超级电容器储能系统电压均衡的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
超级电容器是一种具有高能量密度的新型储能元器件,它可提供超大功率并具有超长的寿命,是一种兼备电容和电池特性的新型元件,在混合动力电动车、脉沖电源系统和应急电源等领域具有广泛的应用前景。对于大功率储能系统来说,为了满足容量和电压等级的需要,一般是由多个超级电容器串联和并联的组合方式构成。然而超级电容器在串并联使用时,单体电容器参数的分散性是制约其寿命和可靠性的主要因素。因此,为了提高储能效率,对超级电容器组合进行电压均衡管理具有十分重要的意义。
     本文针对超级电容器串联使用时充电电压的均衡问题,对超级电容器组充放电均衡技术进行了研究,通过对现有均衡技术的分析和讨论,确定采用单电容均压方案,并利用DSP控制技术,设计了一个基于DSP控制的超级电容组电压均衡系统,解决超级电容器串联电压均衡问题。该系统主要由参数采集、PWM信号输出、开关网络控制等部分组成。系统以DSP为控制核心,采用了一只电解电容器作为中间电容传递能量,通过实时电压、电流及温度监测将采集到的信号,经A/D转换器后,送入DSP处理,系统根据得到的电压、电流信息判断电容的充放电状态,控制PWM信号的输出,进而驱动开关网络的切换,使能量在单体电容器之间快速传递,从而实现均压控制。最后,对该系统进行了仿真和实验研究,通过对上述数据的分析比较可以看出,采用此种方案进行均衡后,超级电容组单体的电压在充电过程中达到了较好的一致性。
     本文设计的超级电容组电压均衡系统用于串联超级电容组的充放电均衡控制,既可实现静态均衡也可实现动态均衡。与其他均衡方案相比,该系统具有电压均衡速度快,均衡效果好的优点。
Supercapacitor can provide very high power and has long life as a new device with high energy density. It has both capacitor and battery characteristics, which has great potential for applications on electric vehicles, pulsed power systems and emergency power supply. In order to meet the voltage levels for high power energy storage system, numbers of supercapacitors should be connected in series and parallel. But the dispersion of the capacitors used in series and parallel is the main factor that restrains their life and reliability. So the voltage balance of the capacitor stacks is of great important.
     This paper is to design a voltage balance system based on DSP, which uses one electrolytic capacitor, after analyzing the existing equalization technology. The system is consisted of parameter acquisition, PWM output and switch network. A DSP is used as the control core of the system and an electrolytic capacitor is used for transferring energy. Signals collected by monitoring system are sent to DSP through A/D converter. After processing by DSP, the PWM signal is put out depending on an enacted equalization strategy to drive the switch net, As a result, energy will be transferred between capacitor cells and the voltage differences will be reduced. Finally, the simulation and experimental data are analyzed. A conclusion can be draw that this method achieve a good balance result through comparing the data.
     The system is used on charge or discharge of supercapacitor stacks, it can achieve static and dynamic balance. Compared with other methods, it has a higher balance speed and better effect.
引文
[1]B.E.康维(加).电化学超级电容器--科学原理及技术应用.北京:化学工业出版社,2005.
    [2]桂长清.型新储能元件超级电容器.船电技术,2003,1:23-26.
    [3]张娜,张宝宏.电化学超级电容器的研究进展.应用科技,2003,30(9):54-30.
    [4]李荐,钟晖,钟海云等.超级电容器应用设计.电源技术,2004,28(6):388-391.
    [5]陈永真.电容器及其应用.北京:科学出版社,2005.
    [6]李海东.超级电容器模块化技术的研究:(博士学位论文).北京:中国科学院电工研究所,2006.
    [7]袁国辉.电化学电容器.北京:化学工业出版社,2006.
    [8]朱修锋,景晓燕,张密林.金属氧化物超级电容及其应用研究进展.功能材料与器件学报,2002,8(3):325-330
    [9]刘兴江,陈梅,胡树清等.电化学混合电容器的研究进展.电源技术,2005,29(12):787-790.
    [10]张莉.混合型超级电容器的相关理论和实验研究:(博士学位论文).大连:大连理工大学,2005.
    [11]孟丽囡,陈永真,宁武.超级电容器串联应用中的均压问题及解决方案.辽宁工学院学报,2005,25(1):1-2.
    [12]高云,陈永真,王春霞,等.超级电容器组单体电压的动态均衡.电源世界,2007,3:44-47.
    [13]Barrade P,Pittet S and Rufer A.Energy storage system using a series connection of supercapacitors with an active device for equalizing the voltages.IPEC,2000:International Power Electronics Conference,3-7.
    [14]Moore S W and Schneider P J.A Review of Cell Equalization Metheods for Lithium Ion and Lithium Polymer Battery Systems,Society of Automotive Engineers,2001(01):0959.
    [15]石晓宁.串联超级电容组参数测试及均衡技术研究:(硕士学位论文).哈尔滨:哈尔滨工业大学,2006.
    [16]Hung S T,Hopkins D C,Mosling C R,Extension of battery life via charge equalization control.Industrial Electronics.IEEE Transactions 1993,40(1):96-104.
    [17]Juan Zhao,Jiuchun Jiang,Liyong Niu.A novel charge equalization technique for electric vehicle battery system.Power Electronics and Drive Systems,2003.PEDS 2003.The Fifth International Conference.2003,2(17-20):853-857.
    [18]雷娟,蒋新华,解晶莹.锂离子电池组均衡电路的发展现状.电池,2007,37(1):62-63.
    [19]李海东,冯之钺,齐智平.一种新颖的串联超级电容器组的电压均衡方法.电源技术,2006,30(6):498-503.
    [20]Pascual C and Krein P T,Switched Capacitor System for AutomatiC Series Battery Equal ization.Proc.IEEE APEC.1997:848-854.
    [21]王伟.铅酸蓄电池管理系统实现的软硬件研究:(硕士学位论文).杭州:浙江大学,2005.
    [22]冉建国,陈胜军.通过电池均衡提高铅酸蓄电池组寿命.电源技术,2006,130(7):576-579.
    [23]Lu R,Zhu C and Song L.Super-capacitor Stacks Management System with Dynamic Equalization Techniques.IEEE,2006.
    [24]Eimei Takahara,Hiroyuki Sato and Jun Yamada.Series and Parallel Connections Change Over System for Electric Double Layer Capacitors(EDLCs)to Electric Vehicle Energy Saving.IEEE,2002:577-581.
    [25]Conway B E.Transition From Supercapacitor to Battery Behavior in Electrochemical Energy Storage.IEEE,1990:319-327.
    [26]Yao Y Y,Zhang D L and Xu D G.A Study of Supercapacitor Parameters and Characteristics.International Conference on Power System Wechnology.IEEE,2006:1-4.
    [27]张惠研.超级电容器直流储能系统分析与控制技术的研究:(博士学位论文).北京:中国科学院电工研究所,2006.
    [28]王吉华.电动车电池组串联充电分流均衡控制实验研究:(硕上学位论文).长沙:长沙理工大学,2004.
    [29]何颜平.电动汽车动力电池组串联充放电均衡控制研究:(硕上学位论文).长沙:长沙理工大学,2006.
    [30]李忠学,彭启立,陈杰.超级电容器端电压动态特征的研究.电池,2005,35(2):85-86.
    [31]储军,陈杰,李忠学.电动车用超级电容器充放电性能的实验研究.机械,2004,31(3):20-22.
    [32]李忠学,陈杰.超级电容器组件的电压均衡控制电路设计.电子元件与材料,2006,25(5):39-42.
    [33]李海东,冯之钺,齐智平.一种新颖的串联超级电容器组的电压均衡方法.电源技术,2006,130(6):499-503.
    [34]王兆安,黄俊.电力电子技术.北京:机械工业出版社,2000.
    [35]赵云.浅析MOSFET高速驱动器电路设计.舰船电子对抗,2002,25(2):42-44.
    [36]牛小兵,许爱德,王丹.DSP控制器实用教程.北京:国防工业出版社,2007.
    [37]苏奎峰,吕强,耿庆峰等.TMS320F2812原理与开发.北京:电子工业出版社,2005.
    [38]刘国明,马庆强.燃料电池智能在线巡回检测系统.微计算机信息,2005,21(9-1):91-93.
    [39]吴金宏,倪向阳,吴昊.霍尔电流电压传感器/变送器模块的性能及应用.国外电子元器件,2001,1:12-15.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700