二元碲化物相变材料存储特性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
伴随着现代科技的发展,非易失性储器已经遍及到了我们生活的每一个角落。从MP3播放器中的音乐,到数码相机中的照片、再到智能手机中存储的短信和email、 U盘中存储的文档,这些电子设备中程序代码的存储都离不开被称为闪存的非易失性储器。现在非易失性存储器市场上的主流产品还是基于闪存技术,这是因为闪存具有低廉的生产成本和出色的存储密度,然而诸如耐久力差、操作速度慢等致命弱点将严重制约其未来的发展。所以现在需要新一代的非易失性存储器,它应具有比闪存更为优秀的尺寸微缩性能,并且能够适应未来的节点技术从而达到更高的集成密度;同时也应该提供比闪存更出色的擦写耐久力和输出输入特性。近年来相变存储器作为一种新型的非易失性存储器引起了人们广泛关注。相变存储器相比于其他非易失性存储器具有结构简单、尺寸微缩性能出色、擦写读取速度快、存储密度大、操作电压和功耗较低、可操作次数高,寿命长、与现有CMOS工艺兼容等众多优点,被认为是最有前景的下一代非易失性存储器的候选者。目前相变领域研究最多的、最成熟的材料是Ge2Sb2Te5(GST)。 GST应用于相变存储有一系列的优点,但是要用于大规模的商业化生产,其缺点也同样非常明显,例如结晶温度较低使得数据保持能力较差、熔点较高致使功耗较大、结晶过程中成核主导的机制限制了器件擦除的速度。当前,人们在对GST材料性能改进的同时,也在积极地寻找更适合于相变存储的新型材料。另一方面,相变存储器的开关循环失效的机制也有待进一步的明确。
     在本工作中,我们对二元碲化物薄膜的相变行为和失效机制进行了系统的研究。重点研究了GeTe4材料应用于相变存储器的可行性与适用性,探索了应力对Sb2Te3薄膜的电学性能的影响。主要工作结果如下:
     1.系统地研究了GeTe4这种二元化合物的基本物性,测定得到了GeTe4薄膜的晶体结构为简单立方结构,结晶温度为234.3℃,熔点为395.5℃,晶态与非晶态的禁带宽度分别为1.59eV和2.09eV,结晶激活能为2.94eV,以及非晶态薄膜的热稳定性为129℃下可以保持10年。GeTe4薄膜具有较高的结晶温度和较大的结晶激活能使得其非晶态薄膜的热稳定性出色,即数据保持能力强;同时GeTe4薄膜具有较大禁带宽度(即电阻率较高)以及较低的熔点,能有效降低相变存储器件的功耗;最后GeTe4具有简单立方结构和晶化过程中晶核生长主导的机制,从理论上保证了其存储器件良好的操作速度。从这几方面看来GeTe4这种材料非常适合用于相变存储方面的应用。
     2.首次报道了基于GeTe4薄膜的相变存储器的相变开关行为。我们制备了有效尺寸直径为1μm的GeTe4相变存储原型器件,并对其进行了直流模式和脉冲模式下的存储特性的测试。经测试发现所制备的有效尺寸为1μm这样较大尺寸的GeTe4相变原型器件,其展现了较大的高低阻值之比(约为1.8×104)、合适的Set与Reset操作速度(200ns和30ns)和理想的Set与Reset功耗(0.8pJ和2.7nJ)。我们认为GeTe4这种二元化合物是一种很有前景的新型相变存储材料。
     3.从实验和理论计算两方面探索并分析了应力对相变存储器件电学性能的影响。实验上利用静水压下电阻测试系统对菱方晶相Sb2Te3薄膜进行了电阻随静水压强变化的测试,得到了随着静水压强的逐渐增加,菱方晶相Sb2Te3薄膜电阻连续单调地减小的结果,当施加的静水压强增加到0.377GPa时,菱方晶相Sb2Te3薄膜的电阻减小了24.9%。同时利用第一性原理计算方法从理论上计算得到了菱方晶相Sb2Te3的禁带宽度随静水压强变化的结果,即当静水压强达到0.4GPa的时候,其禁带宽度减小了27%。依据半导体材料的电阻与禁带宽度随压强变化的理论关系,将实验结果和理论计算结果相比较,得到了实验和理论相吻合的结果。最后,计算了不同静水压强下菱方晶相Sb2Te3的态密度图谱和各键长的变化等一系列结果,给出了对于静水压下薄膜电阻减小的解释:由于键长随着静水压增加而逐渐减小,使得各原子间的相互作用逐渐增强、各原子周围未配对的电子态交叠的增强,这导致了能带的展宽,从而减小了禁带宽度,最终表现为材料电阻的降低。
As with many modern technologies, the extent to which nonvolatile memory has pervaded our day-to-day lives is truly remarkable. From the music on our MP3players, to the photographs on digital cameras, the stored e-mail and text messages on smart phones, the documents we carry on our USB thumb drives, and the program code that enables everything from our portable electronics to cars, the nonvolatile memory known as Flash memory is everywhere around us. Today, Flash memory represents the most widely nonvolatile memory due to its low fabrication costs and high density. However, the bad endurance and low programming speed restrict its development in future. Thus there is a need for a new next-generation nonvolatile memory that might have an easier scaling path than Flash to reach the higher densities offered by future technology nodes. Simultaneously, there is a need for a memory that could offer better write endurance and input-output performance than Flash. Recently, a new memory concept called phase change memory has attracted considerable attention, due to its merits such as simple structure, fast speed, low cost, high scalability, good endurance, low power and good compatibility with complementary metal-oxide semiconductor technologies as compared with other nonvolatile memories. Based on these advantages, PCM is expected to be the most promising candidates for the next generation nonvolatile memory. Ge2Sb2Te5(GST) is the most widely used material for PCM due to its outstanding electronic character in numerous chalcogenide compounds. In order to become the next generation nonvolatile-memory and achieve commercialization, GST face various challenges. Its date retention ability is poor owing to the relatively low crystallization temperature and its switching speed is limited due to the nucleation-dominated crystallization process. It also consumes relatively high power because of its high melting temperature. At present, researchers are working to improve performance of GST and looking for a new material which is more suitable for phase change application. On the other hand, the switching failure mechanism remains a controversial issue.
     In this work, the phase change behavior of the binary telluride and its switching failure mechanism are investigated. We have investigated possibility and suitability of GeTe4for phase change memory application, and explored effects of hydrostatic pressure on the electrical properties of rhombohedral Sb2Te3. The main research results are summarized as follows:
     1. The basic properties of GeTe4were investigated systematically. We obtained that the crystalline GeTe4was simple cubic structure. Its crystallization temperature and melting temperature were234.3℃and395.5℃, respectively. The optical band gaps of the amorphous and crystalline GeTe4films were determined as2.09and1.55eV. The activation energy Ea for GeTe4film is determined to be about2.94eV and the data retention temperature of the GeTe4film for ten years was129℃. The binary compound GeTe4shows a higher crystallization temperature and a larger activation energy, which would improve the thermal stability. The lower melting temperature and larger optical band gaps can decrease the power consumption. The simple cubic structure and the growth-dominated crystallization process of the GeTe4lead to a faster set-operation speed. In summary, GeTe4was quite suitable for phase change memory application.
     2. For the first time, we reported the switching behavior of GeTe4phase change memory. The prototypical phase-change memory cells were fabricated by using the focused ion beam and magnetron sputtering techniques. GeTe4phase change memory cells with an effective diameter of1μm show good resistance contrast, proper switching speed and low power consumption. The dynamic switching ratio between the OFF and ON states is over than1×104. The Set and Reset operations were achieved by using a200ns-2.0V pulse and a30ns-3.0V pulse, respectively. The Set and Reset power consumption were determined as0.8pJ and2.7nJ. Therefore GeTe4should be a promising candidate for the phase change memory applications in the future.
     3. We have investigated the effect of the hydrostatic pressure on the electrical properties of the rhombohedral phase change material Sb2Te3both experimentally and theoretically. The resistance can be reduced by24.9%when the applied hydrostatic pressure reaches0.377GPa in the experiment. The electronic band gap can be reduced by27%when the applied hydrostatic pressure reaches0.4GPa in the theoretical calculations. The results of the calculations by using the first principles theoretical method fits quite well with the experimental results.
     The increase of the conductivity of Sb2Te3under the hydrostatic pressure can be ascribed to the reduction of the electronic band gap. The shortening of all bonds in the rhombohedral Sb2Te3under the hydrostatic pressure causes the band broadening and the band gap decreasing, because the atomic interaction is intensified and the overlap of the lone-pair states are increased by the hydrostatic pressure.
引文
[1]B. Fulford, Unsung hero, Forbes,24 June (2002).
    [2]iSuppli Corporation, http://isuppli.com.
    [3]S. Lai, Tech. Dig. IElectron Devices Meet.01, (2008).
    [4]G. E. Moore, Electronics 38,114 (1965).
    [5]International Technical Roadmap for Semiconductors, www.itrs.net/ Links/2008ITRS/Up-date/2008 Update.pdf, (2008).
    [6]A. J. Hazelton et al. J. Microlithogr. Microfabr. Microsyst.8,011003 (2009).
    [7]B. J. Lin, Microelectron. Eng.86,442 (2009).
    [8]K. Kim and S. Y. Lee, Microelectron. Eng.84,1976 (2007).
    [9]K. Prall, Non-Volatile Semiconductor Memory Workshop NVSMW,5-10 (2007).
    [10]S. K. Lai, IBM J. Res. Dev.52,529 (2008).
    [11]M. H. White, D. A. Adams, and J. K. Bu, IEEE Circuits Devices Mag. 16,22(2000).
    [12]W. J. Tsai, et al. Tech. Dig. Int. Electron Devices Meet.32.6.1 (2001).
    [13]C. H. Lee, K. I. Choi, M.-K. Cho, Y. H. Song, K. C. Park, and K. Kim, Tech. Dig. Int. Electron Devices Meet.26.5.1 (2003).
    [14]Y. Park et al. Tech. Dig. Int. Electron Devices Meet.2.1 (2006).
    [15]J. S. Sim et al. Non-Volatile Semiconductor Memory Workshop NVSMW, 110-111 (2007).
    [16]A. Mauri, C. Monzio Compagnoni, S. Amoroso, A. Maconi, F. Cattaneo, A. Benvenuti, A. S. Spinelli, and A. L. Lacaita, Tech. Dig. Int. Electron Devices Meet.22 (2008).
    [17]R. Bez, E. Camcrlenghi, A. Modelli, and A. Visconti, Proc. IEEE 91,489 (2003).
    [18]H. Kurata et al., Proceedings of the VLSI Circuits Symposium,140 (2006).
    [19]A. Ghetti, C. Monzio Compagnoni, F. Biancardi, A. L. Lacaita, S.Bcltrami, L. Chiavarone, A. S. Spinelli, and A. Visconti, Tech. Dig. Int. Electron Devices Meet.34.3 (2008).
    [20]K. Kim and J. Choi, Non-Volatile Semiconductor Memory Workshop NVSMW, 9-11(2006).
    [21]T.-H. Hsu et al. Tech. Dig. Int. Electron Devices Meet.35.1 (2008).
    [22]S. Lombardo et al. Tech. Dig. Int. Electron Devices Meet.35.3 (2007).
    [23]S.-M. Jung et al. Tech. Dig. Int. Electron Devices Meet.2.3 (2006).
    [24]E.-K. Lai et al. Tech. Dig. Int. Electron Devices Meet.2.4 (2006).
    [25]H. Tanaka et al. Tech. Dig. VLSI Symp.14 (2007).
    [26]Y. Fukuzumi et al. Tech. Dig. Int. Electron Devices Meet.2007,17.
    [27]IDC, Worldwide solid state drive 2008-2012 forecast and analysis: www.STORAGEsearch.com/ssdanalysts.html.
    [28]R. Freitas and W. Wilcke, IBM J. Res. Dev.52,439 (2008).
    [29]R. Freitas, W. Wilcke, B. Kurdi, and G. W. Burr, Storage class memory, technology, and uses, FAST'09 February (2009).
    [30]W. Hutsell, J. Bowen, and N. Ekker, Flash solid-state disk reliability, Texas Memory Systems White paper, http://www.texmemsys.com/files/f000252.pdf, November (2008).
    [31]G. W. Burr, B. N. Kurdi, J. C. Scott, C. H. Lam, K. Gopalakrishnan, and R. S. Shenoy, IBM J. Res. Dev.52,449 (2008).
    [32]G. Campardo, R. Micheloni R. Proc IEEE,91(4):483-8 (2003).
    [33]M. Dawber, K. M. Rabe, J. F. Scott. Rev Mod Phys,77(4):1083-130, (2005).
    [34]K. R. Udayakumar, T. S. Moise, S. R. Summerfelt, et al. Jpn J Appl Phys Part 1-Regul Pap Brief Commun Rev Pap,46(4B):2180-3 (2007).
    [35]S. Tehrani. Proceedings of the Electron Devices Meeting, IEDM'06 International, F 11-13 Dec (2006).
    [36]K. Miura, T. Kawahara, R. Takemura, et al. Proceedings of the VLSI Technology, IEEE Symposium on, F 12-14 June (2007).
    [37]A. Kingon. Nat Mater,5(4):251-2 (2006).
    [38]K. Szot, W. Speier, G. Bihlmayer, et al. Nat Mater,5(4):312-20 (2006).
    [39]N. Yamada, E. Ohno, K. Nishiuchi, et al. J. Appl. Phys.69, (5) (1991).
    [40]L. Thomas, M. Hayashi, X. Jiang, et al. Science,315(5818):1553-6 (2007)
    [41]N. Yamada, E. Ohno, K. Nishiuchi, et al. Journal of Applied Physics,69(5): 2849-56(1991).
    [42]宋志堂.相变存储器[M].第一版:科学出版社,(2010).
    [43]M. Wuttig, N. Yamada. Nat Mater 6,824-832 (2007).
    [44]S. Raoux et al. IBM J. Res. Dev.52,465 (2008).
    [45]Kolobov, A. V. et al. Nat Mater 3,703-708 (2004).
    [46]M. H. R. Lankhorst, B. W. S. M. M. Ketelaars, R. A. M. Wolters. Nat Mater 4, 347-352 (2005).
    [47]Hamann, H. F., O'Boyle, M., Martin, Y. C, Rooks, M. & Wickramasinghe, H. K. Ultra-high-density phase-change storage and memory. Nat Mater 5, 383-387(2006).
    [48]S.-H. Lee, Y. Jung, R. Agarwal, Nature Nanotechnology 2,626-630 (2007).
    [49]J. Hegedus, S. R. Elliott. Nat Mater 7,399-405 (2008).
    [50]Y. M. Lee, M. C. Jung, H. J. Shin, K. Kim, S. A. Song. Appl Phys Lett 92, 211913(2008).
    [51]D. Lencer, et al. Nat Mater 7,972-977 (2008).
    [45]W. J. Wang, L. P. Shi, R. Zhao, K. G. Lim, H. K. Lee, T. C. Chong, and Y. H. Wu, Appl. Phys. Lett.93,043121 (2008).
    [46]D. Krebs, S. Raoux, C. T. Rettner, G. W. Burr, M. Salinga, and M. Wuttig, Appl. Phys. Lett.95,082101 (2009).
    [47]D. Krebs, S. Raoux, C. T. Rettner, G. W. Burr, R. M. Shelby, M. Salinga, C. M. Jefferson, and M. Wuttig, J. Appl. Phys.106,054308 (2009).
    [48]G. Bruns, P. Merkelbach, C. Schlockermann, M. Salinga, M. Wuttig, T. D. Happ, J. B. Philipp, and M. Kund, Appl. Phys. Lett.95,043108 (2009).
    [49]A. Pirovano, A. L. Lacaita, A. Benvenuti, F. Pellizzcr, and R. Bcz, IEEE Trans. Electron Devices 51,452 (2004).
    [50]D. Adler,H. K. Henisch, and N. Mott, Rev. Mod. Phys.50,209 (1978).
    [51]D. Adler, M. S. Shur, M. Silver, and S. R. Ovshinsky, J. Appl. Phys.51,3289 (1980).
    [52]A. Redaclli, A. Pirovano, E. Pellizzer, A. L. Lacaita, D. Iclmini, and R.Bcz, IEEE Electron Device Lett.25,684 (2004).
    [53]D. Ielmini and Y. G. Zhang, J. Appl. Phys.102,054517 (2007).
    [54]D. Ielmini, A. L. Lacaita, and D. Mantegazza, IEEE Trans. Electron Devices 54, 308 (2007).
    [55]A. Pirovano, A. L. Lacaita, F. Pellizzer, S. A. Kostylev, A. Benvenuti, and R. Bez, IEEE Trans. Electron Devices 51,714 (2004).
    [56]N. Yamada, E. Ohno, K. Nishiuchi, N. Akahira, and M. Takao, J. Appl. Phys.69, 2849(1991).
    [57]J. Tominaga, T. Kikukawa, M. Takahashi, and R. T. Phillips, J. Appl. Phys.82, 3214(1997).
    [58]S. Lai, Tech. Dig. Int. Electron Devices Meet.10.1.1 (2003).
    [59]A. Pirovano, A. L. Lacaita, A. Benvenuti, F. Pellizzer, S. Hudgens, and R. Bez, Tech. Dig. Int. Electron Devices Meet.29.6.1 (2003).
    [60]J. H. Oh et al., Tech. Dig. Int. Electron Devices Meet.2.6. (2006).
    [61]F. Pellizzer, et al. Tech. Dig. VLSI Symp.122 (2006).
    [62]I. Friedrich, V. Weidenhof, W. Njoroge, P. Franz, M. Wuttig. J Appl Phys 87, 4130-4134(2000).
    [63]S. W. Ryu, et al. Appl Phys Lett 92,142110-142113 (2008).
    [64]Y. H. Ha, et al. in VLSI Technology,2003. Digest of Technical Papers. Symposium on.175-176 (2003).
    [65]P. Jovari, et al. Physical Review B 77,035202 (2008).
    [66]A. V. Kolobov, et al. Journal of Physics:Condensed Matter 16, S5103 (2004).
    [67]K. Shportko, et al. Nat Mater 7,653-658 (2008).
    [68]K. Ueno, et al. Nat Mater 7,855-858 (2008).
    [69]L. Perniola, et al. IEEE 31,488-490 (2010).
    [70]G. W. Burr, M. J. Breitwisch, M. Franceschini, D. Garetto, K, Gopalakrishnan, B. Jackson, et al. J Vac Sci Technol B 28,2 (2010).
    [71]S. Raoux, C. T. Rettner, J. L. Jordan-Sweet, A. J. Kellock, T. Topuria, P. M. Rice, D. C. Miller, J. Appl. Phys.102,094305 (2007).
    [72]S. Raoux et al., J. Appl. Phys.105,064918 (2009).
    [73]T. Okabe, S. Endo, and S. Saito. J. Non-Cryst. Solids 117-118,222 (1990).
    [74]X. Q. Wei, L. P. Shi, T. C. Chong, R. Zhao, and H. K. Lee, Jpn. J. Appl. Phys., Part 1 46,2211 (2007).
    [75]S. Raoux, J. L. Jordan-Sweet, and A. J. Kellock, J. Appl. Phys.103,114310, (2008).
    [76]S. Raoux, H.-Y. Cheng, J. L. Jordan-Sweet, B. Munoz, and M. Hitzbleck, J. Appl. Phys.94,183114(2009).
    [77]S. H. Lee, Y. W. Jung, and R. Agarwal, Nano Lett.8,3303 (2008).
    [78]D. Yu, S. Brittman, J. S. Lee, A. L. Falk, and H. Park, Nano Lett.8,3429 (2008).
    [79]Y. Zhang, et al. Appl. Phys. Lett.91,013104, (2007).
    [80]D. J. Milliron, S. Raoux, R. M. Shelby, and J. Jordan-Sweet, Nature Mater.6, 352 (2007).
    [81]Y. Zhang, et al. J. Appl. Phys.104,074312 (2008).
    [82]M. Caldwell, S. Raoux, H.-S. P. Wong, and D. Milliron,234th Meeting of the American Chemical Society, August (2007).
    [83]S. Raoux et al., Microelectron. Eng.85,2330 (2008).
    [84]X. Sun, B. Yu, G. Ng, T. D. Nguyen, and M. Mayyappan, Appl. Phys. Lett.89, 233121 (2006).
    [85]X. H. Sun, B. Yu, G. Ng, and M. Meyyappan, J. Phys. Chem. C 111,2421 (2007).
    [86]M. H. R. Lankhorst, B. W. S. M. M. Ketelaars, and R. A. M. Wolters, Nature Mater.4,347 (2005).
    [87]D. Krebs, S. Raoux, C. Rettner, Y.-C. Chen, G. W. Burr, and M. Wuttig, Proceedings of the Materials Research Society, Vol.1072, G06-G07 (2008).
    [88]D. lelmini, Phys. Rev. B 78,035308 (2008).
    [89]W. P. Risk, C. T. Rettner, and S. Raoux, Appl. Phys. Lett.94,101906 (2009).
    [90]J. P. Reifenberg, et al. Appl. Phys. Lett.91,111904 (2007).
    [91]J. Feinleib, J. deNeufville, S. C. Moss, and S. R. Ovshinsky, Appl. Phys. Lett.18, 254,(1971).
    [92]S. R. Ovshinsky and H. Fritzsch, IEEE Trans. Electron Devices 20,91, (1973).
    [93]N. Yamada, E. Ohno, N. Akahira, K. Nishiuchi, K. Nagata, and M. Takao, Jpn. J. Appl. Phys. Part 126,61 (1987).
    [94]M. Chen, K. A. Rubin, and R. W. Barton, Appl. Phys. Lett.49,502 (1986).
    [95]V. Weidenhof, N. Pirch, I. Friedrich, S. Ziegler, and M. Wuttig, J. Appl.Phys.88, 657 (2000).
    [96]D.-S. Suh, K. H. P. Kim, J.-S. Noh, W.-C. Shin, Y.-S. Kang, C. Kim, Y.Khang, and I. K. Yoo, Tech. Dig. Int. Electron Devices Meet. S30P2 (2007).
    [97]D. H. Kang, et al. Tech. Dig. VLSI Symp.6B (2007).
    [98]W. Welnic, A. Pamungkas, R. Detemple, C. Steimer, S. Blugel, and M. Wuttig, Nature Mater.5,56 (2006).
    [99]J. Kalb, F. Spaepen, and M. Wuttig, Appl. Phys. Lett.84,5240 (2004).
    [100]L. van Pieterson, M. H. R. Lankhorst, M. van Schijndel, A. E. T. Kuiper,and J. H. J. Roosen, J. Appl. Phys.97,083520 (2005).
    [101]H. R. Martijn, W. S. M. M. Ketelaars, R. A. M. Wolters. Nature Materials 4 347-352 (2005).
    [102]J. A. Kalb, F. Spaepen, and M. Wuttig, J. Appl. Phys.98,054910 (2005).
    [103]J. H. Coombs, A. P. J. M. Jongenelis, W. Vanesspiekman, and B. A. J. Jacobs, J. Appl. Phys.78,4918(1995).
    [104]M. Wuttig, R. Detemple, I. Friedrich, W. Njoroge, I. Thomas, V. Weidenhof, H. W. Woltgens, and S. Ziegler, J. Magn. Magn. Mater.249,492 (2002).
    [105]N. Ohshima, J. Appl. Phys.79,8357 (1996).
    [106]L. C. Wu, Z. T. Song, F. Rao, Y. F. Gong, B. Liu, L. Y. Wang, W. L. Liu,and S. L. Feng, Appl. Phys. Lett.93,103107 (2008).
    [107]M. Breitwisch, et al. Tech. Dig. VLSI Symp.100 (2007).
    [108]M. Salinga, "Phase change materials for non-volatile electronic memories,' Ph.D. thesis, RWTH-Aachen, (2008).
    [109]S. Senkader and C. D. Wright, J. Appl. Phys.95,504 (2004).
    [110]J. A. Kalb, in Phase Change Materials:Science and Applications, edited by S. Raoux and M. Wuttig Springer Verlag, New York,125-148 (2009).
    [111]B.-S. Lee, et al. Science 326,980 (2009).
    [112]K. Sokolowski-Tinten, J. Solis, J. Bialkowski, J. Siegel, C. N. Afonso, D. von der Linde, Phys. Rev. Lett.81,3679(1998).
    [113]J. P. Callan, A. M. T. Kim, C. A. D. Roeser, E. Mazur, J. Solis, J. Siegel,C. N. Afonso, and J. C. G. de Sande, Phys. Rev. Lett.86,3650 (2001).
    [114]C.-M. Lee, et al. International Symposium on VLSI Technology, Systems and Applications VLSI-TSA,1-2(2007).
    [115]S. Y. Lee, S. M. Yoon, Y. S. Park, B. G. Yu, S. H. Kim, and S. H. Lee, J. Vac. Sci. Technol. B 25,1244(2007).
    [116]Y. H. Shih et al., Tech. Dig. Int. Electron Devices Meet.9.1.(2008).
    [117]N. Matsuzaki, et al. Tech. Dig. VLSI Symp.738, (2005).
    [118]T. Morikawa, et al, Tech. Dig. VLSI Symp.307, (2007).
    [119]Y. Y Lin, et al. Non-Volatile Semiconductor Memory Workshop NVSMW, 61-62(2007).
    [120]T. Zhang, Z. T. Song, F. Wang, B. Liu, S. L. Feng, and B. Chen, Jpn. J. Appl. Phys., Part 246, L602 (2007).
    [121]S. Lai and T. Lowrey, Tech. Dig. Int. Electron Devices Meet.3651 (2001).
    [122]D. Mantegazza, D. Ielmini, A. Pirovano, B. Gleixner, A. L. Lacaita, E. Varesi, F. Pellizzer, and R. Bez, Tech. Dig. Int. Electron Devices Meet. S2P7 (2006).
    [123]B. Rajendran, et al. Tech. Dig. VLSI Symp.96 (2008).
    [124]S. O. Ryu, et al. J. Electrochem. Soc.153, G234 (2006).
    [125]S. S. Iyer, J. E. Barth, Jr., P. C. Parries, J. P. Norum, J. P. Rice, L. R. Logan, and D. Hoyniak, IBM J. Res. Dev.49,333 (2005).
    [126]C. W. Oh, et al. Tech. Dig. Int. Electron Devices Meet.37.3. (2006).
    [127]S. Adee, www.spectrum.icee.org/feb09/7629, February (2009).
    [128]P. Cappelletti, C. Golla, P. Olivo, and E. Zanoni, Flash Memories Springer, New York, (1999).
    [129]T. Nirschl, et al. Tech. Dig. Int. Electron Devices Meet.17.5. (2007).
    [1]H. Jin, S. K. Oh, H. J. Kang, and M. H. Cho, Appl. Phys. Lett.89,122901 (2006).
    [2]H. C. Aspinall, P. A. Williams, J. Gaskell, A. C. Jones, J. L. Roberts, L. M. Smith, P. R. Chalker, and G. W. Critchlow, Chem. Vapor Depos.9,7 (2003).
    [3]J. F. Kang, H. Y. Yu, C. Ren, M.-F. Li, D. S. H. Chan, H. Hu, H. F. Lim, W. D. Wang, D. Gui, and D.-L. Kwong, Appl. Phys. Lett.84,1588 (2004).
    [4]L. G. Gao, K. B. Yin, Y. D. Xia, L. Chen, H. X. Guo, L. Shi, J. Yin, and Z. G. Liu, J. Phys. D:Appl. Phys.42,015306 (2009).
    [5]A. Dimoulas, G. Vellianities, G. Mavrou, G. Apostolopoulos, A. Travlos, C. Wiemer, M. Fanciulli, and Z. M. Rittersma, Appl. Phys. Lett.85,3205 (2004).
    [6]冯端,师昌绪,刘治国.材料科学导论[M].化学工业出版社.2002.
    [7]方俊鑫,殷之文.电介质物理[M].科学出版社,2003.
    [8]陈峰华,张敏刚,柴跃生,杨利斌,熊杰,微纳电子技术.48,9(2011).
    [9]K. Sharma, A.先进半导体存储器结构、设计与应用[M].电子工业出版社(2005).
    [10]R. Hermann, W. Loser, J Appl Phys 83,6399-6401 (1998).
    [11]X. F. Liang, Y. Chen, L. Chen, J. Yin, Z. G. Liu. Appl Phys Lett 90,022508 (2007).
    [12]H. Kiessig, U. Essmann. Scripta Metallurgica 19,989-992 (1985).
    [13]U. Helmersson, M. Lattemann, J. Bohlmark, et al. Thin Solid Films,513(1-2): 1-24(2006).
    [14]P. Sigmund. Physical Review,184(2):383 (1969).
    [15]T. Ishitani, R. Shimizu. Phys Lett A,46(7):487-8 (1974).
    [16]高旭,南京大学博士论文,简单氧化物薄膜阻变存储特性研究,2011.
    [17]段玲珑,兰州大学硕士论文,磁控溅射制备Ti膜的结构与性能研究,2008.
    [18]B. Angleraud, P. Y. Tessier. Surface and Coatings Technology,180-181:59-65 (2004).
    [19]D. R. Sahu, J. L. Huang. Thin Solid Films,515(3):876-9 (2006).
    [20]A. Wiatrowski, W. M. Posadowski, Z. J. Radzimski. J Vac Sci Technol A,26(5): 1277-81 (2008).
    [21]J. Musil, P. Baroch, J. Vlcek, et al. Thin Solid Films,475(1-2):208-18 (2005).
    [22]M. Panzner, R. Dietsch, T. Holz, H. Mai. Applied Surface Science 96-8,643-648 (1996).
    [23]K. R. Singh, J. Narayan. Phys Rev B,41(13):8843-59 (1990).
    [24]A. Rose. Physical Review,97(6):1538-44 (1995).
    [25]N. W. Gregory. J Am Chem Soc 79,1773-1774 (1957).
    [26]B. E. Warren. X-ray diffraction. General Publishing Company (1990).
    [27]B. D. Cullity. Elements of X-Ray Diffraction [M]. Addison-Wesley, (1956).
    [28]R. Bakish. Introduction to Electron Beam Technology [M]. Wiley, (1962).
    [29]L. I. Maissel, R. Glang. Handbook of Thin Film Technology [M]. McGraw-Hill. (1970).
    [30]彭昌盛,宋少先,谷庆宝.扫描探针显微技术理论与应用[M].化学工业出版社(2007).
    [31]孟昕,大连理工大学硕士论文,GDC/YSZ多层电解质薄膜结构、电学性能与稳定性研究,(2010).
    [32]许含霓,南京大学博士论文,银硫系化合物的相变行为与电输运特性研究,(2012).
    [33]李斌,原子力显微镜在多糖研究中的应用进展,食品科学,26.4.(2005).
    [34]泉美治等,仪器分析导论[M].化学工业出版社(2005).
    [35]林承毅等,现代仪器分析方法.南京大学出版社(2005).
    [36]朱颢,南京大学硕士论文,新型二元硫系化合物相变材料存储特性研究,(2010).
    [37]方亮,苏州大学硕士论文,高介电常数CaCu3Ti4O (12)薄膜制备及其性能研究,(2004).
    [38]郭康,南京大学硕士论文,铪硅氧化物薄膜阻变特性及钌钽薄膜电导行为的研究,(2011).
    [39]梁爽、宋志棠、刘波、陈小刚、封松林,半导体技术第31卷第8期,2006.
    [40]吕洪国,现代网络频谱测量技术,清华大学出版社,(2000).
    [41]Model 2400 Series Sourcemeter? User's Manual, Keithley Instruments, Inc., (1998).
    [42]CEC 488 programming and reference, Keithley Instruments, Inc. (2004).
    [1]I. Friedrich, V. Weidenhof, W. Njoroge, P. Franz, M. Wuttig. J Appl Phys 87, 4130-4134(2000).
    [2]S. W. Ryu, et al. Appl Phys Lett 92,142110-142113 (2008).
    [3]H. Y. Ha, et al. in VLSI Technology,2003. Digest of Technical Papers. Symposium on.175-176(2003).
    [4]P. Jovari, et al. Physical Review B 77,035202 (2008).
    [5]A. V. Kolobov, et al. Journal of Physics:Condensed Matter 16, S5103 (2004).
    [6]S. W. Ryu et al. Appl. Phys. Lett.92,142110 (2008).
    [7]E. Morales-Sanchez, B. Lain, E. Prokhorov, M. A. Hernandez-Landaverde, G. Trapaga, J. Gonzalez-Hernandez, Vacuum 84,877 (2010).
    [8]K. Shportko, et al. Nat Mater 7,653-658(2008).
    [9]K. Ueno, et al. Nat Mater 7,855-858(2008).
    [10]L. Perniola, et al. Electron Device Letters, IEEE 31,488-490 (2010).
    [11]G. E. Ghezzi, J. Y. Raty, S. Maitrejean, A. Roule, Elkaim, F. Hippert, Appl Phys Lett 99,151906(2011).
    [12]G. Bruns, P. Merkelbach, C. Schlockermann, M. Salinga, M. Wuttig, T. D. Happ, J. B. Philipp, M. Kund, Appl. Phys. Lett.95,043108 (2009).
    [13]S. Loubriat, D. Muyard, F. Fillot, A. Roule, M. Veillerot, J. P. Barnes, P. Gergaud, L. Vandroux, M. Verdier, S. Maitrejean. Microelectronic Engineering 88, 817-821 (2011).
    [14]叶大伦,胡建华.实用无机物热力学数据手册.冶金工业出版社.(2002).
    [15]A. G. Moore, C. Maghrabi, J. M. Parker. Journal of materials science letters 13, (1978).
    [16]L. G. Gao, K. B. Yin, Y. D. Xia, L. Chen, H. X. Guo, L. Shi, J. Yin, and Z. G. Liu, J. Phys. D:Appl. Phys.42,015306 (2009).
    [17]D. Mantegazza, D. Ielmini, A. Pirovano, B. Gleixner, A. L. Lacaita, E. Varesi, F. Pellizzer, and R. Bez, Tech. Dig.-Int. Electron Devices Meet. p. S2P7 (2006).
    [18]Y. H. Ha, et al. in VLSI Technology,2003. Digest of Technical Papers. Symposium on.175-176 (2003).
    [19]P. Jovari, et al. Local order in amorphous Ge2Sb2Tc5 and GeSb2Tc4. Physical Review B 77,035202 (2008).
    [20]A. V. Kolobov, et al. Journal of Physics:Condensed Matter 16, S5103 (2004).
    [21]J. W. Park, M. Song, S. Yoon, H. Lim, D. S. Jeong, B. Cheong, H. Lee. Phys. Status. Solidi. A 1-9(2012).
    [22]林承毅,现代仪器分析方法.南京大学出版社.(2005).
    [23]宋志堂.相变存储器[M].第一版:科学出版社,(2010).
    [24]W. K. Njoroge, H. W. Woltgens, M. Wuttig. J. Vac. Sci. Technol, A 20,230 (2002).
    [25]W. Welnic, A. Pamungkas, R. Detemple, C. Steimer, S. Blugel, and M. Wuttig, Nat. Mater.5,56 (2006).
    [26]D. H. Kwon, K. M. Kim, J. H. Jang, et al. Nat Nanotechnol,5(2):148-53 (2010).
    [27]方容川,固体光谱学,2001年第1版,合肥:中国科学技术大学出版社,(2003).
    [28]A. Pirovano, A. L. Lacaita, S. Member, IEEE Trans. Electron Dev.95924 (2004).
    [29]A. Pirovano et al., Tech. Dig.-Int. Electron Devices Meet.699 (2003).
    [30]G. X. Wang, Q. H. Nie, X. Shen, R. P. Wang, L. C. Wu, Y. G. Lv. Mater Lett.87 135-138(2012).
    [31]C. Peng, L. C. Wu, F. Rao, Z. T. Song, P. X. Yang, H. J. Song, K. Ren, X. L. Zhou, M. Zhu, B. Liu, and J. H. Chu. Appl Phys Lett 101,122108 (2012).
    [32]R. Steve, P. Robert. Journal of Micromcchanics and Microcngineering 11,287 (2001).
    [33]郑晓刚,天津大学硕士论文,深亚微米集成电路制造中的失效分析应用,(2010).
    [34]J. Hegedus, S. R. Elliott. Nat Mater 7,399-405 (2008).
    [35]Y. M. Lee, M. C. Jung, H. J. Shin, K. Kim, S. A. Song. Appl Phys Lett 92, 211913(2008).
    [36]M. B. Luo, M. Wuttig, Adv. Mater.16,439 (2004).
    [37]A. L. Lacaita, D. J. Wouters, phys. stat. sol.(a) 205,2281 (2008).
    [38]H. Jiang, K. Guo, H. N. Xu, Y. D. Xia, K. Jiang, F. Tang, et al. J. Appl. Phys. 109066104(2011).
    [39]S. N. Song, Z. T. Song, B. Liu, L. C. Wu, S. L. Feng. Appl Phys A 99:767-770 (2010).
    [40]T. Kamada, Y. J. Sutou, M. Sumiya, Y. T. Saito, J. C. Koike. Thin Solid Films 520,4389-4393(2012).
    [41]Y H. Ha, J.H. Yi, H. Horii, J.H. Park, S.H. Joo, S.O. Park, U.I. Chung, J.T. Moon, in:Symposium on VLSI Technology Digest of Technical Papers, p.175 (2003).
    [1]H.J. Borg, M. van Schijndel, J.C.N. Rijpers, Jpn. J. Appl. Phys.40,1592 (2001).
    [2]N. Oomachi, S. Ashida, N. Nakamura, Jpn. J. Appl. Phys.41,1695 (2002).
    [3]M. H. R. Lankhorst, L. van Pieterson, M. van Schijndel, Jpn. J. Appl. Phys.42, 863 (2003).
    [4]N. Yamada, E. Ohno, K. Nishiuchi, N. Akahira, M. Takao, J. Appl. Phys.69, 2849(1991).
    [5]T. Ohta, K. Nishiuchi, K. Narumi, Y. Kitaoka, H. Ishibashi, N. Yamada, T. Kozaki, Jpn. J. Appl. Phys.39,770 (2000).
    [6]T. Maeda, M. Terao, T. Shimano, Jpn. J. Appl. Phys.42,1044 (2003).
    [7]A. L. Lacaita and D. J. Wouters, Phys. Stat. Sol. (a) 205,2281 (2008).
    [8]M. H. R. Lankhorst, B. W. S. M. M. Ketelaars, and R. A. M. Wolters, Nature Mater.4,347 (2005).
    [9]D. Lencer, M. Salinga, B. Gravowski, T. Hickel, J. Neugebauer, and M. Wuttig, Nature Mater.7,972 (2008).
    [10]M. Wuttig, D. Lu"sebrink, D. Wamwangi, W. Welnic, M. Gille, and R. Dronskowski, Nature Mater.6,122 (2007).
    [11]M. Wuttig and N. Yamada, Nature Mater.6,824 (2007).
    [12]A. Pirovano, A.L. Lacaita, F. Pellizzer, et al., IEEE Trans. Electron Dev.51,714 (2004).
    [13]D.-H. Kang, D.-II. Ahn, M.-H. Kwon, H.-S. Kwon, K.-B. Kim, K.S. Lee, B.-K. Cheong, Jpn. J. Appl. Phys.43,5243 (2004).
    [14]W. Y. Cho, B.-H. Cho, B.-G. Choi, H.-R. Oh, S. Kang, K.-S. Kim, K.-H. Kim, D.-E. Kim, C.-K. Kwak, H.-G. Byun, Y. Hwang, S. J. Ahn, G. II. Koh, G. Jeong, II. Jeong, K. Kim, IEEE J. Solid-State Circuits 40,293 (2005).
    [15]B. Liu, T. Zhang, J. L. Xia, Z. T. Song, S. L. Feng, B. Chen, Semicond. Sci. Technol.19, L61 (2004).
    [16]B. Liu, Z. T. Song, S. L. Feng, B. Chen. Microelectronic Engineering 82 (2005).
    [17]S. N. Song, Z. T. Song, Y. G. Lu, B. Liu, L. C. Wu, S. L. Feng. Materials Letters 64,2728-2730(2010).
    [18]Y. G. Lu, S. N. Song, Z. T. Song, K. Ren, B. Liu, S. L. Feng. Appl Phys A. 105:183-188(2011).
    [19]C. Peng, L. C. Wu, Z. T. Song, F. Rao, M. Zhu, X. L. Li, B. Liu, L. M. Cheng, S. L. Feng, P. X. Yanga, J. H. Chua. Applied Surface Science 257,10667-10670 (2011).
    [20]G. X. Wang, Q. H. Nie, X. Shen, R. P. Wang, L. C. Wu, Y G. Lv, J. Fu, T. F. Xu, S. X. Dai. Mater Lett 87,135-138 (2012).
    [21]K. Ren, F. Rao, Z. T. Song, L. C. Wu, X. L. Zhou, M. J. Xia, B. Liu, S. L. Feng, W. Xi, D. N. Yao, B. Chen. Chin. Phys. Lett. Vol.27, No.10,108101 (2010).
    [22]W. K. Njoroge, H. W. Woltgens, M. Wuttig. J. Vac. Sci. Technol, A 20.230. (2002).
    [23]宋志棠,相变存储器.科学出版社.(2010).
    [24]S. Caravati, M. Bernasconi, T. D. Kuhne, M. Krack, M. Parrinello, Phys. Rev. Lett.102,205502(2009).
    [25]林承毅,现代仪器分析方法.南京大学出版社.(2005).
    [26]J. S. Dyck, K. Ahilan, M. C. Aronson, C. Uher, Phys. Stat. Sol. (b) 243,1862 (2006).
    [27]Z. Xu, Y. J. Feng, S. G. Zheng, A. Jin, F. L. Wang, X. Yao, J. Appl. Phys.92, 2663 (2002).
    [28]刘恩科,朱秉升,罗晋生.半导体物理学.电子工业出版社.(2011).
    [29]B. A. Weinstein, R. Zallen, M. L. Slade, J. Non-Cryst. Solids 35,1255 (1980).
    [30]T. Thonhauser, Solid State Commun.129,249 (2004).
    [31]J. Im, E. Cho, D. Kim, H. Horii, J. Ihm, S. Man, Phys. Rev. B 81,245211 (2010).
    [32]B. Xu, Y. Su, Z. G. Liu, C. H. Zhang, Y. D. Xia, J. Yin, Z. Xu, W. C. Ren, Y. H. Xiang, Appl. Phys. Lett.98,142112 (2011).
    [33]J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett.77,3865 (1996).
    [34]P. E. Blochl, Phys. Rev. B 50,17953 (1994).
    [35]G. Kresse, D. Joubert, Phys. Rev. B 59,1758 (1999).
    [36]G. Kresse, J. Furthmuller, Comput. Mater. Sci.6,15 (1996).
    [37]G. Kresse, J. Furthmuller, Phys. Rev. B 54,11169 (1996).
    [38]J. L. F. Da Silva, A. Walsh, H. Lee, Phys. Rev. B 78,224111 (2008).
    [39]P. Larson, Phys. Rev. B 74,205113 (2006).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700