纯电动汽车驱动特性分析与控制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纯电动汽车是现阶段节能与新能源汽车发展的重要组成部分。本文根据纯电动汽车的性能要求和实际运行条件,重点围绕纯电动汽车动力参数匹配、能量控制策略以及电气安全控制策略展开研究工作。其创新性研究如下:
     1.本文从汽车动力学出发,对电动汽车在各种行驶工况下的驱动力矩和阻力矩以及驱动功率和阻力功率进行了分析。在此基础上,综合考虑各参数之间的相互影响关系,分析研究了纯电动汽车通用的驱动系统匹配设计方法,并以某型纯电动汽车为例,根据其动力性能的要求,对其驱动系统参数进行了匹配设计,利用ADVISOR汽车仿真软件对匹配设计的驱动系统进行了动力性能仿真。仿真结果表明参数匹配很好的满足了电动汽车的工况需求,体现了良好的动力性能。
     2.本文综合考虑纯电动汽车实际运行过程各模块参数的动态变化情况,分析研究了动力驱动能量控制策略,具体包括:根据电动汽车加速性能要求设计了踏板管理策略;根据电机过载热特性设计了过载管理策略;根据动力电池放电特性确定了驱动功率限制方法;结合动力电池状态和回馈充电特性确定了满足动力电池SOC等约束条件的能量回馈控制策略。应用MATLAB/Simulink和ADVISOR联合仿真方法对能量控制策略进行了仿真,并对仿真结果进行了分析比较。结果表明,控制策略适用于纯电动汽车能量控制,较好地满足了电动汽车的动力性能要求,保证了动力电池充放电的安全性,有效保护了动力电机过载工作。
     3.本文根据纯电动汽车驱动系统的高压电气特点,结合目前国内外纯电动汽车的相关安全性规范,确定了电动汽车电气安全控制系统模型参数,利用MATLAB/Simulink对其响应速度和稳定性进行了仿真,并以此为基础设计了动力驱动电气安全控制系统,可检测高压电路的完整性、预充电、接触器触点、绝缘性等九种高压电路状态,提出了基本的开通、运行和关断控制策略。
     在上述研究工作的基础上,本文在实际的10KW异步电机实验平台上进行了实验,结果表明能量控制策略有效提高了驱动性能,具有较强的实用性;动力驱动电气安全控制策略响应速度快,可以有效的保护驱动系统的安全运行。
EV (electric vehicle) has been an important part of recent energy-saving and new energy vehicle development. Based on the capability requirements and working characteristics of EV in the actual circumstances, this paper focused on the research about dynamic parameters matching and the strategies of the electrical safety control and power control, and .the innovative research are as follows:
     (1)In this study, the drive torque, drag torque and driving power, resistance power from the vehicle dynamics in varieties of running conditions of EV were analyzed, which was based on, considering the interaction among all kinds of parameters, then the methods of key parameters of drive system matching design were researched. Take some electric vehicles as an example, depending on the requirements of the vehicle dynamics, the driving system were matching designed, the driving system parameters of the matching system were dynamic simulated by using the simulation software -- ADVISOR drive system, the results of simulation show that the parameter matching meet the needs of the electric vehicle working conditions, reflecting a good dynamic performance.
     (2) In this study, considering the actual operation of the dynamic parameters of each module changes, and we analysis the power-driven energy management strategy, including: the providing the strategy of drive pedal management based on the EV acceleration; providing the motor overload management strategy based on the motor overload thermal characteristics; determining the limit method of the battery power depending on the battery discharge characteristics; determining the regenerative braking strategy based on the constraints (eg. SOC) combined with the status of dynamics battery. The co-simulation of MATLAB/Simulink and ADVISOR was used to simulation analysis and compare the whole vehicle driving and brake control strategy. Consequently, the dynamics control strategy in this paper could be achieve for the EV power control. The success of the control strategy could make sure the safety of battery charge and discharge, protect the overload work of the dynamic motor.
     (3) Based on the study of the corresponding safety regulations of home and abroad about EV, the model of electrical safety control system of EV was established, and its reliability and response speed were verified by MATLAB/Simulink tools. On this basis ,the electrical safety control system was designed, which could examined the integrity, pre-charging, contactor contacts, insulation etc. nine high-voltage insulation of the high voltage electrocircuit; and the control strategies of the basic opening, operation and shutdown were proposed.
     Based on the research discussed above, the experiment was carried out on the actual 10KW induction motor platform, and the result indicated that energy management strategy could effectively improve the driving performance, with a strong practical; and powered electrical safety control strategy could response quickly, and protect the safe of the drive system effectively.
引文
[1] C C Chan, Y S Wong. Electric Vehicles Charge Forward[J]. (Invited paper) IEEE Power &Energy Magzine , 2004(2):24~33
    [2] Sun Liqing, Ji Wen, Chen Jie, Zhou Heliang. Overview of the EV Research in China[C].IEEE VPP, 2004
    [3] Chan C C. The Past,Present and future of electric vehicle development [J].IEEE Power Electronics and Drive Systems.1999(l):l-13.
    [4] Chan C.C. The State of the Art of Electric Vehicles. Proceedings of IEEE.2004,(1):46~57
    [5] C.C.Chan. The Challenges and Opportunity in the New Century Clean, Efficient and Intelligent Electric Vehicles. Electrical Machines and Systems.2003,(1):9~11
    [6] Riazenman M J, Engineering the EV future[J],IEEE Spectrum,1998.11,P18~20
    [7] Chan C C,Chau KT. Modern electric vehicle technology. New York:Oxford University Press Inc.,2001
    [8]何勇,张学力.汽车动力性现状分析[J].中国机械工程.2001.4
    [9]李兴虎.电动汽车概论[M].北京理工大学出版社,2005.8
    [10] Murphy G.J.Considerations in the Design of Drive Systems for On-the-Road Electric Vehicles.Proceedings of the IEEE.1972, 60(12):1519~1533
    [11] Ehsani M , Rahmann K . M , Toliyat H.A . Propulsion System Design of Electric Vehicles.IEEE.1996,(1):7~13
    [12] Lifang Wang,Xuhui Wen,“Dynamic Match and optimizing Design of Electric Vehicle Powertrain,IEEE830011,2004:387-390.
    [13] Kawamura A , Hoshi N , Tae Woong Kim , Yokoyama T , Kume T.Analysis of Anti-directional-twin-rotary Motor Drive Characteristics for Electric Vehicles. IEEE Transactions on Vehicular Technology.1994,9(5):20~23
    [14] K.T.Chau,Y.S.Wong,C.C.Chan.An Overview of Energy Sources for Electric Vehicles. Energy Conversion&Management.1999,(40):1021~1039
    [15] Karen L.Butler,Mehrdad Ehsani,Preyas Kamath.A Matlab-based Modeling and Simulation Package for Electric and Hybrid Electric Vehicle Design. IEEE TRANSACTIONS ON VEHICELUR TECHNOLOG.1999,48(6):1771~1777
    [16] Wipke K.B,Cuddy M.R,Burch S.D.ADVISOR2.1:A User-friendly Advanced Power Train Simulation Using A Combined Backward/Forward Approach. Vehicular Technology.1999,48(6):1751~1761
    [17] Aaronker , Terry Hendricks , Valerie Johnson.ADVISOR3.1 Documentation. National Renewable Energy Laboratory,2001
    [18] Keith Wipke,Matthew Cuddy,Steven Burch , ADVISOR 2.1:A User-Friendly Advanced Powertrain Simulation Using a Combined Backward/Forward Approach , IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY,1999.11,Vol.48 No.6
    [19] ISERMAN R. Analysis and realization of a pulse-width modulator based on voltage space vector. IEEE Trans, Ind. App.,1988,24(1):142~150
    [20] Sang-Hoon Kim, Seung-Ki Sul. Voltage control strategy for maximum torque operation of an induction machine in the field-weakening region[J].IEEE Transactions on Industrial Electronics.1997.4:512-518.
    [21] Rowan T M, Limo T A, A quantitative analysis of induction motor performance improvement by SCR voltage control, IEEE Trans. On Ind.Applica.,1983,19(3):543~553
    [22] Zhang Jian,Wen Xuhui,Hua Yang.A novel speed-sensorless vector control technique of Induction motor for electrical vehicle propulsion[J].IEEE Vehicle Power and Propulsion Conference.3-5 Sept.2008:1-5.
    [23] Cao-Minh Ta, Chandan Chakraborty. Efficiency maximization of induction motor drives for electric vehicles based on actual measurement of input power[J].Industrial Electronics Society, 2001.IECON'01.The 27th Annual Conference of the IEEE.2001:1692-1697.
    [24] JohnM.Miller,Richard Smith. Ultra-Capacitor Assisted Electric Drives for Transportation [A].IEEE International Electric Machines and Drives.
    [25] Chiasson,J, Vairamohan, Estimating the state of charge of a battery. IEEE Transactions on Control Systems Technology,2005,13(3):465-470.
    [26] M.J.West,C.M.Bigham,N.Schofield. Predictive control for energy management in all/more electric vehicles with multiple energy storage units. Electric Machines and Drives Conference,IEEE 2003.IEMDC,03:222-228.
    [27] Alexander K, Donald G, Control means for minimization of losses in AC and DC motor drives, IEEE Trans. On Ind.Applica.,1983,13(4):561~570
    [28] Kirschen D S, Novotny D W, Limo T A, Online efficiency optimization of a variable frequency induction motor drive, IEEE Trans. On Ind. Applica, 1985,21(3):610~615
    [29] Armstrong-Helouvry B, Stick-slip arising stribeck friction, Robotics and automation, 1990, proceedings,1990 IEEE International Conference,1990,5(l2):1377~1382
    [30] Butler K L, Ehsani M, Kamath P, A Matlab-based modeling and simulation package for electric and hybrid electric vehicle design, IEEE Transaction on Vehicular Technology,1999,48(6):1770~1778
    [31] GB/T 18384.1-2001电动汽车安全要求第1部分:车载储能装置
    [32] GB/T 18384.2-2001电动汽车安全要求第2部分:功能安全和故障保护
    [33] GB/T 18384.3-2001电动汽车安全要求第3部分:人员触电防护
    [34] GB/T 18487.1-2001电动车辆传导充电系统一般要求
    [35] GB/T 18487.2电动车辆传导充电系统电动车辆与交直流电源的连接要求
    [36] SAE J2234:1998 GUIDELINES FOR ELECTRIC VEHICLE SAFETY
    [37] SAE J1715:1994电动道路车辆术语
    [38] UL 2202-1996 Electric Vehicle Charging Equipment
    [39] UL 2231-1996 Personal Protection Systems for Electric Vehicle(EV)Supply Circuits:Part 1: General Requirements
    [40] GB/T 18332.2-2001电动道路车辆用金属氢化物镍蓄电池
    [41] GB/T 18333.1-2001电动道路车辆用锂离子蓄电池
    [42]陈清泉院士论文选集:现代电动车、电机驱动及电力电子技术.机械工业出版社,2005
    [43] P. Pillay, Z. Xu. Motor Current Signature Analysis[J].IEEE,1996:587-594

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700