层状双金属氢氧化物/碳纳米管杂化复合材料的制备、结构及其性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自从1991年被发现以来,碳纳米管(CNTs)独特的结构和优异的物理、化学性能,使得碳纳米管基复合材料的研究中受到广泛关注。CNTs大的比表面积、高的长径比的结构特点以及热稳定性,使得CNTs在载体方面,特别是催化载体方面成为广泛的研究热点。基于其优异的导电性能和生物兼容性能,CNTs在电化学方面,包括电极材料、传感器等方面也具有广泛的应用。而且经过研究表明,在一维纳米结构上,CNTs具有高的机械强度,其杨氏模量和强度分别为1 TPa和20 GPa,是钢铁的5倍和100倍,而密度仅为钢的六分之一到七分之一,因此CNTs常被用做材料的增强剂。但是原质的CNTs表现化学惰性,不易溶于常见溶剂,也难以在基体中分散或者与基体复合,这样的弊端成为制备稳定的、结构均一的CNTs基复合材料的瓶颈。鉴于这个问题,CNTs表面的化学修饰处理已成为国际上CNTs科学研究的一个重要领域。化学修饰包括非共价键和共价键的方法,它会在CNTs表面修饰上各种功能基团,不仅有利于提高其在溶剂中的分散性,而且也有利于与其它物种的反应。
     层状双金属氢氧化物(LDHs)是一类阴离子型层状无机功能材料。在LDHs晶体结构中存在着晶格能最低效应及晶格定位效应,金属离子在LDHs层板上以一定方式均匀分布,形成了特定的化学组成和结构。LDHs在化学组成和微观结构上具有均匀性与可调控性的特点,因此这类材料在催化材料、催化载体、吸附剂、电化学、药物缓释剂、阻燃剂等方面具有很广泛的应用。经过高温焙烧后,LDHs层板坍塌,生成金属氧化物或者尖晶石相,这类材料在催化、吸附等领域也有重要的应用,因此说LDHs也是制备催化剂、吸附剂的优良前体。但是LDHs纳米粒子会发生团聚,而且在升温焙烧过程中,LDHs层板逐渐坍塌、颗粒间烧结团聚,这些都会导致LDHs或者焙烧后的产物分散性差、比表面降低、活性中心数目减少的弊端,也在很大程度上限制LDHs材料作为功能材料前体的应用。为了克服这一缺点,提高LDHs晶粒及焙烧产物的分散性、减少活性粒子的聚集,本文采用不同的方法将不同组成的LDHs负载在CNTs表面,制备了一系列的杂化结构的LDHs与CNTs的复合材料(LDHs/CNTs),从而提高LDHs的分散性,并且降低焙烧产物的团聚,暴露较多的活性中心,以增强其活性。而且CNTs的结构和性能也有利于复合物的性能。
     利用酸修饰后呈电负性的碳纳米管表面和电正性的NiAl-层状双金属氢氧化物(NiAl-LDH)层板之间的静电作用,采用共沉淀的方法将NiAl-层状双金属氢氧化物原位组装在碳纳米管表面,得到NiAl-LDH与CNTs的复合物(NiAl-LDH/CNTs)。将NiAl-LDH负载在CNTs表面,能够提高NiAl-LDHs的分散性,而且随着复合物中CNTs含量的增加,NiAl-LDH在CNTs表面上的分散性提高,能够实现从CNTs表面上紧密地包裹着NiAl-LDH纳米粒子的形貌向CNTs表面零散的负载着NiAl-LDH粒子的形貌转变。由于NiAl-LDH层板与CNTs表面之间的静电作用导致NiAl-LDH与层间阴离子之间的作用力减弱,从而使金属离子和氧的电子结合能增加,大约增加1.8 eV。电催化氧化葡萄糖的性能表明将NiAl-LDHs负载在CNTs表面上后,复合物的电催化性能得到明显的提高,其电催化氧化峰电流值可以达到纯NiAl-LDH的8倍。这可能是因为一方面CNTs加速电子传递的特点有利于电催化反应的进行;另一方面,CNTs与NiAl-LDH之间的作用力有利于提高NiAl-LDH在电极表面的稳定性。除此之外,复合物在电极表面的网络结构也有利于反应物分子向电极表面的扩散。
     一方面,采用阴离子聚合物(聚苯乙烯磺酸钠,poly(sodium styrenesulfonate))修饰碳纳米管表面的方法制备ZnAl-层状双金属氢氧化物(ZnAl-LDH)与CNTs的复合物(ZnAl-LDH-p-CNTs)。聚苯乙烯磺酸钠通过π-π共轭作用均匀地修饰在CNTs表面,改性后的CNTs表面负电荷均匀分布,有利于金属阳离子在CNTs表面的固定及ZnAl-LDH在CNTs表面的成核生长。结果说明采用此方法能够得到结构均一、分散性好的复合物。另
     方面,以L-半胱氨酸(L-cysteine)为桥联剂,采用桥联的方法将ZnAl-LDH负载在CNTs表面。在水溶液中,L-半胱氨酸能够发生电离生成电正性的-NH3+和电负性的-COO-基团,它们通过静电作用或者配位作用分别与电负性的CNTs表面和组成ZnAl-LDH层板元素的金属阳离子相结合,然后通过调节溶液的pH,在CNTs表面成核生长ZnAl-LDH纳米粒子,从而得到稳定性好、结构均一的ZnAl-LDH与CNTs的复合物(ZnAl-LDH-cy-CNTs)。研究结果表明:L-半胱氨酸作为一种桥联分子不仅能够增强ZnAl-LDH纳米粒子与CNTs表面之间的相互作用,提高ZnAl-LDH纳米粒子在CNTs表面的分散性,而且能够抑制ZnAl-LDH晶粒的生长。由于ZnAl-LDH与CNTs之间的相互作用力,Eu(Ⅲ)配合物插层的ZnAl-LDH(EY)-cy-CNTs复合物出现了荧光淬灭的现象。以甲基橙染料分子光降解为模型反应,性能测试结果表明复合物结构能够增强其紫外光条件下的光降解性能。
     以L-半胱氨酸桥联法制备的CoAl-LDH与CNTs复合物(CoAl-LDH-cy-CNTs)为前体,在N2气氛下焙烧500℃后,CoAl-LDH转化为CoO和COAl2O4混合氧化物,得到CoAl-金属氧化物(ZnAl-MMO)与CNTs的复合物(CoAl-MMO-cy-CNTs)复合物,并研究其对高氯酸铵分解的热催化性能。前体合成过程中L-半胱氨酸的投料量影响复合物前体中CoAl-LDH在CNTs表面的分散状态,进而影响焙烧产物的组成。CoAl-MMO-cy-CNTs复合物表现了很好的CNTs和CoAl-金属氧化物的催化协同效应,能够使高氯酸铵分解温度降低至271.3℃,分解速率提高至13.0 mg/min。
Since discovered in 1991, carbon nanotube (CNTs), by virtue of its unique molecular geometry structure and physical and chemical properties, have been paid much attention in the field of CNTs-based hybrid materials. Of its property, high special surface area, high ratio of length to diameter and high thermal stability have made great contribution in exploration of CNTs as support, especially catalyst support, which have become a rapidly expanding research field. CNTs have been widely used in electrochemistry including electrode and sensor because of good conductivity and biocompatibility. It was reported that CNTs own excellent mechanical properties, and its high Young's modulus and strong strength is 1 TPa and 20 GPa, respectively, which is nearly 5 times and 100 times stronger than these of steel. Therefore, CNTs have been used as enhanced materials. However, CNTs are inert and are not susceptible to dissolve common reagents or disperse in matrix. This disadvantage becomes the troublesome bottleneck in the preparesion of CNTs-based materials with stable and uniform structure. Therefore, the modification of CNTs surface by non-covalent bond or covalent bond is carried out in the international carbon nanotube science research, which is not only improve the distribution in organic and inorganic reagent, but also is favorable to reaction with other materials.
     Layered double hydroxides (LDHs), known as a family of synthetic anionic clays, are a class of brucite-like layered inorganic materials. Within the layers, the cations are uniformly distributed on an atomic level without segregation of "lakes" of separate cations. Due to the characteristics of tunable compositions and exchangeable anions, LDH have been widely used in various fields like catalysts or catalyst support, adsorbent, electrochemistry materials, drug delivery materials, and retardant. Calcination of LDHs may lead to the collapse of LDHs layer and conversion of LDHs to metal oxides and/or spinel, which have been exploited in catalyst and adsorption. However, LDHs nanoparticles aggregate to each other to some extent, and the calcinated product can occur second reunion during the process of calcination. These phenomenon lead to the poor distribution of nanoparticles, low special surface area and the decrease of active site amount, which inhibits the application of LDHs as function materials. In order to overcome this shortage and improve distribution, we utilized different methods to assemble LDHs nanoparticles on the surface of CNTs to prepare a serial of LDH/CNTs composites with excellent hybrid structure. The high distribution of LDHs facilitates the increase of specific surface area and the exposure of more active site. Furthermore, the remarkable structure and property of CNTs are advantageous for the property of composite.
     Nanostructured Ni-Al layered double hydroxide/carbon nanotubes (NiAl-LDH/CNTs) composites, where NiAl-LDH nanocrystallites could highly disperse on the surface of CNTs matrix through the interfacial electrostatic interaction between the positively-charged layers of NiAl-LDH and the negatively-charged functional groups of modified CNTs, have been successfully synthesized by a simple one-pot coprecipitation method. The results reveal that the surface coverage of NiAl-LDH nanoparticles onto CNTs could be tuned easily by changing the mass ratios of CNTs to NiAl-LDH. The strong electrostatic interaction between NiAl-LDH and CNTs gives rise to both the weakened affinity between the layers and the interlayer species of NiAl-LDH and the high positive shift of binding energy for metal and oxygen elements (around 1.8 eV) in NiAl-LDH/CNT composite. Further the electrode modified by NiAl-LDH/CNTs nanocomposite exhibits eight times higher electrocatalytic activity for glucose electrooxidation than those modified by either pristine NiAl-LDH or CNTs, which is attributable to the fact that CNTs can efficiently promote the charge transport between the active Ni centers and the electrode and the high affinity of NiAl-LDH to CNTs matrix in composite favors the stabilization of electro-active NiAl-LDH nanoparticles on the surface of CNTs at the operating potentials of electrode. In addition, porous network-like microstructure of composite on the electrode favorites the diffusion of reactant molecules.
     On the one hand, we chose poly(sodium styrenesulfonate) (PSS) to modify the surface of CNTs and prepare the ZnAl-LDH/CNTs nanocomposites. The negatively charged polyelectrolyte PSS can graft the surface of CNTs throughπ-πinteraction, thus providing a homogeneous distribution of negative charges on CNTs, which is beneficial for the homogeneous adsorption of metal ions through electrostatic interactions and the nucleation and growth of ZnAl-LDH nanoparticles. The results reveal that the composite with well distribution and stable structure can be obtained by this method. On the other hand, a facile and effective strategy has been utilized for assembling hybrid ZnAl-layered double hydroxide/carbon nanotubes (ZnAl-LDH-cy-CNTs) nanocomposites in the presence of L-cysteine molecules. L-cysteine can exist in the form of -NH3+ and -COO- in the solution. The electrostatic interaction between -NH3+ of L-cysteine and-COO- on the modified CNTs contributes greatly to the immobilization of L-cysteine onto the surface of CNTs. Furthermore,-COO- groups of immobilized L-cysteine can selectively coordinate and/or electrostatically interact with Zn2+ cations in the solution. Subsequently, with the successive titration of alkali, ZnAl-LDH nucleates in situ onto CNTs through coprecipitation process. The results indicate that L-cysteine as bridging linker plays a key role for enhancing both adhesion and dispersion of ZnAl-LDH nanocrystallites onto the surface of CNTs matrix through the interfacial interaction, and effectively inhibits the in situ growth of ZnAl-LDH crystallites, thus resulting in remarkably reduced ZnAl-LDH crystallite sizes. The Eu(Ⅲ) fluorescence quenching in intercalated-Eu(Ⅲ) complex ZnAl-LDH(EY)-cy-CNTs nanocomposite can occur because of the interaction between ZnAl-LDH crystallites and CNTs matrix. Furthermore, it is found that as-assembled hybrid ZnAl-LDH/CNTs nanocomposites exhibit excellent performance for photodegradation of methyl orange molecules under UV irradiation, which is closely related to the unique hybrid nanostructure and composition of composites.
     We researched the thermal catalytic property of CoAl-MMO-cy-CNTs compsite towards ammonium perchlorate decomposition, which was prepared by the calcination of CoAl-LDH-cy-CNTs composite precursor at 500℃under N2 atmosphere. After calcinated at 500℃, CoAl-LDH is transformed to CoO and CoAl2O4 mixture. The distribution of CoAl-LDH on the surface of CNTs, which influences the composition of calcainated product, can be controlled by the dosage of L-cysteine in the synthesis process of CoAl-LDH. CoAl-MMO-cy-CNTs composite exhibited excellent cooperative performance of CoAl-MMO and CNTs for the decomposition of ammonium perchlorate, the decrease of decomposition temperature to 271.3℃, and the increase of decomposition rate to 13.0 mg/min.
引文
[1]千载虎,曹建华.层状固体化合物及其催化作用[J].石油化工,1980,19:122-127.
    [2]耿利娜,相明辉,李娜,李克安.层状无机化合物磷酸锆的研究和应用进展[J].化学进展,2004,16:717-727.
    [3]Xu Z, Ye X, Wu Y. Hydrotalcite type anionic clay as catalytic materials with broad prospects [J]. Petrochem Tech,1995,24:63-65.
    [4]Evans D G, Slade R C T. Layered double hydroxides [J]. Struct Bond,2006,119:1-234.
    [5]Cavani F, Trifiro F, Vaccari A. Hydrotalcite-type anionic clays:preparation, properties and application [J]. Catal Today,1991,11:173-301.
    [6]段雪,张法智.插层组装与功能材料[M].北京:化学工业出版社,2007.
    [7]Lee J H, Rhee S W, Jung, D Y J. Selective layer reaction of layer-by-layer assembled layered double hydroxide nanocrystals [J]. J. Am. Chem. Soc.2007,129,3522-3523.
    [8]Xiong Z G, Xu Y M. Immobilization of palladium phthalocyanine sulfonate onto anionic clay for sorption and oxidation of 2,4,6-trichlorophenol under visible light irradiation [J]. Chem. Mater.2007, 19,1452-1458.
    [9]Ding P, Zhang M, Gai J, Qu B J. Homogeneous dispersion and enhanced thermal properties of polystyrene-layered double hydroxide nanocomposites prepared by in situ reversible addition-fragmentation chain transfer (RAFT) polymerization [J]. J. Mater. Chem.2007,17, 1117-1122.
    [10]Desigaux L, Belkacem M B, Richard P, Cellier J, Leone P, Cario L, Leroux F, Taviot-Gueho C, Pitard B. Self-assembly and characterization of layered double hydroxide/DNA hybrids [J]. Nano Lett.2006,6,199-204.
    [11]Yan D, Lu J, Wei M, Evans D G, Duan X. Sulforhodamine B intercalated layered double hydroxide thin film with polarized photoluminescence [J]. J. Phys. Chem. B 2009,113,1381-1388.
    [12]Braterman P S, Xu Z P, Yarberry F. Handbook of layered materials [M]. New York:Marcel Dekker, 2004.
    [13]Williams G R, OHare D. Towards understanding, control and application of layered double hydroxide chemistry [J]. J. Mater. Chem.2006,16,3065-3074.
    [14]Xiang X, Hima H I, Wang H, Li F. Facile synthesis and catalytic properties of nickel-based mixed-metal oxides with mesopore networks from a novel hybrid composite precursor [J]. Chem. Mater,2008,20,1173-1182.
    [15]Bravo-Suαrez J J, Pαez-Mozo E A, Oyama S T. Review of the synthesis of layered double hydroxides:a thermodynamic approach [J]. Quimica Nova,2004,27,601-614.
    [16]Walter T R. Cryatal structures of some double hydroxide minerals [J]. J. Catal,1985,94:547-557.
    [17]Inoue M, Kominami H, Kondo Y, Inui T. Organic derivatives of layered inorganics having the second stage structure [J]. Chem. Mate.,1997,9:1614-1619.
    [18]Rebours B, d'Espinose de la Caillerie J B, Clause O. Decoration of nickel and magnesium oxide crystallites with spinel-type phases[J].J. Am. Chem. Soc.,1994,116,1707-1717.
    [19]Clause O, Rebours B, Merlen E, Trifiro F, Vaccari A. Preparation and characterization of nickel-aluminum mixed oxides obtained by thermal decomposition of hydrotalcite-type precursors [J]. J. Catal.,1992,133:231-246.
    [20]Clause O, Gazzano M, Trifiro F, Vaccari A, Zatorski L. Preparation and thermal reactivity of
    nickel/chromium and nickel/aluminium hydrotalcite-type precursors [J]. Appl. Catal.,1991,73: 217-236.
    [21]Miyata S. Anion-exchange properties of hydrotalcite-like compounds [J]. Clays Clay Miner,1983, 31:305-311.
    [22]Rocha J, Arco M D, Rives V, Ulibarri M A. Reconstruction of layered double hydroxides from calcined precursors:a powder XRD and 27A1 MAS NMR study [J]. J. Mater. Chem.,1999,9: 2499-2503.
    [23]Meyn M, Beneke K, Lagaly G. Anion-exchange reactions of layered double hydroxides [J]. Inorg. Chem.,1990,29,5201-5207.
    [24]de Roy A, Forano C, Besse J P. Layered double hydroxides:present and future [M]. Rives V (ed). New York:Nova Science Publishers,2001.
    [25]Constantino V R L, Pinnavaia T J. Basic properties of Mg1-x2+Alx3+ layered double hydroxides intercalated by carbonate, hydroxide, chloride, and sulfate anions [J]. Inorg Chem,1995,34: 883-892.
    [26]del Arco M, Malet P, Trujillano R, Rives V. Synthesis and characterization of hydrotalcites containing Ni(Ⅱ) and Fe(Ⅲ) and their calcination products [J]. Chem Mater,1999,11:624-633.
    [27]Fornasari G, Gazzano M, Matteuzzi D, Trifiro F, Vaccari A. Structure and reactivity of high-surface-area Ni/Mg/Al mixed oxides [J]. Appl. Clay Sci.,1995,10,69-82.
    [28]Li F, Liu J, Evans D G, Duan X. Stoichiometric synthesis of pure MFe2O4 (M=Mg, Co, and Ni) spinel ferrites from tailored layered double hydroxide (hydrotalcite-like) precursors [J]. Chem. Mater.2004,16,1597-1602.
    [29]Rebours B, d'Espinosa de la Caillerie J B, Clause O, Decoration of nickel and magnesium oxide crystallites with spinel-type phases [J]. J. Am. Chem. Soc.,1994,116:1707-1717.
    [30]Clause O, Coelho M G, Gazzano M, Synthesis and thermal reactivity of nickel-containing anionic clays [J]. Appl. Clay Sci.,1993,8:169-186.
    [31]Kloprogge J T, Frost R L. Fourier Transform Infrared and Raman spectroscopic study of the local structure of Mg-, Ni-, and Co-hydrotalcites [J]. J Solid State Chem.,1999,146:506-515.
    [32]Zhao Y, Li F, Zhang R, Evans D G, Duan X. Preparation of layered double-hydroxide nanomaterials with a uniform crystallite size using a new method involving separate nucleation and aging steps [J]. Chem. Mater.,2002,14,4286-4291.
    [33]Hima H I, Xiang X, Zhang L, Li F. Novel carbon nanostructures of caterpillar-like fibers and interwoven spheres with excellent surface super-hydrophobicity produced by chemical vapor deposition [J]. J. Mater. Chem.,2008,18,1245-1252.
    [34]Perry R H, Green D W. Perry's chemical engineers handbook [M]. New York:McGraw-Hill,1997.
    [35]Xu Z P, Lu G Q. Hydrothermal synthesis of layered double hydroxides (LDHs) from mixed MgO and Al2O3:LDH formation mechanism [J]. Chem. Mater.2005,17,1055-1062.
    [36]Chitrakar R, Tezuka S, Sonoda A, Sakane K, Hirotsu T. A new method for synthesis of Mg-Al, Mg-Fe, and Zn-Al layered double hydroxides and their uptake properties of bromide ion [J]. Ind. Eng. Chem. Res.2008,47,4905-4908.
    [37]Costantino U, Marmottni F, Nocchetti M, Vivani R. New synthetic routes to hydrotalcite-like compounds-characterization and properties of the obtained materials [J]. Eur. J. Inorg. Chem.1998, 1439-1446.
    [38]Yan C, Xue D. Self-assembled MgO nanosheet and its precursor [J]. J. Phys. Chem. B 2005,109, 12358-12361.
    [39]Shaw W H R, Bordeaux J J. The decomposition of urea in aqueous media [J]. J. Am.Chem. Soc., 1955,77,4729-4733.
    [40]Drezdzon D A. Synthesis of isopolymetalate-pillared hydrotalcite via organic anion pillared precursors [J]. Inorg. Chem.,1988,27:4628-4632.
    [41]沈家骢,超分子层状结构.组装与功能[M].北京:科学出版社,2003:125-185.
    [42]Bone J S. Development and characterization of the interlayer chemistry of layered double hydroxides [M]. Exter:University of Exter,1995.
    [43]Rives V. Layered double hydroxides:present and future [M]. New York:Nova Science Publishers, 2001.
    [44]Parker L M, Milestone N B, Newman R H. The use of hydrotalcite as an anion adsorbent [J]. Ind. Eng. Chem. Res.1995,34:1196-1202.
    [45]Chibwe K, Jones W. Intercalation of organic and inorganic anions into layered double hydroxides [J]. J Chem Soc Chem commun,1989,14:926-927.
    [46]Benito P, Guinea I, Labajos F M, Rives V. Microwave-assisted reconstruction of Ni,Al hydrotalcite-like compounds [J]. J Solid State Chem.2008,181:987-996.
    [47]杨一青,刘从华,张莉,王亚红.层状双金属氢氧化物及类层状双金属氢氧化物材料的合成及催化应用新进展[J].炼油与化工,2008,19:9-11.
    [48]Ye X N, Ma N, Hua W M, Yue Y H, Miao C X, Xie Z K, Gao Z. Dehydrogenation of ethylbenzene in the presence of CO2 over catalysts prepared from hydrotalcite-like precursors [J]. J Mol Catal A: Chem 2004,217:103-108.
    [49]Coq B, Tichit D, Ribet S. Co/Ni/Mg/Al layered double hydroxides as precursors of catalysts for the hydrogenation of nitriles:hydrogenation of acetonitrile [J]. J Catal,2000,189:117-128.
    [50]Choudary B M, Kantam M L, Rahman A, Reddy C R V. Selective reduction of aldehydes to alcohols by calcined Ni-Al hydrotalcite [J]. J. Mol. Catal. A,2003,206:145-151.
    [51]Qi C X, Amphlett J C, Peppley B A. K (Na)-promoted Ni, Al layered double hydroxide catalysts for the steam reforming of methanol [J]. J Power Sources,2007,171:842-849.
    [52]Segal S R, Anderson K B, Carrado K A, Marshall C L. Low temperature steam reforming of methanol over layered double hydroxide-derived catalysts [J]. Appl Catal A:Gen,2002,231: 215-226.
    [53]Abello S, Medina F, Tichit D, Perez-Ramirez J, Cesteros Y, Salagrea P, Sueirasa J E. Nanoplatelet-based reconstructed hydrotalcites:towards more efficient solid base catalysts in aldol condensations [J]. Chem. Commun.,2005,1453-1455.
    [54]Jinesh C M, Antonyraj C A, Kannan S. Isomerization of eugenol and alkenyl aromatics of perfumery interest over Ni-containing layered double hydroxides as solid base catalysts [J]. Catal Today,2009,141:176-181.
    [55]Kishore D, Kannan S. Isomerization of eugenol and safrole over MgAl hydrotalcite, a solid base catalyst [J]. Green Chem,2002,4:607-610.
    [56]Scavetta E, Ballarin B, Berrettoni M, Carpani I, Giorgetti M, Tonelli D. Electrochemical sensors based on electrodes modified with synthetic hydrotalcites [J]. Electrochim Acta,2006,51: 2129-2134.
    [57]Wang H, Xiang X, Li F. Facile synthesis and novel electrocatalytic performance of nanostructured Ni-Al layered double hydroxide/carbon nanotube composites [J]. J Mater Chem,2010, b924911g.
    [58]Seftel E M, Popovici E, Mertens M, De Witte K, Van Tendeloo G, Cool P, Vansant E F. Zn-Al layered double hydroxides:Synthesis, characterization and photocatalytic application [J]. Micropor Mesopor Mat,2008,113:296-304.
    [59]Drezdzon M A. Synthesis of isopolymetalate-pillared hydrotalcite via organic anion pillared precursors [J]. Inorg Chem,1988,27:4628-4632.
    [60]Padnmsri A H, Venugopal A, Krishnamurthy J, Rama Rao K S, Kanta Rao P. Novel calcined Mg-Cr hydrotalcite supported Pd catalysts for the hydrogenolysis of CCI2F2 [J]. J. Mol. Catal. A, 2002,181:73-80.
    [61]Narayanan S, Kfishna K. Hydrotalcite-supported palladium catalysts part Ⅰ:Preparation, characterization of hydrotalcites and palladium on uncalcinod hydrotalcites for CO chemisorption and phenol hydrogenatlon [J]. Appl Catal A:Gen,1998,174:221-229.
    [62]Chen H, Wang J M, Pan T, Zhao Y L, Zhang J Q, Cao C N. Physicochemical properties and electrochemical performance of Al-substituted α-Ni(OH)2 with additives for Ni-metal hydride batteries [J]. J Electrochem Soc,2003,150:1399-1404.
    [63]Ai H, Huang X, Zhu Z, Liu J, Chi Q, Li Y, Li Z, Ji X. A novel glucose sensor based on monodispersed Ni/Al layered double hydroxide and chitosan [J]. Biosens Bioelectron,2008,24, 1048-1052.
    [64]Zhu K, Liu C, Ye X, Wu Y. Catalysis of hydrotalcite-like componds in liquid phase oxidation:(Ⅰ) phenol hydroxylation [J]. Appl Catal A:Gen,1998,168:365-372.
    [65]Mousty C, Therias S, Forano C, Besse J P. Anion-exchanging clay-modified electrodes:synthetic layered double hydroxides intercalated with electroactive organic anions [J]. J Electroanal Chem, 1994,374:63-69.
    [66]Li M, Chen S, Ni F, Wang Y, Wang L. Layered double hydroxides functionalized with anionic surfactant:Direct electrochemistry and electrocatalysis of hemoglobin [J]. Electrochim Acta,2008, 53:7255-7260.
    [67]Drezdzon M A. Synthesis of isopolymetalate-pillared hydrotalcite via organic-anion-pillared precursor [J]. Inorg Chem,1988,27:4628-4631
    [68]Ikeda T, Amoh H, Yasunaga T. Stereoselective exchange kinetics of L- and D-histidines for chloride ion in the interlayer of a hydrotalcite-like compound by the chemical relaxation method [J]. J Am Chem Soc,1984,106:5772-5775.
    [69]Ulibarri M A, Pavlovic I, Hermosin M C, Cornejo J. Hydrotalcite-like compounds as potential sorbents of phenols from water [J], Appl Clay Sci,1995,10:131-145.
    [70]Li F, Wang Y, Yang Q, Evans D G, Forano C, Duan X. Study on adsorption of glyphosate (N-phosphonomethyl glycine) pesticide on MgAl-layered double hydroxides in aqueous solution [J]. J Hazard Mater,2005,125:89-95.
    [71]Moujahid E M, Inacio J, Besse J P, Leroux F. Adsorption of styrene sulfonate vs. polystyrene sulfonate on layered double hydroxides [J]. Micro Meso Mater,2003,57:37-46.
    [72]Seida Y, Nakano Y. Removal of humic substances by layered double hydroxide containing iron [J]. Water Res,2000,34:1487-1494.
    [73]Ulibarri M A, Pavlovic I, Hermosin M C, Cornejo J. Hydrotalcite-like compounds as potential sorbents of phenol from water [J]. Appl Clay Sci,1995,10:131-145.
    [74]Pavan P C, Crepaldi E L, Gomes G, De A, Valim J B. Adsorption of sodium dodecylsulfate on a hydrotalcite-like compound. Effect of temperature, pH and ionic strength [J]. Colloid Surf A,1999, 115:399-410.
    [75]You Y, Zhao H, Vance G F. Adsorption of dicamba (3,6-dichloro-2-methoxy benzoic acid) in aqueous solution by calcined-layered double hydroxide [J]. Appl Clay Sci,2002,21:217-226.
    [76]Ambrogi V, Fardella G, Grandolini G, Nocchetti M, Perioli L. Effect of hydrotalcite-like compounds on the aqueous solubility of some poorly water-soluble drugs [J]. J Phann Sci,2003,92: 1407-1418.
    [77]Lee W F, Chen Y C. Effect of hydrotalcite on the physical properties and drug-release behavior of
    nanocomposite hydrogels based on poly [acrylic acid-co-poly (ethylene glycol) methyl ether acrylate] gels [J]. J Appl Polym Sci.2004,94:692-699.
    [78]Miyata S. Gastric antacid and method for controlling pH of gastric juice [P]. US. Patent,4,514,389, 1985-04-30.
    [79]Costantino U, Nocchetti M. Layered double hydroxides and their intercalation compounds in photochemistry and medicinal chemistry [M]. NY Nova Sci Publish,2001.
    [80]Wei M, Pu M, Guo J, Han J, Li F, He J, Evans D G, Duan X. Intercalation of L-Dopa into layered double hydroxides:Enhancement of both chemical and stereochemical stabilities of a drug through host-guest interactions [J]. Chem Mater,2008,20:5169-5180.
    [81]Zhang H, Zou K, Guo S, Duan X. Nanostructural drug-inorganic clay composites:Structure, thermal property and in vitro release of captopril-intercalated Mg-Al-layered double hydroxides [J]. J Solid State Chem,2006,179:1792-1801.
    [82]Zhang H, Zou K, Sun H, Duan X. A magnetic organic-inorganic composite:Synthesis and characterization of magnetic 5-aminosalicylic acid intercalated layered double hydroxides [J]. J Solid State Chem,2005,178:3485-3493.
    [83]Ogawa M, Kuroda K. Photofunctions of intercalation compounds [J]. Chem Rev,1995,95: 399-438.
    [84]Wei M, Xu X, Wang X, Li F, Zhang H, Lu Y, Pu M, Evans D G, Duan X. Study on the photochromism of Ni-Al layered double hydroxides containing nitrate anions [J]. Eur J Inorg Chem, 2006,2006:2831-2838.
    [85]Hippi U, Mattila J, Korhonen M, Seppala J. Compatibilization of polyethylene/aluminum hydroxide (PE/ATH) and polyethylene/magnesium hydroxide (PE/MH) composites with functionalized polyethylenes [J]. Polym,2003,44:1193-1201.
    [86]Mai K, Qiu Y, Lin Z. Mechanical properties of Mg(OH)2/PP composites modified by functionalized polypropylene [J]. J Appl Polym Sci,2003,88:2139-2147.
    [87]Evans D G, Duan X. Preparation of layered double hydroxides and their applications as additives in polymers, as precursors to magnetic materials and in biology and medicine [J]. Chem Commun, 2006,485-496.
    [88]赵芸,李峰,段雪.镁基高抑烟纳米阻燃剂在高分子材料中的应用研究[J].塑料,2002,31:57-63.
    [89]Kroto H W, Heath J R, Obrien S C, Curl R F, Smalley R E. C60-buckminsterfullerene [J]. Nature, 1985,318:162-163,.
    [90]Iijima S. Helical microtubles of graphite carbon [J]. Nature,1991,354:56-58.
    [91]Ebbesen T W. Carbon nanotubes [J]. Phys Today,1996,49:26-32.
    [92]Pan Z W, Xie S S, Chang B H, Wang C Y, Lu L, Liu W, Zhou W Y, Li W Z, Qian L X. Very long carbon nanotubes [J]. Nature,1998,394:631-632.
    [93]Iijima S, Ichihashi T. Single-shell carbon nanotubes of 1-nm diameter [J]. Nature,1993,363: 603-605.
    [94]Ivanov V, Nagy J B, Lambin P, Lucas A, Zhang X B, Zhang X F, Bernaerts D, Van Tendeloo G, Amelinckx S, Van Landuyt J. The study of carbon nanotubes produced by catalytic method [J]. Chem Phys Lett,1994,223:329-335.
    [95]Dresselhaus M S, Dresselhaus G, Saito R. Physics of carbon nanotubes [J]. Carbon,1995,33: 883-891.
    [96]Saito R, Fujita M, Dresselhaus G, Dresselhaus M S. Electronic structure of chiral grapheme tubules [J]. Appl Phys Lett,1992,60:2204-2206.
    [97]Saito R, Dresselhuas M S, Dresselhuas G. Physical Properties of Carbon nanotubes [M]. London: Imperial College Press,1998.
    [98]潘晖,曹全喜,佟丽英,周晓华.碳纳米管应用研究[J].纳米材料与结构,2002,9:14-18.
    [99]Wong E W, Sheehan P E, Lieber C M. Nanobeam mechanics:elasticity, strength and toughness of nanorods and nanotubes [J]. Science,1997,277:1971-1975.
    [100]Yu M F, Lourie O, Dyer, M J, Moloni K, Kelly T F, Ruoff R S. Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load [J]. Science,2000,287:637-640.
    [101]Treacy M M J, Ebbesen T W. Gibson J M. Exceptionally high Young's modulus observed for individual carbon nanotubes [J]. Nature,1996,381:678-680.
    [102]张艳荣.碳纳米管的研究现状及应用[J].中国科技信息,2008,16:36-38.
    [103]Tans S J, Devoret M H, Dai H, Thess A, Smalley R E, Geerligs L J, Dekker C. Individual single-wall carbon nanotubes as quantum wires [J]. Nature,1997,386:474-477.
    [104]Liang W J, Bockrath M, Bozovic D, Hafner J H, Tinkham M, Park H. Fabry-Perot interference in a nanotube electron waveguide [J]. Nature,2001,411:665-669.
    [105]Zhao G C, Yin Z Z, Zhang L, Wei X W. Direct electrochemistry of cytochrome c on a multi-walled carbon nanotubes modified electrode and its electrocatalytic activity for the reduction of H2O2 [J]. Electrochem Commun,2005,7:256-260.
    [106]Patolsky F, Weizmann Y, Willner I. Long-range electrical contacting of redox enzymes by SWCNT connectors [J]. Angew. Chem. Int. Ed.,2004,43:2113-2117.
    [107]Dong B, He B L, Xu C L, Li H L. Preparation and electrochemical characterization of polyaniline/multi-walled carbon nanotubes composites for supercapacitor [J]. Mat Sci Eng B-Solid, 2007,143:7-13.
    [108]Portet C, Yushin G, Gogotsi Y. Electrochemical performance of carbon onions nanodiamonds, carbon black and multiwalled nanotubes in electrical double layer capacitors [J]. Carbon,2007,45: 2511-2518.
    [109]Wang G, Qu M, Yu Z, Yuan R. LiNi0.8Co0.2O2/MWCNT composite electrodes for supercapacitors [J]. Mater Chem Phys,2007,105:169-174.
    [110]朱宏伟,李雪松,慈立杰,徐才录,梁吉,吴德海.立式浮动催化裂解法大批量制备单层碳纳米管[J].科学通报,2001,46:1664-1668.
    [111]Zhang L, Li F, Xiang X, Wei M, D G Evans. Ni-based supported catalysts from layered double hydroxides:tunable microstructure and controlled property for the synthesis of carbon nanotubes [J]. Chem Eng J,2009,155:474-482.
    [112]Zhao M Q, Zhang Q, Jia X L, Huang J Q, Zhang Y H, Wei F. Hierarchical composites of single/double-walled carbon nanotubes interlinked flakes from direct carbon deposition on layered double hydroxides [J]. Adv. Funct. Mater.,2010,20:677-685.
    [113]Yun Y, Shanov V, Tu Y, Subramaniam S, Schulz M J. Growth mechanism of long aligned multiwall carbon nanotube arrays by water-assisted chemical vapor deposition [J]. J. Phys. Chem. B 2006,110:23920-23925.
    [114]Takagi D, Kobayashi Y, Homma Y. Carbon nanotube growth from diamond [J]. J. Am. Chem. Soc. 2009,131:6922-6923.
    [115]Smith D K, Lee Doh C, Korgel B A. High yield multiwall carbon nanotube synthesis in supercritical fluids [J]. Chem. Mater.,2006,18:3356-3364.
    [116]Xia Y, Yang Z, Mokaya R. Simultaneous control of morphology and porosity in nanoporous carbon:graphitic mesoporous carbon nanorods and nanotubules with tunable pore size [J]. Chem. Mater.,2006,18:140-148.
    [117]Ebbesen T W, Ajayan P M. Large-scale synthesis of carbon nanotubes [J]. Nature,1992,358: 220-222.
    [118]Guo T, Nikolaev P, Thess A, Colbert D T, Smalley R E. Catalytic growth of single-walled nanotubes by laser vaporization [J]. Chem Phys Lett,1995,243:49-54.
    [119]Guo T, Nikolaev P, Rinzler A G, Tomanek D, Colbert D T, Smalley R E. Self-assembly of tubular fullerenes [J]. J Phys Chem,1995,99:10694-10697.
    [120]Thess A, Lee R, Nikolaev P, Dai H, Petit P, Robert J, Xu C, Y Hee Lee, Gon Kim S, Rinzler A G, Colbert D T, Scuseria G E, Tomanek D, Fischer J E, Smalley R E. Crystalline ropes of metallic carbon nanotubes [J]. Science,1996,273:483-487.
    [121]Dresselhaus, M S, Dresselhaus G, Avouris P. Carbon nanotubes synthesis, structures, and applications [M]. Berlin, Germany:Springer,2001,1-421.
    [122]Luo J Z, Gao L Z, Leung Y L, Au C T. The decomposition of NO on CNTs and 1 wt% Rh/CNTs [J].Catal Lett,2000,66:91-97.
    [123]Zhang J, Comotti M, Schuth F, Schlogl R, Su D S. Commercial Fe- or Co-containing carbon nanotubes as catalysts for NH3 decomposition [J]. Chem. Commun.,2007,1916-1918.
    [124]Liu Z, Wang J, Xie D, Chen G. Polyaniline-coated Fe3O4 nanoparticle-carbon nanotube composite and its application in electrochemical biosensing [J]. Small 2008,4:462-466.
    [125]Pham-Huu C, Keller N, Charbonniere L J, Ziessel R, Ledoux M J. Carbon nanofiber supported palladium catalyst for liquid-phase reactions. An active and selective catalyst for hydrogenation of C=C bonds [J]. Chem. Commun.,2000,1871-1972.
    [126]Lee T H, Lee J S, Oh S Y, Lee M Y, Lee K S. Comparison of air-side heat transfer coeficients of several type s of evaporators of household freezer/refrlgeratorso. Ninth International Refrigeration and Air Conditioning Conference at Purdue,2002,2:R16(5).
    [127]朱宏伟,吴德海,徐才录.碳纳米管[M].北京:机械工业出版社,2003.
    [128]Peigney A, Flahaut E, Laurent C, Chastel F, Rousset A. Alligned carbon nanotubes in Ceramic matrix nanocomposites prepared by high-temperature extrusion [J]. Chem Phys Lett.,2002,352: 20-25.
    [129]Curran S A, Ajayan P M, Blau W J, Carroll D L, Coleman J N, Dalton A B, Davey A P, Drury A, McCarthy B, Maier S, Strevens A. A composite from poly (m-phenylenevinylene-co-2, 5-dioctoxy-p-phenylenevinylene) and carbon nanotubes:a novel material for molecular optoelectronics [J]. Adv Mater,1998,10:1091-1093.
    [130]Bandow S, Asaka S, Zhao X, Ando Y. Purification and magnetic properties of carbon nanotubes [J]. Appl. Phys. A.,1998,67:23-27.
    [131]Yamamoto K, Akita S, Nakayama Y. Orientation of carbon nanotubes using electrophoresis [J]. Jpn. J. Appl. Phys.,1996,35:917-918.
    [132]Bonard J M, Storn T, Salvetat J P, Maier F, Stockli T, Duschl C, Forro L, de Heer W A, Chatelain A. Purification and size-selection of carbon nanotubes [J]. Adv. Mater.,1997,9:827-831.
    [133]Duesberg G S, Muster J, Krstic V, Burghard M, Roth S. Chromatographic size separation of single-wall carbon nanotubes [J]. Appl. Phys. A,1998,7:117-119.
    [134]Sekar C, Subramanian C. Purification and characterization of buckminsterfullerene, nanotubes and their byproducts [J]. Vacuum,1997,47:1289-1292.
    [135]Tsang S C, Chen Y K, Harris P J F, Green M L H. A simple chemical method of opening and filling carbon nanotubes [J]. Nature,1994,372:159-162.
    [136]Ikazaki F, Oshima S, Uchida K, Kuriki Y, Hayakawa H, Yumura M, Takahashi K, Tojima K. Chemical purification of carbon nanotubes by use of graphite intercalation compounds [J]. Carbon, 1994,32:1539-1542.
    [137]Chen J, Hamon M A, Hu H, Chen Y, Rao A M, Eklund P C, Haddon R C. Solution properties of single-walled carbon nanotubes [J]. Science,1998,282:95-98.
    [138]Hu H, Zhao B, Itkis M E, Haddon R C. Nitric acid purification of single-walled carbon nanotubes [J]. J. Phys. Chem. B 2003,107:13838-13842.
    [139]Harutyunyan A R, Pradhan B K, Chang J, Chen G, Eklund P C. Purification of single-wall carbon nanotubes by selective microwave heating of catalyst particles [J]. J. Phys. Chem. B 2002,106: 8671-8675.
    [140]Zou H L, Yang Y L, Wu B, Qing Q, Li Q W, Zhang J, Liu Z F. Purification and characterization of single-walled carbon nanotubes synthesized by chemical vapor deposition [J]. Acta Phys-Chim Sin,2002,18:409-413.
    [141]Mickelson E T, Huffman C B, Rinzler A G, Smalley R E, Hauge R H, Margrave J L. Fluorination of single-wall carbon nanotubes [J]. Chem Phys Lett,1998,296:188-194.
    [142]Unger E, Graham A, Kreup F, Liebau M, Hoenlein W. Electrochemical functionalization of multi-walled carbon nanotubes for solvation and purification [J]. Curr Appl Phys,2002,2: 107-111.
    [143]Vogel S R, Miiller K, Plutowski U, Kappes M M, Richert C. DNA-carbon nanotube interactions and nanostructuring based on DNA [J]. Phys Status Solidi B,2007,244:4026-4029.
    [144]Shin S R, Lee C K, So I S, Jeon J H, Kang T M, Kee C W, Kim S I, Spinks G M, Wallace G G, Kim S J. DNA-wrapped single-walled carbon nanotube hybrid fibers for supercapacitors and artificial muscles [J]. Adv Mater,2008,20:466-470.
    [145]Mu Q, Liu W, Xing Y, Zhou H, Li Z, Zhang Y, Ji L, Wang F, Si Z, Zhang B, Yan B. Protein binding by functionalized multiwalled carbon nanotubes is governed by the surface chemistry of both parties and the nanotube diameter [J]. J Phys Chem C,2008,112:3300-3307.
    [146]Nakayama-Ratchford N, Bangsaruntip S, Sun X, Welsher K, Dai H. Noncovalent functionalization of carbon nanotubes by fluorescein-polyethylene glycol:Supramolecular conjugates with pH-dependent absorbance and fluorescence [J]. J Am Chem Soc,2007,129:2448-2449.
    [147]Star A, Fraser Stoddart J, Steuerman D, Diehl M, Boukai A, Wong E W, Yang X, Chung S W, Choi H, Heath J R. Preparation and properties of polymer-wrapped single-walled carbon nanotubes [J]. Angew. Chem. Int. Ed.,2001,40:1721-1725.
    [148]王宗花,罗国安,肖素芳,王歌云.α-环糊精复合碳纳米管电极对异构体的电催化行为[J].高等学校化学学报,2003,24:811-813.
    [149]Star A, Steierman D W, Heath J R, Fraser Stoddart J. Starched carbon nanotubes [J]. Angew Chem Int Ed,2002,41:2508-2512.
    [150]Chen G Z, Shaffer M S P, Coleby D, Dixon G, Zhou W, Fray D J, Windle A H. Carbon nanotube and polypyrrole composites:coating and doping [J]. Adv. Mater.,2000,12:522-526.
    [151]Chen J, Wang M, Liu B, Fan Z, Cui K, Kuang Y. Platinum catalysts prepared with functional carbon nanotube defects and its improved catalytic performance for methanol oxidation [J]. J. Phys. Chem. B 2006,110:11775-11779.
    [152]Wen Z, Wang Q, Zhang Q, Li J. In Situ growth of mesoporous SnO2 on multiwalled carbon nanotubes:a novel composite with porous-tube structure as anode for lithium batteries [J]. Adv. Funct. Mater.,2007,17:2772-2778.
    [153]Guldi D M, Aminur Rahman G M, Sgobba V, Kotov N A, Bonifazi D, Prato M. CNT-CdTe versatile donor-acceptor nanohybrids [J]. J Am Chem Soc,2006,128:2315-2323.
    [154]Korneva G, Ye H, Gogotsi Y, Halverson D, Friedman G, Bradley J C, Kornev K G. Carbon nanotubes loaded with magnetic particles [J]. Nano Lett,2005,5:879-884.
    [155]Ovejero G, Sotelo J L, Romero M D, A Rodriguez, M A Ocana, G Rodriguez, J Garcia. Multiwalled carbon nanotubes for liquid-phase oxidation, functionalization, characterization, and catalytic activity [J]. Ind Eng Chem Res,2006,45:2206-2212.
    [156]Qu J, Chen H, Dong S. In situ fabrication of noble metal nanoparticles modified multiwalled carbon nanotubes and related electrocatalysis [J]. Electroanal,2008,20:2410-2415.
    [157]Ye L, Wu Q, Qu B. Synergistic effects and mechanism of multiwalled carbon nanotubes with magnesium hydroxide in halogen-free flame retardant EVA/MH/MWNT nanocomposites [J]. Polym Degrad Stabil,2009,94:751-756.
    [158]Dettlaff-Weglikowska U, Sato N, Yoshida J, Roth S. Preparation and electrochemical characterization of LiMnPO4/single-walled carbon nanotube composites as cathode material for Li-ion battery [J]. Phys Status Solidi B,2009,246:2482-2485.
    [159]Sun Z, Zhang X, Na N, Liu Z, Han B, An G. Synthesis of ZrO2-carbon nanotube composites and their application as chemiluminescent sensor material for ethanol [J]. J. Phys Chem B 2006,110: 13410-13414.
    [160]Huang L, Lau S P, Yang H Y, Leong E S P, Yu S F, Prawer S. Stable superhydrophobic surface via carbon nanotubes coated with a ZnO thin film [J]. J. Phys. Chem. B 2005,109:7746-7748.
    [161]Sun J, Gao L, Iwasab M. Noncovalent attachment of oxide nanoparticles onto carbon nanotubes using water-in-oil microemulsions [J]. Chem Commun,2004,832-833.
    [162]Eder D, Windle A H. Carbon-inorganic hybrid materials:the carbon-nanotube/TiO2 interface [J]. Adv Mater,2008,20:1787-1793.
    [1]Fu X B, Yu H, Peng F, Wang H J, Qian Y. Facile preparation of RuO2/CNT catalyst by a homogenous oxidation precipitation method and its catalytic performance [J]. Appl Catal A Gen,2007,321: 190-197.
    [2]Ye X R, Lin Y H, Wang C M, Engelhard M H, Wang Y, Wai C M. Supercritical fluid synthesis and characterization of catalytic metal nanoparticles on carbon nanotubes [J]. J Mater Chem,2004,14: 908-913.
    [3]Chun Y S, Shin J Y, Song C E, Lee S G. Palladium nanoparticles supported onto ionic carbon nanotubes as robust recyclable catalysts in an ionic liquid [J]. Chem Commun,2008,8:942-944.
    [4]Chen W, Pan X L, Bao X H. Tuning of redox properties of iron and iron oxides via encapsulation within carbon nanotubes [J]. J Am Chem Soc,2007,129:7421-7426.
    [5]Hu H, Zhao B, Itkis M E, Haddon R C. Nitric acid purification of single-walled carbon nanotubes. J. Phys. Chem. B 2003,107:13838-13842.
    [6]Lyons M E G, Keeley G P. Immobilized enzyme/single-wall carbon nanotube composites for amperometric glucose detection at very low applied potential [J]. Chem. Commun.,2008, 2529-2531.
    [7]Zhang H, Xu J J, Chen H Y. Shape-controlled gold nanoarchitectures:synthesis, superhydrophobicity, and electrocatalytic properties [J]. J. Phys. Chem. C 2008,112:13886-13892.
    [8]Arai G, Shoji K, Yasumori I. Electrochemical characteristics of glucose oxidase immobilized in poly (quinone) redox polymers [J]. J. Electroanal Chem,2006,591:1-6.
    [9]Shan D, Yao W, Xue H. Electrochemical study of ferrocenemethanol-modified layered double hydroxides composite matrix:application to glucose amperometric biosensor [J]. Biosens Bioelectron,2007,23:432-437.
    [10]Claussen J C, Franklin A D, ul Haque A, Marshall Porterfield D, Fisher T S. Electrochemical biosensor of nanocube-augmented carbon nanotube networks [J]. ACS Nano,2009,3:37-44.
    [11]Shoji E, Freund M S. Potentiometric sensors based on the inductive effect on the pKa of poly(aniline):A nonenzymatic glucose sensor [J]. J. Am. Chem. Soc.,2001,123:3383-3384.
    [12]Scavetta E, Ballarin B, Berrettoni M, Carpani I, Giorgetti M, Tonelli D. Electrochemical sensors based on electrodes modified with synthetic hydrotalcites [J]. Electrochim Acta.,2006,51: 2129-2134.
    [13]Ai H, Huang X, Zhu Z, Liu J, Chi Q, Li Y, Li Z, Ji X. A novel glucose sensor based on monodispersed Ni/Al layered double hydroxide and chitosan [J]. Biosens Bioelectron,2008,24: 1048-1052.
    [14]Cavani F, Trifiro F, Vaccari A. Hydrotalcite-type anionic clays:preparation, properties and application [J]. Catal Today,1991,11:173-301.
    [15]Millange F, Walton R I, Lei L, O'Hare D. Efficient separation of terephthalate and phthalate anions by selective ion-exchange intercalation in the layered double hydroxide Ca2Al(OH)6·NO3·2H2O [J]. Chem. Mater.,2000,12:1990-1994.
    [16]Li F, Liu J, Evans D G, Duan X. Stoichiometric synthesis of pure MFe2O4 (M=Mg, Co, and Ni) spinel ferrites from tailored layered double hydroxide (hydrotalcite-like) precursors [J]. Chem. Mater.,2004,16:1597-1602.
    [17]Yan D, Lu J, Wei M, Li H, Ma J, F Li, D G Evans, X Duan. In situ polymerization of the
    4-vinylbenzenesulfonic anion in Ni-Al-layered double hydroxide and its molecular dynamic simulation [J]. J. Phys. Chem. A 2008,112:7671-7681.
    [18]Evans D G, Slade R C T. Structural aspects of layered double hydroxides [J]. Struct Bonding,2006, 119:1-89.
    [19]Wang J W, Kalinichev A G, Kirkpatrick R J, Hou X Q. Molecular modeling of the structure and energetics of hydrotalcite hydration [J]. Chem. Mater.,2001,13:145-150.
    [20]Zhao Y, Li F, Zhang R, Evans D G, Duan X. Preparation of layered double hydroxide nanomaterials with a uniform crystallite size using a new method involving separate nucleation and aging steps [J]. Chem. Mater.,2002,14:4286-4291.
    [21]Wu G, Wang L, Evans D G, Duan X. Layered double hydroxides containing intercalated zinc sulfide nanoparticles:synthesis and characterization [J]. Eur. J. Inorg. Chem.,2006,2006:3185-3196.
    [22]Li C, Yao K, Liang J. Study on the features of multiwalled carbon nanotube supported nickel aluminum mixed oxides [J]. Appl. Catal. A:Gen.,2004,261:221-224.
    [23]Zhou J G, Fang H T, Maley J M, Ko J Y P, Murphy M, Chu Helical microtubles of graphite carbon Y, Sammynaiken R, Sham T K. An X-ray absorption, photoemission, and Raman study of the interaction between SnO2 nanoparticle and carbon nanotube [J]. J. Phys. Chem. C 2009,113: 6114-6117.
    [24]Dresselhaus M S, Dresselhaus G, Saito R, Jorio A. Raman spectroscopy of carbon nanotubes [J]. Phys Rep.2005,409:47-99.
    [25]Holzinger M, Vostrowsky O, Hirsch A, Hennrich F, Kappes M, Weiss R, Jellen F. Sidewall Functionalization of Carbon Nanotubes [J]. Angew. Chem. Int. Ed.,2001,40:4002-4005.
    [26]Pastine S J, Okawa D, Kessler B, Rolandi M, Llorente M, Zettl A, Frechet J M J. A facile and patternable method for the surface modification of carbon nanotube forests using perfluoroarylazides [J]. J. Am. Chem. Soc.,2008,130:4238-4239.
    [27]Endo M, Nishimura K, Kim Y A, Hakamada K, Matushita T, Dresselhaus M S, Dresselhaus G. Raman spectroscopic characterization of submicron vapor-grown carbon fibers and carbon nanofibers obtained by pyrolyzing hydrocarbons [J]. J. Mater. Res.1999,14:4474-4477.
    [28]Park M S, Needham S A, Wang G X, Kang Y M, Park J S, Dou S X, Liu H K. Nanostructured SnSb/carbon nanotube composites synthesized by reductive precipitation for lithium-ion batteries [J]. Chem. Mater.,2007,19:2406-2410.
    [29]Wei M, Xu X, Wang X, Li F, Zhang H, Lu Y, Pu M, Evans D G, Duan X. Study on the photochromism of Ni-Al layered double hydroxides containing nitrate anions [J]. Eur. J. Inorg. Chem.,2006,2006:2831-2838.
    [30]Gao Y F, Nagai M, Masuda Y, Sato F, Seo W S, Koumoto K. Surface precipitation of highly porous hydrotalcite-like film on Al from a zinc aqueous solution [J]. Langmuir 2006,22:3521-3527.
    [31]Li J, Tang S B, Lu L, Zeng H C. Preparation of nanocomposites of metals, metal oxides, and carbon nanotubes via self-assembly [J]. J. Am. Chem. Soc.2007,129:9401-9409.
    [32]Lee K Y, Kim M, Hahn J, Suh J S, Lee I, Kim K, Han S W. Assembly of metal nanoparticle-carbon nanotube composite materials at the liquid/liquid interface [J]. Langmuir 2006,22:1817-1821.
    [33]Kim Y T, Mitani T. Surface thiolation of carbon nanotubes as supports:A promising route for the high dispersion of Pt nanoparticles for electrocatalysts [J]. J. Catal.,2006,238:394-401.
    [34]Rives V, Kannan S. Layered double hydroxides with the hydrotalcite-type structure containing Cu2+, Ni2+ and Al3+[J]. J. Mater. Chem.,2000,10:489-495.
    [35]Wang J, Musameh M. Carbon nanotube/teflon composite electrochemical sensors and biosensors [J]. Anal. Chem.,2003,75:2075-2079.
    [36]Zou Y, Xiang C, Sun L, Xu F. Amperometric glucose biosensor prepared with biocompatible material and carbon nanotube by layer-by-layer self-assembly technique [J]. Electrochim Acta., 2008,53:4089-4095.
    [37]Wang J, Musameh M, Lin Y. Solubilization of carbon nanotubes by nafion toward the preparation of amperometric biosensors [J]. J. Am. Chem. Soc.2003,125:2408-2409.
    [38]Pumera M, Sanchez S, Ichinose I, Tang J. Electrochemical nanobiosensors [J]. Sens. Actuators B 2007,123:1195-1205.
    [39]Choi H N, Han J H, Ae Park J, Lee J M, Lee W Y. Amperometric glucose biosensor based on glucose oxidase encapsulated in carbon nanotube-titania-nafion composite film on platinized glassy carbon electrode [J]. Electroanal 2007,19:1757-1763.
    [40]Yan Y M, Baravik I, Yehezkeli O, Willner I. Integrated electrically contacted glucose oxidase/carbon nanotube electrodes for the bioelectrocatalyzed detection of glucose [J]. J. Phys. Chem. C 2008,112:17883-17888.
    [41]Cai C, Chen J. Direct electron transfer of glucose oxidase promoted by carbon nanotubes [J]. Anal Biochem,2004,332:75-83.
    [42]Murray R W. Chemically modified electrodes [M]. Bard A J (Ed.). New York:Electroanaly. Chem., M. Dekker, Inc.,1984.
    [44]Laviron E. The use of linear potential sweep voltammetry and of A. C. voltammmetry for the study of the surface electrochemical reaction of strongly adsorbed systems and of redox modified electrodes [J]. J. Electroanal. Chem.,1979,100:263-270.
    [1]Tasis D, Tagmatarchis N, Bianco A, Prato M. Chemistry of carbon nanotubes [J]. Chem Rev,2006, 106:1105-1136.
    [2]Cavani F, Trifiro F, Vaccari A. Hydrotalcite-type anionic clays: preparation, properties and application [J]. Catal Today,1991,11:173-301.
    [3]Roelofs J C A A, Lensveld D J, Van Dillen A J, De Jong K P. On the structure of activated hydrotalcites as solid base catalysts for liquid-phase aldol condensation [J]. J Catal,2001,203: 184-191.
    [4]Abello S, Medina F, Tichit D, Perez-Rami'rez J, Groen J C, Sueiras J E, Salagre P, Cesteros Y. Aldol condensations over reconstructed Mg-Al hydrotalcites:structure-activity relationships related to the rehydration method [J]. Chem Eur J,2005,11:728-739.
    [5]Lee J H, Rhee S W, Jung D Y. Selective layer reaction of layer-by-layer assembled layered double-hydroxide nanocrystals [J]. J Am Chem Soc.2007,129:3522-3523.
    [6]Yamaguchi N, Nakamura T, Tadanaga K, Matsuda A, Minami T, Tatsumisago M. Direct formation of Zn-Al layered double hydroxide films with high transparency on glass substrate by the sol-gel process with hot water treatment [J]. Cryst Growth Des,2006,6:1726-1729.
    [7]Chen H Y, Zhang F Z, Fu S S, Duan X. In situ microstructure control of oriented layered double hydroxide monolayer films with curved hexagonal crystals as superhydrophobic materials [J]. Adv Mater,2006,18:3089-3093.
    [8]Zhang F Z, Zhao L L, Chen H Y, Xu S L, Evans D G, Duan X. Corrosion resistance of superhydrophobic layered double hydroxide films on aluminum [J]. Angew Chem Int Ed,2008,47: 2466-2469.
    [9]Liu J P, Li Y Y, Huang X T, Li G Y, Li Z K. Layered double hydroxide nano- and microstructures grown directly on metal substrates and their calcined products for application as Li-ion battery electrodes [J]. Adv Funct Mater,2008,18:1448-1458.
    [10]Grzelczak M, Correa-Duarte M A, Salgueirino-Maceira V, Rodriguez-Gonzlez B, Rivas J, Liz-Marzan L M. Pt-Catalyzed Formation of Ni Nanoshells on Carbon Nanotubes [J]. Angew. Chem. Int. Ed.,2007,46:7026-7030.
    [11]Rouse J H, Lillehei P T. Electrostatic assembly of polymer/single walled carbon nanotube multilayer films [J]. Nano Lett,2003,3:59-62.
    [12]Yang W, Wang X, Yang F, Yang C, Yang X. Carbon nanotubes decorated with Pt nanocubes by a noncovalent functionalization method and their role in oxygen reduction [J]. Adv. Mater.2008,20: 2579-2587.
    [13]Correa-Duarte M A, Liz-Marzan L M. Carbon nanotubes as templates for onedimensional nanoparticle assemblies [J]. J. Mater. Chem.,2006,16:22-25.
    [14]Wu X B, Chen P, Lin J, Tan K L. Hydrogen uptake by carbon nanotubes [J]. Int J Hydrogen Energy, 2000,25:261-265.
    [15]Hiura H, Ebbesen T W, Tanigaki K, Takahashi H. Raman studies of carbon nanotubes [J]. Chem Phys Lett,1993,202:509-512.
    [16]Cavani F, Trifiro F, Vaccari A. Hydrotalcite-type anionic clays:preparation, properties and application [J]. Catal Today,1991,11:173-301.
    [17]Cao J, Sun J Z, Hong J, Li H Y, Chen H Z, Wamg M. Carbon Nanotube/CdS core-shell nanowires
    prepared by a simple room-temerature chemical reduction method [J]. Adv Mater,2004,16:84-87.
    [18]Wang H, Zheng C, Li F. Biopolymer-induced microstructure-controlled fabrication of Ni-Al layered double hydroxide films [J]. Chem Eng J,2010,158:633-640.
    [19]Wang J, Li R, Zhang Z, Sun W, Xie Y, Xu R, Xing Z, Zhang X. Solar photocatalytic degradation of dye wastewater in the presence of heat-treated anatase TiO2 powder [J]. Environ Prog,2008,27: 242-249.
    [20]Liu B, Zeng H C. Carbon nanotubes supported mesoporous mesocrystals of anatase TiO2 [J]. Chem Mater,2008,20:2711-2718.
    [21]Martell A E, Smith R M, Motekaitis R J. NIST critically selected stability constants of metal complexes database,7.0. Gaithersburg, MD:U.S. Department of Commerce,2003.
    [22]Li F, Liu J, Evans D G, Duan X. Stoichiometric synthesis of pure MFe2O4 (M= Mg, Co, and Ni) spinel ferrites from tailored layered double hydroxide (hydrotalcite-like) precursors [J]. Chem. Mater.,2004,16:1597-1602.
    [23]Kannan S, Narayanan A, Swamy C S. Effect of composition on the physicochemical properties of nickel aluminium hydrotalcites [J]. J. Mater. Sci.,1996,31:2353-2360.
    [24]Costantino U, Marmottini F, Nocchetti M, Vivani R. New synthetic routes to hydrotalcite-like compounds-characterisation and properties of the obtained materials [J]. Eur. J. Inorg. Chem.,1998, 1998:1439-1446.
    [25]Sing K S W, Everett D H, Hall R A W, Moscou L, Pierotti R A, Rouquerol J, Siemieniewska T. IUPAC recommendations 1984 [J]. Pure Appl. Chem.,1985,57:603-619.
    [26]Rouquerol F, Rouquerol J, Sing K. Adsorption by powders and porous solids:principles, methodology and applications [M]. London:Academic Press,1999.
    [27]Benito P, Labajos F M, Rocha J, Rives V. Influence of microwave radiation on the textural properties of layered double hydroxides [J]. Micropor Mesopor Mater,2006,94:148-158.
    [28]Theo Kloprogge J, Hickey L, Trujillano R, Jesus Holgado M, San Roman M S, Rives V, Martens W N, Frost R L. Characterization of intercalated Ni/Al hydrotalcites prepared by the partial decomposition of urea [J]. Cryst Growth Des,2006,6:1533-1536.
    [29]Tang Y J, Li Y M, Song J, Pan Z D. Structural characterization and thermal decomposition behavior of microsized and nanosized CaCO3 [J]. Acta Phys Chim Sin,2007,23:717-722.
    [30]Chen C M, Dai Y M, Gwo Huang J, Jehng J M. Intermetallic catalyst for carbon nanotubes (CNTs) growth by thermal chemical vapor deposition method [J]. Carbon,2006,44:1808-1820.
    [31]Endo M, Nishimura K, Kim Y A, Hakamada K, Matushita T, Dresselhaus M S, Dresselhaus G. Raman spectroscopic characterization of submicron vapor-grown carbon fibers and carbon nanofibers obtained by pyrolyzing hydrocarbons [J]. J. Mater. Res.,1999,14:4474-4477.
    [32]Park M S, Needham S A, Wang G X, Kang Y M, Park J S, Dou S X, Liu H K. Nanostructured SnSb/carbon nanotube composites synthesized by reductive precipitation for lithium-ion batteries [J]. Chem. Mater,2007,19:2406-2410.
    [33]Boonaert C J P, Dufrene Y F, Derclaye S R, Rouxhet P G. Adhesion of Lactococcus lactis to model substrata:direct study of the interface [J]. Colloids Surf B,2001,22:171-182.
    [34]Schwenzer B, Pop L Z, Neilson J R, Sbardellati T B, Morse D E. Nanostructured ZnS and CdS films synthesized using layered double hydroxide films as precursor and template [J]. Inorg Chem, 2009,48:1542-1550.
    [35]Gao Y F, Nagai M, Masuda Y, Sato F, Seo W S, Koumoto K. Surface precipitation of highly porous hydrotalcite-like film on Al from a zinc aqueous solution [J]. Langmuir,2006,22:3521-3527.
    [36]Li C, Wang G, Evans D G, Duan X. Incorporation of rare-earth ions in Mg-Al layered double hydroxides: intercalation with an [Eu(EDTA)]- chelate [J]. J Solid State Chem,2004,177: 4569-4575.
    [37]Guldi D M, Rahman G M A, Jux N, Balbinot D, Tagmatarchis N, Prato M. Multiwalled carbon nanotubes in donor-acceptor nanohybrids-towards long-lived electron transfer products [J]. Chem Comm,2005,2038-2040.
    [38]Alvaro M, Atienzar P, de la Cruz P, Delgado J L, Garcia H, Langa F. Sidewall functionalization of single-walled carbon nanotubes with nitrile imines. electron transfer from the substituent to the carbon nanotube [J]. J Phys Chem B,2004,108:12691-12697.
    [39]Sun T, Qiu J, Liang C. Controllable fabrication and photocatalytic activity of ZnO nanobelt arrays [J]. J Phy Chem C,2008,112:715-721.
    [40]Yao Y, Li G, Ciston S, Lueptow R M, Gray K A. Photoreactive TiO2/carbon nanotube composites: synthesis and reactivity [J]. Environ Sci Technol,2008,42:4952-4957.
    [1]Duan H, Lin X, Liu G, Xu L, Li F. Synthesis of Co nanoparticles and their catalytic effect on the Ddecomposition of ammonium perchlorate [J]. Chinese J Chem Eng,2008,16:325-328.
    [2]Sun X, Qiu X, Li L, Li G. ZnO Twin-cones:synthesis, photoluminescence, and catalytic decomposition of ammonium perchlorate [J]. Inorg Chem,2008,47:4146-4152.
    [3]Li L, Sun X, Qiu X, Xu J, Li G. Nature of catalytic activities of CoO nanocrystals in thermal decomposition of ammonium perchlorate [J]. Inorg Chem,2008,47:8839-8846.
    [4]Xu C, Wang X, Zhu J, Yang X, Lu L. Deposition of Co3O4 nanoparticles onto exfoliated graphite oxide sheets [J]. J. Mater. Chem.,2008,18:5625-5629.
    [5]Liu T, Wang L, Yang P, Hu B. Preparation of nanometer CuFe2O4 by auto-combustion and its catalytic activity on the thermal decomposition of ammonium perchlorate [J]. Mater Lett,2008,62: 4056-4058.
    [6]Cheng J, Yu J, Wang X, Li L, Li J, Hao Z. Novel CH4 combustion catalysts derived from Cu-Co/X-Al (X=Fe, Mn, La, Ce) hydrotalcite-like compounds [J]. Energ Fuel,2008,22:2131-2137.
    [7]Coq B, Tichit D, Ribet S. Co/Ni/Mg/Al layered double hydroxides as precursors of catalysts for the hydrogenation of nitriles:hydrogenation of acetonitrile [J]. J Catal,2000,189:117-128.
    [8]Zhang L, Li F, Evans D G, Duan X. Structure and surface characteristics of Cu-based composite metal oxides derived from layered double hydroxides [J]. Mater Chem Phys,2004,87:402-410.
    [9]Millange F, Walton R I, O'Hare D. Time-resolved in situ X-ray diffraction study of the liquid-phase reconstruction of Mg-Al-carbonate hydrotalcite-like compounds [J]. J Mater Chem,2000,10: 1713-1720.
    [10]Rebours B, d'Espinose de la Caillerie J B, Clause O. Decoration of nickel and magnesium oxide crystallites with spinel-type phases [J]. J. Am. Chem. Soc.,1994,116:1707-1717.
    [11]Clause O, Rebours B, Merlen E, Trifiro F, Vaccari A. Preparation and characterization of nickel-aluminum mixed oxides obtained by thermal decomposition of hydrotalcite-type precursors [J].J Catal,1992,133:231-246.
    [12]Li C, Yao K, Liang J. Study on the features of multiwalled carbon nanotube supported nickel aluminum mixed oxides [J]. Appl Catal A:Gen.,2004,261:221-224.
    [13]Rojas T C, Sanchez-Lopez J C, Sayagues M J, Reddy E P, Caballero A, Fernandez A. Preparation, characterization and thermal evolution of oxygen passivated nanocrystalline cobalt [J]. J. Mater. Chem.,1999,9:1011-1017.
    [14]Zhang L, Zhu J, Jiang X, Evans D G, Li F. Influence of nature of precursors on the formation and structure of Cu-Ni-Cr mixed oxides from layered double hydroxides [J]. J Phys Chem Solids,2006, 67:1678-1686.
    [15]Zhang R F, Li X L, Liu S T, Yu Z L, Wu Y. [J]. Acta Physico-Chem Sinica,1994,10:8.
    [16]Wall J M. Methods of Surface Analysis [M]. Cambridge:Cambridge University Press,1989.
    [17]Hima H I, Xiang X, Zhang L, Li F. Novel carbon nanostructures of caterpillar-like fibers and interwoven spheres with excellent surface super-hydrophobicity produced by chemical vapor deposition [J]. J. Mater. Chem.,2008,18:1245-1252.
    [18]Sing K S W, Everett D H, Haul R A W, Moscou L, Pierotyi R A, Rouquerol J, Siemieniewska T. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity [J]. Pure Appl Chem,1985,57:603-619.
    [19]Reichle W T, Kang S Y, Everhardt D S. The nature of the thermal decomposition of a catalytically active anionic clay mineral [J]. J Catal,1986,101:352-359.
    [20]Yang C, Lin Y H, Nan W. Modified carbon nanotube composites with high dielectric constant, low dielectric loss and large energy density [J]. Carbon,2009,47:1096-1101.
    [21]Saito R, Dresselhaus G, Dresselhaus M S. Physical Properties of Carbon Nanotubes [M]. London: Imperial College Press,1998.
    [22]Gallant D, Pezolet M, Simard S. Optical and physical properties of cobalt oxide films electrogenerated in bicarbonate aqueous media [J]. J. Phys. Chem. B,2006,110:6871-6880.
    [23]Yang J, Liu H, Martens W N, Frost R L. Synthesis and characterization of cobalt hydroxide, cobalt oxyhydroxide, and cobalt oxide nanodiscs [J]. J. Phys. Chem. C,2010,114:111-119.
    [24]Boldyrev V V. Thermal decomposition of ammonium perchlorate [J]. Thermochim Acta,2006,443: 1-36.
    [25]Reid D L, Russo A E, Carro R V, Stephens M A, LePage A R, Spalding T C, Petersen E L, Seal S. Nanoscale additives tailor energetic materials [J]. Nano Lett,2007,7:2157-2161.
    [26]Vyazovkin S, Wight C A. Kinetics of thermal decomposition of cubic ammonium perchlorate [J]. Chem. Mater.,1999,11:3386-3393.
    [27]Chen J W, Cagin T, Goddard W A. Thermal conductivity of carbon nanotubes [J]. Nanotechnology, 2000,11:65-69.
    [28]Collins P G, Arnold M S, Avouris P. Engineering carbon nanotubes and nanotube circuits using electrical breakdown [J]. Science,2001,292:706-709.
    [29]Chen R J, Zhang Y, Wang D, Dai H. Noncovalent sidewall functionalization of single-walled carbon nanotubes for protein immobilization [J]. J. Am. Chem. Soc.,2001,123:3838-3839.
    [30]Curran S A, Ajayan P M, Blau W J, Carroll D L, Coleman J N, Dalton A B, Davey A P, Drury A, McCarthy B, Maier S, Strevens A. A composite from poly (m-phenylenevinylene-co-2,5-dioctoxy-p-phenylenevinylene) and carbon nanotubes:a novel material for molecular optoelectronics [J]. Adv. Mater.,1998,10:1091-1093.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700