TiO_2几何结构、电子结构和光学性能的第一性原理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以密度泛函理论为基础的第一性原理计算方法可以模拟材料的结构以及计算材料的各种物理化学性质,使大家能够深入理解材料从宏观到微观多个尺度的各类现象与特征。而且第一性原理方法还能够预测新材料以及它的各种性能,为材料的设计、制备提供理论的指导和依据。
     二氧化钛(TiO_2)是一种非常重要的宽禁带半导体材料,主要有锐钛矿(anatase,A-type)、金红石(rutlie,R-type)和板钛矿(brookite,B-type)是三种晶体结构。TiO_2具有催化活性高、稳定性好、对人体无毒、成本低等特点,是一种非常理想的半导体光催化剂,因而被广泛用于再生能源以及环境保护等领域。虽然近年来科研工作者对TiO_2做了掺杂等相关研究,但都没有对TiO_2主要三种晶型的电学性能、光学性能做系统的研究。
     在本文中,我们系统地研究了TiO_2三种晶型的几何结构、电子结构及光学性能。本论文共分为五章。第一章介绍了计算材料学及其国内外研究进展,第一性原理计算方法在材料科学中的应用近况;还介绍了TiO_2材料的基本结构、性能及其应用。第二章介绍了第一性原理计算方法。第三章优化了TiO_2的几何结构,揭示了其电子结构。第四章阐述了TiO_2的光学性能。第五章对本文的研究内容做了总结并指出了在理论研究方面仍有待解决的问题。
     这些系统的理论研究工作揭示了电子结构和介电性能之间的内在联系,有助于人们更加清楚地了解TiO_2的电子结构与光谱吸收的关系和作用规律,这些都为TiO_2的进一步研究提供理论基础。
Based on density functional theory first-principles calculations methods can simulate the material structure and can calculate various physical and chemical properties of materials, so that we can thoroughly understand the material phenomena and characteristics of various types from macro to micro scale. And the first principles method can also predict a variety of new materials and its performance, providing the theoretical foundation and guidance to prepare and design material.
     TiO_2 is a very important semiconductor material with wide band gap, mainly including three crystal structures of anatase, rutile and brookite. TiO_2 has a high catalytic activity, good stability, non-toxic to humans and low cost, is an ideal semiconductor photocatalyst, which is widely used in the field of renewable energy and environmental protection. In recent years, scientists had researched doping TiO_2, but there are not systematic researchs on electrical properties, optical properties of the three main TiO_2.
     In this paper, we had studied systematically geometry, electronic structure and optical properties of the TiO_2 polymorphs. This thesis is divided into five chapters. The first chapter introduces the computational materials science and its research progress, the recent application of the first principle calculation method in materials science; also describes the basic structure, performance of TiO_2 and its applications. The second chapter introduces the first-principles calculation. The third chapter clarifies electronic structure through optimizing geometry of TiO_2. Chapter IV describes the optical properties of TiO_2. Chapter V of this paper summarized and pointed out that in theory there is still to be resolved.
     The intrinsic links between the electronic structures and the optical properties of the TiO_2 polymorphs had been revealed through this systematic theoretical studies, and it help us understand clearly the relationship and the law between the electronic structure and spectral absorption of TiO_2, which can provide theoretical basis for further study of TiO_2.
引文
[1]张跃,谷景华,尚家香,马岳.计算材料学基础[M].北京:北京航空航天大学出版社,2007.
    [2]陈舜麟.计算材料科学[M].北京:化学工业出版社,2005.
    [3]吴兴惠,项金钟.现代材料计算与设计教程[M].北京:电子工业出版社,2002.
    [4]罗伯. D,项金钟,吴兴惠译.计算材料学[M].北京:化学工业出版社,2002.
    [5] J. K. Chang, M. M. Dacorogna, M. L. Cohen. Superconductivity in high-pressure metallic phases of Si[J]. Physical Review Letters. 1985, 54:2375-2378.
    [6] G. Ghosh. Asta M.First-principles calculation of structural energetics of Al-TM(TM=Ti, Zr, Hf) intermetallics[J]. Acta Materialia, 2005, 53(11):3225-3252.
    [7] C. Colinet, A. Pasturel, D. Nguyen Manh, D. G. Pettifor, P. Miodownik. Phase-stability study of the Al-Nb system[J]. Physical Review B, 1997, 56:552-565.
    [8] Y. Mishin, M. J. Mehl, D. A. Papaconstantopoulos. Phase stability in the Fe-Ni system: Investigation by first-principles calculations and atomistic simulations[J]. Acta Materialia, 2005, 53:4029-4041.
    [9]宫长伟,王轶农,杨大智. NiTi形状记忆合金马氏体相变的第一性原理研究[J].物理学报, 2006,55(6):2877-2881.
    [10] C. Jiang, M. F. Besser, D. J. Sordelet, B. Gleeson. A combined first-principles and experimental study of the lattice site preference of Pt in B2 NiAl[J]. Acta Materialia, 2005, 53:2101-2109.
    [11] A. H. Moudden. Ab initio study of C-substituted MgB2[J]. Journal of Physics and Chemistry of Solids, 2006, 67(1-3):115-119.
    [12] K. Uebayashi, K. Terao, H. Yamada. First principle calculation for preferential site occupation of 3d transition-metal atoms in YCo5 and YNi5[J]. Journal of Alloys and Compounds, 2002, 346(1-2):47-49.
    [13] Y. Song, Z. X. Guo, R. Yang, D. Li. First principles study of site substitution of ternary elements in NiAl[J]. Acta Materialia, 2001, 49(9):1647-1654.
    [14] C. L. Fu, J. Zou. Site preference of ternary alloying additions in FeAl and NiAl by first-principles calculations[J]. Acta Materialia, 1996, 44(4):1471-1478.
    [15] C. Jiang, B. Gleeson. Site preference of transition metal elements in Ni3Al[J]. Scripta Materialia, 2006, 55(5):433-436.
    [16] C. Y. Geng, C. Y. Wang, T. Yu. Site preference and alloying effect of platinum group metals inγ'- Ni3Al[J]. Acta Materialia, 2004, 52(18):5427-5433.
    [17] K. B. Panda. Ravi Chandran K.S.Determination of elastic constants of titanium diboride(TiB2) from first principles using FLAPW implementation of the density functional theory[J]. Computational Materials Science, 2006, 35(2):134-150.
    [18] R. Yu, X. F. Zhang. Family of noble metal nitrides: first principles calculations of the elastic stability [J].Physical Review B, 2005, 72:054103.
    [19] K. Y. Chen, L. R. Zhao, J. S. Tse. Ab initio study of elastic properties of Ir and Ir3X compounds[J]. Journal of Applied Physics, 2003, 93:2414-2417.
    [20] C. L. Fu, J. Zou, M. H. Yoo. Elastic constants and planar fault energies of Ti3Al, and interfacial energies at the Ti3Al/TiAl interface by first-principles calculations[J]. Scripta Metallurgica et Materialia, 1995, 33(6):885-891.
    [21] N. T. S. Lee, V. B. C. Tan, K. M. Lim. First-principles calculations of structural and mechanical properties of Cu6Sn5[J]. Applied Physics Letters, 2006, 88:031913.
    [22]张立云,彭永进,金庆华,王玉芳,李宝会,丁大同.单壁纳米管的弹性性质[J].物理学报,2006,55(8):4193-4196.
    [23] T. S. Li, J. W. Morris, D. C. Chrzan. Ab initio study of the ideal shear strength and elastic deformation behaviors of B2 FeAl and NiAl[J]. Physical Review B, 2006, 73:024105.
    [24] S. Ogata, J. Li, S. Yip. Ideal pure shear strength of aluminum and copper[J]. Science, 2002, 298:807-811.
    [25] C. R. Krenn, D. Roundy, M. L. Cohen, D. C. Chrzan, J. W. Morris. Connecting atomistic and experimental estimates of ideal strength[J]. Physical Review B, 2002, 65:134111.
    [26] D. Roundy, M. L. Cohen. Ideal strength of diamond, Si and Ge[J]. Physical Review B, 2001, 64(21):212103.
    [27] R. H. Telling, C. J. Pickard, M. C. Payne, J. E. Field. Theoretical strength and cleavage of diamond[J]. Physical Review Letters, 2000, 84(22):5160-5163.
    [28]何开华,余飞,姬广富,颜其礼,郑澍奎.第一性原理研究ZnS掺V的光学性质和电子结构[J].高压物理学报,2006,20(1):56-60.
    [29]李丹,顾有松,潘峰.用第一性原理研究Fe16N2的磁学性能[J].人工晶体学报,2005,34(4):601-605.
    [30] C. T. Liu, C. L. Fu, M. F. Chisholm, J. R. Thompson, M. Krcmar, X. L. Wang. Magnetism and solid solution effects in NiAl(40%Al)alloys[J]. Progress in Materials Science, 2007, 52:352-370.
    [31] C. L. Fu, C. T. Liu, X. L. Wang, M. Krcmar, J. A. Fernandez-Baca. Magnetism-induced solid solution softening in NiAl with Co, Fe, Mn and Cr solute atoms: theory and experiment[J].Intermetallics, 2004, 12:911-919.
    [32]丁真真.难降解有机物废水的处理方法研究现状[J].甘肃科技,2006,22(002):113-115.
    [33]高濂,张青红,郑珊.纳米氧化钛光催化材料及应用[M].北京:化学工业出版社,2002:112-117.
    [34] A. K. Benabbou, Z. Derriche. C. Felix, et al. Photocatalytic inactivation of Escherischia coli Effect of concentration of TiO2 and microorganism, nature, and intensity of UV irradiation[J]. Applied Catalysis B, Environmental, 2007,76(3-4):257-263.
    [35] Q. Li, S. Mahendra, D. Y. Lyon, et al. Antimicrobial nanomaterials for water disinfection and microbial control: potential applications and implications[J]. Water Research, 2008, 42(18):4591-4602.
    [36] P. Hohenberg, W. Kohn. Inhomogeneous electron gas[J]. Phys. Rev. B, 1964, 136:864-871.
    [37] W. Kohn, L. J. Sham. Serf-consistent equations including exchange and correlation effects[J]. Phys. Rev. A, 1965, 140:1133-1138.
    [38] M. Born, R. Oppenheimer. ZUT quantentheorie de molekeln[J]. Ann. Phys., 1927, 84:457-484.
    [39] J. C. Slater. The Electronic Structure of Atoms-The Hartree-Fock Method and Correlation[J]. Rev. Mod. Phys., 1963, 35:484-487.
    [40] J. C. Slater. Wave Functions in a Periodic Potential. Phys. Rev., 51(1937)846.
    [41] M. Levy. Electron densities in search of Hamiltonians. Phys. Rev. A, 26(1982)1200.
    [42] V. Fock. N?herungsmethode zur L?sung des quantenmechanischen Mehrk?rperproblems. Z. Phys., 61(1930)126.
    [43]吴代鸣.固体物理学[M].长春:吉林大学出版社,1996.
    [44]李正中.固体物理[M].北京:高等教育出版社,2002.
    [45] J. P. Perdew, J. A. Chevary, S. H. Vosko, et al. Atoms, Molecules, solids and surface: Application of the generalized gradient approximation of exchange and correlation[J]. Phys. Rev. B, 1992, 46:6671-6687.
    [46] J. P. Perdew, Y. Wang. Accurate and simple density functional for the electronic exchange energy: Generalized gradient approximation[J]. Phys. Rev. B, 1986, 33:8800-8802.
    [47] J. P. Perdew. Density-functional approximation for the correlation energy of the inhomogeneous electron gas[J]. Phys. Rev. B, 1986, 33:8822-8824.
    [48] J. P. Perdew, Y. Wang. Accurate and simple analytic represention of the electronic exchange energy[J]. Phys. Rev. B, 1992, 45:13244-13249.
    [49] J. P. Perdew, K. Burke, M. Ernzerhof, Generalized Gradient Approximation Made Simple[J]. Phys. Rev. Lett., 1996, 77:3865-3868.
    [50] J. P. Perdew, K. Burke, M. Ernzerhof, Generalized Gradient Approximation Made Simple[J].Phys. Rev. Lett., 1996, 78:1396-1397.
    [51]谢希德,陆栋.固体能带理论[M].上海:复旦大学出版社,1998
    [52] D. R. Hamann, M. Schlüter, C. Chiang. Norm-Conserving Pseudopotentials. Phys. Rev. Lett., 1979, 43(20):1494-1497.
    [53] D. Vanderbilt. Soft Self-Consistent Pseudopotentials in a Generalized Eigenvalue Formalism[J]. Phys. Rev. B, 1990, 41(11):7892-7895.
    [54] K. Laasonen, A. Pasquarello, et al. Car-Parrinello molecular dynamics with Vanderbilt ultrasoft pseudopotentials[J]. Phys. Rev. B, 1993, 47(16):10142-10153.
    [55] P. E. Blochl. Projector Augmented-Wave Method. Phys. Rev. B, 1994, 50(24):17953-17979.
    [56] G. Kresse, D. Joubert. From Ultrasoft Pseudopotentials to the Projector Augmented-Wave Method. Phys. Rev. B, 1999, 59(3):1758-1775.
    [57] S. LANY, A. ZUNGER. Metal-Dimer Atomic Reconstruction Leading to Deep Donor States of the Anion Vacancy in II-VI and Chalcopyrite Semiconductors[J]. Physics Review Letter, 2004, 93(15):156404-156406.
    [58] F. D. MURNAGHAN. Finite Deformations of Elastic Solid[J]. American Journal of Mathematics, 1937, 49:235-260.
    [59] R. GROVER, I. C. GETTING, G. C. KENNEDY. Simple Compressibility Relation for Solids[M]. 1973, 7:567.
    [60] P. VINET, J. FERRANTE, J. R. SMITH, et al. A Universal Equation of State for Solids[J]. Journal of Physics C: Solid State Physics, 1986, 19:L467.
    [61] F. BIRCH. Finite Elastic Strain of Cubic Crystals[J]. Physics Review, 1947, 71:809-824.
    [62]张芳英. ZnO系列和过渡金属掺杂GaN体系几何结构与电子性质的第一性原理研究[D].上海:复旦大学,2007:15-42.
    [63] G. J. ACKLAND. Embrittlement and the Bistable Crystal Structure of Zirconium Hydride[J]. Physics Review Letters, 1998, 80:2233-2236.
    [64]沈学础.半导体光谱和光学性质[M].北京:科学出版社(第二版), 2002.
    [65] M. Q. CAI, Z. YIN, M. S. ZHANG. First-principles Study of Optical Properties of Barium Titanate[J]. Applied Physics Letters, 2003, 83(14):2805-2807.
    [66] S. SAHA, T. P. SINHA, A. MOOKERJEE. Electronic Structure, Chemical Bonding, and Optical Properties of Paraelectric BaTiO3[J]. Physics Review B, 2000, 62(13):8828-8834.
    [67] J. SUN, X. F. ZHOU, Y. X. FAN, et al. First-principles Study of Electronic Structure and Optical Properties of Heterodiamond BC2N[J]. Physics Review B, 2006, 73(4):045108-045117.
    [68] M. XU, S. Y. WANG, G. YIN, et al. Optical Properties of Cubic Ti3N4, Zr3N4, and Hf3N4[J].Applied Physics Letters, 2006, 89(15):151908-151910.
    [69] R. SANIZ, L. H. YE, T. SHISHIDOU, et al. Structural, Electronic, and Optical Properties of NiAl3: First-principles Calculations[J]. Physics Review B, 2006, 74(1):014209-014215.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700