧化锰生产技术的新进展.电池工业,2007,12(3):179-183
    [30]Agatet A.D., Deshpande H.A.. Conference Bacterial Leaching,1977,243
    [31]杜竹玮,李浩然.嗜酸异养微生物还原浸出深海多金属结核.有色金属,2005,57(1):45-48
    [32]今井和民,田野达民.发酵协会志,1967,(25):32
    [33]田野达民,今井和民.日本农坛化学会志,1965,39):477
    [34]毛钜凡.细菌浸出高硫锰矿及菱锰矿的试验.微生物学报,1979,19(2):166
    [35]钟慧芳,蔡文六,李雅芹.细菌浸出天台山锰矿半工业性试验.无机盐工业,1989,(5):1-5
    [36]李浩然,冯雅丽,欧阳藩等.微生物催化还原浸出深海锰结核中有价金属.北京科技大学学报,2002,24(2):153-156
    [37]Cheng Z, Zhu G C, Zhao Y N.. Study in reduction-roast leaching manganese from low-grade manganese dioxide ores using cornstalk as reductant. Hydrometallurgy,2009, 96(1-2):176-179
    [38]Beolchini F, Petrangelipapini M, Toro L, et al. Acid leaching of manganiferous ores by sucrose:kinetic modeling and related statistical analysis. Minerals Engineering,2001, 14(2):175-184
    [39]El Hazek M N, Lasheen T.A., Helal A S. Reductive leaching of manganese from low grade Sinai ore in HCl using H2O2 as reductant. Hydrometallurgy,2006, 84(3-4):187-191
    [40]Su H F, Wen Y X Wang F, et al. Reductive leaching of manganese from low-grade manganese ore in H2SO4 using cane molasses as reductant. Hydrometallurgy,2008, 93(3-4):136-139
    [41]Trifoni M, Toro L, Veglio F. Reductive leaching of manganiferous ores by glucose and H2SO4:effect of alcohols. Hydrometallurgy,2001,59(1):1-14
    [42]Veglio F, Trifoni M, Abbruzzese C, et al. Column leaching of a manganese dioxide ore: a study by using fractional factorial design. Hydrometallurgy,2001,59(1):31-44
    [43]Pagnanelli F, Garavini M, Veglio F, et al. Preliminary screening of purification processes of liquor leach solutions obtained from reductive leaching of low grade manganese ores. Hydrometallurgy,2004,71(3-4):319-327
    [44]Furlani G, Pagnanelli F, Toro L. Reductive acid leaching of manganese dioxide with glucose:identification of oxidation derivatives of glucose. Hydrometallurgy,2006, 81(3-4):234-240
    [45]Mulligan C N, Kamali M, Gibbs B F. Bioleaching of heavy metals from a low-grade mining ore using Aspergillus niger. Journal of Hazardous Materials,2004, 110(1-3):77-84
    [46]Wong J W, Xiang L, Gu X Y, et al. Bioleaching of heavy metalsfrom anaerobically digested sewage sludge using FeS2 as an energy source. Chemosphere,2004, 55(1):101-107
    [47]Chen S Y, Lin J G. Bioleaching of heavy metals from contaminated sediment by indigenous sulfur-oxidizing bacteria in an air-lift bioreactor:effects of sulfur concentration. Water Research,2004,38(14-15):3205-3214
    [48]Zhu N W, Zhang L H, Li C J, et al. Recycling of spent nickel-cadmium batteries based on bioleaching process. Waste Management,2003,23(8):703-708
    [49][49] Xu T J, Ting Y P. Optimisation on bioleaching of incinerator fly ash by Aspergillus niger:use of central composite design. Enzyme and Microbial Technology,2004, 35(5):444-454
    [50]Paul M, Sandstrom A, Paul J. Prospects for cleaning ash in the acidic effluent from bioleaching of sulfidic concentrates. Journal of Hazardous Materials,2004, 106(1):39-54
    [51]Veglio F, Beolchini F, Gasbarro A, et al. Batch and semi-continuous tests in the bioleaching of manganiferous minerals by heterotrophic mixed microorganisms. International Journal of Mineral Processing,1997,50(4):255-273
    [52]彭小伟,欧阳玉祝,李佑稷等.电解金属锰废渣中霉菌的分离驯化及吸附特性研究.中国锰业,2008,26(2):24-27
    [53]刘云国,王显海,李欣等.铅锌矿尾渣重金属在化学萃取前后的形态变化特征.湖南大学学报,2006,33(1):106-109
    [54]夏涵,府伟灵,陈鸣等.快速提取细菌DNA方法的研究.现代预防医学,2005,32(5):571-573
    [55]童雄.微生物浸矿的理论与实践.第1版.北京市:冶金工业出版社,1997,34-48
    [56]温建康,姚国成,陈勃伟等.溶液pH值对浸矿微生物活性及浸出速率的影响研究.稀有金属,2009,33(1):80-83
    [57]范有静,杨洪英,訾建威.溶液中离子对浸矿工程菌生长的影响.有色矿冶,2004,20(2):17-19
    [58]朱长亮,杨洪英,蒋欢杰等.溶液中离子对浸矿细菌的毒害作用.有色矿冶,2005,21(5):25-27
    [59]Lee E Y, Noh S R, Cho K S, et al. Leaching of Mn, Co and Ni from manganese nodules using an anaerobic bioleaching method. Journal of Bioscience and Bioengineering, 2001,92(4):354-359
    [60]Tsai L J, Yu K. C, Chen S. F, et al. Effect of temperature on removal of heavy metals from contaminated river sediments via bioleaching. Water Research,2003, 37(10):2449-2457
    [61]Seidel A, Zimmels Y, Armon R. Mechanism of bioleaching of coal fly ash by Thiobacillus thiooxidants. Chem Eng,2001,83(2):123-130
    [62]Kumar R.N, Nagendran R.. Influence of initial pH on bioleaching of heavy metals from contaminated soil employing indigenous Acidithiobacillus thiooxidans. Chemosphere, 2007,66(9):1775-1781
    [63]李浩然,冯雅丽.微生物催化还原浸出氧化锰矿物中锰的研究.有色金属,2001,53(3):6
    [64]Ryu H W, Moon H S, Lee E Y, et al. Leaching characteristics of heavy metals from sewage sludge by Acidithiobacillus thiooxidans MET. Journal of Environmental Quality, 2003,32:751-759
    [65]Tsai L J, Yu K C, Chen S F, et al. Partitioning variation of heavy metals in contaminated river sediment via bioleaching:effect of sulfur added to total solids ratio[J]. Water Research,2003,37(19):4623-4630
    [66]Liu Y G, Zhou M, Zeng G M, et al. Effect of solids concentration on removal of heavy metals from mine tailings via bioleaching[J]. Journal of Hazardous Materials,2007, 141(1):202-208
    [67]Gomez E, Ballester A, Gonzalez F, et al. Leaching capacity of a new extremely thermophilic microorganism, Sulfolobus rivotincti. Hydrometallurgy,1999, 52(3):349-366
    [68][68] Lombardi A T, Garcia O J. Biological leaching of Mn, Al, Zn, Cu and Ti in an anaerobic sewage sludge effectuated by Thiobacillus ferrooxidans and its effect on metal partitioning. Water Research,2002,36(13):3193-3202
    [69]Cheng H N, Hu Y H. Bioleaching of anilite using pure and mixed culture of Acidithiobacillus ferrooxidans and Acidithiobacillus caldus. Minerals Engineering 2007, 20(12):1187-1190
    [70]Mousavi S.M., Yaghmaei S., vossoughi M.,et al. The effects of Fe(Ⅱ) and Fe(Ⅲ) concentration and initial pH on microbial leaching of low-grade sphalerite ore in a column reactor. Bioresource Technology,2008,99:2840-2845
    [71]Pina P.S., Leao V.A., Silva C.A., et al. The effect of ferrous and ferric iron on sphalerite bioleaching with Acidithiobacillus sp.. Minerals Engineering,2005,18:549-551
    [72]Yoshishige Kawabe, Chihiro Inoue, Koichi Suto, et al. Inhibitory effect of high concentrations of ferric ions on the activity of Acidithiobacillus ferrooxidans. Journal of biosecience and bioengineering,2003,96(4):375-379
    [73]Kot A, Namiesik J. The role of speciation in analytical chemistry. Trends in Analysis Chemistry,2000,19(23):69
    [74]Tessier A, Campbell P G C, Bission M. Sequential extraction procedure for the speciation of particulate trace metals. Anal Chenm,1979,51:844-851
    [75]王海,王春霞,王子健.太湖表层沉积物中重金属的形态分析.环境化学,2002,21(5):430-435
    [76]Quevauviller P H, Rauret G, L pez-Sanchez J F, et al. Certification of trace metal extractable contents in a sediment reference material(CRM601) following a three-step sequential extraction procedure. Sci Total Environ,1997,205:223-234
    [77]Gmez Ariza J L, Graldez I, Sanchez Rodas D, et al. Comparison of the feasibility of three extraction procedures for trace metal partitioning in sediments from south-west Spain. Sci Total Environ.,2000,246:271-283
    [78][78] Katherine F.Mossop, Christine M.Davidson. Comparison of original and modified BCR sequential extraction procedures for the fractionation of copper,iron,lead,manganese and zinc in soils and sediments. Analytica Chimica Acta, 2003,478:111-118
    [79]Barona A, Aranguiz I, Elias A. Metal associations in soils before and after EDTA extractive decontamination:implications for the effectiveness of further clean-up procedures. Environ Pollut,2001,113(1):79-85
    [80]Pueyo M, Lopez-Sanchez J F, Rauret G.. Assessment of CaCl2, NaNO3 and NH4NO3 extraction procedures for the study of Cd,Cu,Pb and Zn extractability in contaminated soils. Anal Chim Acta,2004,504(2):217-226
    [81]Lebourg A, Sterckeman T, Ciesielski H, et al. Trace Metal Speciation in Three Unbuffered Salt Solutions Used to Assess their Bioavailability in Soil. J Environ Qual, 1998,27(3):584-590
    [82]李焕利,李小明,陈敏等.生物浸取电解锰渣中锰的研究.环境工程学报,2009,3(9):1667-1672
    [83]刘兴起,于异松,邵明昱.察尔汗盐湖91-Ⅳ_4孔沉积地层元素地球化学的研究.湖泊科学,1995,7(4):321-326
    [84]孟运生,徐晓军,王吉坤.贫锰矿细菌浸出试验研究.湿法冶金,2002,21(4):184-187

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700