面向介入医疗导管的聚合物微挤出模具设计制造技术与工艺研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着微加工技术的蓬勃发展,许多产品的轻量化、小型化、微型化、精密化趋势日渐明显。与此同时,传统聚合物挤出成型技术也正在朝着微型化方向发展,出现了聚合物微挤出成型技术,其制品如介入医疗导管、汽车油气路微管、新型塑料光纤等在医疗、汽车、通讯等领域得到了广泛的应用,尤其是高技术含量、高附加值的介入医疗导管。由于介入医疗导管具有尺寸微小、截面形状复杂、几何精度高等特点,使得微挤出模具的设计、制造和成型工艺较为复杂,因而传统的挤出成型技术已经不再完全适用。由于受挤出模具、配套生产工艺等限制,目前我国介入医疗导管及其挤出模具主要依赖进口,其价格昂贵,严重阻碍了我国介入医学的发展。因此,针对介入医疗导管这样较难成型且精度高的微管,本文以聚丙烯(PP)微管的微挤出成型为研究对象,对聚合物微挤出模具的流变学设计、制造方法和成型工艺进行了深入研究。主要研究内容如下:
     首先,根据聚合物微管截面型腔的形状以及各型腔在制品截面上分布特点,将微管主要分为中心对称、轴对称和周边均匀分布三大类。并根据这三种类型,制品截面结构由简单到复杂依次分别取最具有代表性的微管进行研究,即中心对称单腔微管、轴对称双腔异型微管和周边均匀分布五腔异径微管。聚合物微挤出模具成型段长度对挤出制品的质量和生产效率起着决定性作用,通过理论推导,建立了微挤出模具成型段长度与流道结构尺寸、聚合物熔体流变学特性之间的关系,确定了微挤出模具成型段长度。针对多腔微挤出模具非对称流道较难实现熔体流动平衡的问题,在挤出流动分析的基础上,结合聚合物熔体流变学理论和优化设计方法,提出了一种基于流动平衡的多腔直角微挤出模具非对称流道结构优化设计方法。该方法以微挤出模具非对称流道内熔体流动平衡性为优化目标,确定模具非对称流道结构关系,以模具转向角为设计变量,建立优化目标函数,对模具流道结构进行优化设计。通过对双腔微管和五腔微管的挤出模具非对称流道进行优化设计,逐步完善了多腔直角微挤出模具非对称流道结构优化设计方法。
     其次,针对微挤出模具芯棒微细复杂成型段横截面结构和内部微细注气孔,尤其是多腔直角微挤出模具芯棒微细复杂成型段横截面结构,提出了一种具有细长成型段横截面复杂结构和微细注气孔的微挤出模具芯棒的加工工艺。该工艺针对微挤出模具芯棒成型段细长、易变形、易断裂及其横截面结构微细复杂等难于加工的问题,利用微挤出模具芯棒微细复杂成型段各个截面形状在芯棒轴向相同的共同特点,采用成型电极端面一次性蚀除成型加工技术,实现芯棒成型段的精密加工;同时,针对芯棒内部大深径比微细注气孔难于加工的问题,采用微细电火花阶梯孔渐进式加工方法,实现芯棒内部大深径比微细注气孔的精密加工。通过对单腔、双腔和五腔微挤出模具芯棒成型段的加工,验证和完善了该加工工艺的可行性和通用性。在聚合物微挤出模具装配过程中,装配误差容易导致口模与芯棒成型段处的装配间隙不均匀或挤出成型困难,因而重点研究了芯棒、口模、微调机构和注气管道的装配工艺,装配后的挤出模具能够实现芯棒与口模间隙微调,而不会触及芯棒成型段使其弯曲或断裂,同时,还可实现注气管道高温密封。
     最后,针对直径微细、截面复杂、壁厚较薄的微管较容易受挤出工艺影响而难于成型的问题,通过对三类微管,如聚合物中心对称单腔微管、轴对称双腔异型微管和周边均匀分布五腔异径微管的挤出成型实验研究和分析,获得了挤出工艺参数对微管截面的尺寸和形状精度的影响主次顺序和较佳的工艺参数组合,揭示了挤出成型工艺参数对聚合物微管截面的尺寸和形状精度的影响规律。结果表明了型腔注气量对微管截面的尺寸和形状精度尤为重要,注气量大小直接决定了微管截面尺寸及其形状轮廓变化。根据挤出成型工艺规律,在管型腔注气量6ml/min,螺杆转速4r/min,模具温度202℃,牵引速度28m/min的挤出工艺条件下,挤出了最小直径为0.5±0.02mm的单腔微管;在月牙腔和圆腔的注气量均为6ml/min,螺杆转速12r/min,模具温度218℃,水箱真空度20%,牵引速度12m/min的较佳挤出工艺参数下,挤出了满足使用要求且最小直径为1.2±0.02mm的双腔微管,其外轮廓椭圆度、月牙腔椭圆度和圆腔椭圆度分别为:0.8%,1.4%和3.0%;在主型腔和次型腔的注气量均为6ml/min,螺杆转速16r/min,模具温度202℃,水箱真空度0,牵引速度10m/min的较佳挤出工艺下,挤出满足使用要求且最小直径为1.6±0.02mm的五腔微管,其外轮廓椭圆度、主型腔椭圆度和次型腔椭圆度分别是2.9%,2.1%和3.9%。同时,挤出实验也证明了多腔直角微挤出模具非对称流道结构优化设计方法的正确性和实用性。
With the great development of micro-processing technology, many products become more and more light, small, tiny and exact. Simultaneously, traditional polymer extrusion molding is turning to micromation, and the polymer micro-extrusion molding appeared. Some tiny and slim tubes such as interventional medical catheters, automobile oil and gas tubes, new type of plastic optical fibers are used widely in the field of medical treatment, automobile, and communication. And the interventional medical catheters with high technical content, much additional value have enormous room for medical treatment. The characters of the interventional medical catheters are tiny size, complicated section and high geometry accuracy, so the design, manufacture, and extrusion molding process of a micro-extrusion die are very complicated, while the traditional polymer extrusion molding technology is inapplicable. Just because of the limit factors like micro-extrusion dies and matched manufacture process, the interventional medical catheters and micro-extrusion dies in our nation mainly depend on importation at present, and the price is quite expensive. This situation makes against the development of our interventional medicine. So this paper is focused on the micro-extrusion molding of polypropylene micro-tubes, and the key technology which is about the rheological design, manufactural method and micro-estrusion molding process of polymer micro-estrusion dies in the condition of micro-scale effect is also studied. The primary items in this paper are as follows:
     Firstly, based on the lumen-sectional shape of micro-tubes and the lumen distribution characteristics on the cross-section of the product, the micro-tubes were divided into three types, such as centrosymmetric, axisymmetric and uniformly distributed. And from simple to complex in turn, single-lumen micro-tubes, double-lumen micro-tubes with different shape lumens and five-lumen micro-tubes with different diameter lumens were listed and researched as the most representative products of these three types in the paper. Considering the land length of the polymer micro-extrusion die was the key to the quality of products and the productive efficiency, single-lumen, double-lumen and five-lumen micro-tubes were taken as objects. The parameter relationships between the land length and the flow channel structure, the rheological characters of polymer melts were deduced by a theory and the land lengths of the three-type micro-extrusion dies were also fixed. Then, for the extrusion dies of multi-lumen micro-tubes, combined the flow analysis of polymer melts with the rheological theory and the optimum design method of polymer melts, a new design method for the right-angle non-symmetry flow channel structure of the micro-extrusion die was put forward. In this method, the flow balance of polymer melts in the non-symmetry flow channel of the right-angle micro-extrusion die was seen as the optimization objective; the steering angle in the extrusion die was taken as a design variable; and the objective function of optimizing the flow channel structure was established. Through the optimization of asymmetric flow channel in the extrusion dies for double-lumen and five-lumen micro-tubes, the optimization design method of the multi-lumen extrusion die was gradually improved.
     Secondly, because the lands and air injection holes of the mandrel were very tiny, easily broken and the cross-section structures of the lands were very complex especially for multi-lumen micro-extrusion dies, the precision machining together with micro EDM technology were adopted to process the lands of the mandrel and the die. The cross-section of the mandrel land was processed by once corroding technology of the molding electrode end side. At the same time, the vent with big deep diameter ratio in the mandrel was processed by multi-step punching which combined metal drilling with micro EDM molding and punching. In the course of the assembly of the micro-extrusion die for polymer melts, the assembly error easily leads to asymmetry of the assembly interspace between the lands of the mandrel and the die or leads to difficulty of the extrusive molding. The assembly technics of the mandrel and the die and of the vent pipe and micro adjustable system was studied in this paper. The micro-extrusion die after assembly could do a fine adjustment between the mandrel and made the die not bend or break the land of the mandrel. And also, the vent pipe could be airproofed with high temperature.
     Finally, the single factor micro-extrusion molding experiments of single-lumen, double-lumen, and five-lumen micro-tubes were studied and analyzed theoretically because the tubes with fine diameter, complex section, thin wall thickness were difficult to be extruded. Through extrusion experiments, the effect order of main process parameters on the size and shape accuracy of micro-tubes and the optimum combination of process parameters were obtained. Experimental results showed that the air injection velocity effected fiercely and decided directly on the size and shape accuracy of micro-tubes. At the same time, the right-angle extrusion die with the asymmetrical channel for the multi-lumen micro tubes was designed by the method. According to the experiments for the single-lumen micro-tubes, the combination of process parameters was determined including an air injection velocity of6ml/min, a screw speed of4r/min, a die temperature of202℃and a pulling speed of28m/min, and a single-lumen micro-tube of the smallest diameter with0.5±0.02mm was fabricated. On the basis of the the experiments for the double-lumen micro-tubes, the optimal combination of process parameters was determined including an air injection velocity of6ml/min, a screw speed of12r/min, a die temperature of218"C, a vacuum degree of the water tank of20%and a pulling speed of12m/min, and the better double-lumen micro-tube of the smallest diameter with1.2±0.02mm was obtained. And the ovalities of outside profile, crescent lumen and circular lumen in the tube section were achieved by0.8%,1.4%and3.0%respectively under the optimal combination of process parameters. According to the experiments for the five-lumen micro-tubes, the optimal combination of process parameters was determined including an air injection velocity of6ml/min, a screw speed of16r/min, a die temperature of202℃, a vacuum degree of the water tank of0and a pulling speed of10m/min, and the rational five-lumen micro-tube of the smallest diameter with1.6±0.02mm was machined. The ovalities of outside profile, main lumen and secondary lumen in the tube section were reached by2.88%,2.09%and3.9%respectively under the optimal combination of process parameters. Through the extrusion experiments, the correctness of the die design method was verified.
引文
[1]赵丹阳,王敏杰,李凯等.聚合物微挤出成型过程流动的均匀性[J].高分子材料科学与工程,2010,26(7):159-162.
    [2]Lin J, Li F, Zhang J. A new approach to investigate real flow stress in micro-extrusion [J]. Transactions of Nonferrous Metals Society of China,2012,22(2):232-238.
    [3]Angelov A, Coulter J. Micromolding product manufacture:A progress report [C]//ANTEC... conference proceedings. Society of Plastics Engineers,2004,1:748-751.
    [4]Liu F, Peng L, Lai X. Study on the size effect and the effect of the friction coefficient on the micro-extrusion process [J]. Robotic Welding, Intelligence and Automation,2007,362:493-499.
    [5]Whiteside B, Martyn M, Coates P, et al. Micromoulding:process characteristics and product properties [J]. Plastics, Rubber and Composites,2003,32(6):231-239.
    [6]Ruprecht R, Gietzelt T, Muller K, et al. Injection molding of microstructured components from plastics, metals and ceramics [J]. Microsystem Technologies,2002,8(4):351-358.
    [7]Liu F, Peng L, Lai X. Study on the size effect and the effect of the friction coefficient on the micro-extrusion process [J]. Robotic Welding, Intelligence and Automation Lecture Notes in Control and Information Sciences,2007,362:493-499.
    [8]Chan W, Fu M, Lu J. Experimental and simulation study of deformation behavior in micro-compound extrusion process [J]. Materials and Design,2011,32(2):525-534.
    [9]Giesa R. Batch extrusion of microtubing [J]. Laboratory for Microscale Polymer Processing,2005:1.
    [10]严志云,谢鹏程,丁玉梅等.医用高分子材料产品的成型加工及发展现状[J].橡塑技术与装备,2010,36(12):25-31.
    [11]Jan H. S. Medical tubing tinier than ever and much more complex [J]. Plastics Technology,2007, 53(4):70-73.
    [12]张金山,李家开.我国介入医学发展的现状及应注意的若干问题[J].中华医院管理杂志,2003,9(7):428429.
    [13]陈炽贤.实用放射学[M].北京:人民卫生出版社,1998.
    [14]吴恩惠,刘玉清,贺能树.介入性治疗学[M].北京:人民卫生出版社,1994.
    [15]Vedula M, Koczrk M. Impact resistance of cross-plied polyphenylene sulphide composites [J]. Journal of Thermoplast Composite Materials,1989,2(3):154-163.
    [16]Schumer G, Brandt J, Richer H. Recycling carbon-fibre reinforced thermoplastic composites [J]. Journal of Thermoplast Composite Materials,1996,9:237-245.
    [17]Austin B, Braziera A, Morgan T, et al. Development of thin-walled fibre-reinforced structures for medical applications [J]. Composites Part A:Applied Science and Manufacturing,2003,34: 535-542.
    [18]Plamen G, Ciprian T, Stephen J. et al. Mechanical properties of short fiber reinforced thermoplastic blends [J]. Polymer,2005,46(11):3895-3905.
    [19]叶钢,张伟民,严庆等.医用塑料及其加工[J].国外塑料,2007,25(5):86-91.
    [20]Holger B, Claudia G. Polymer microfabrication methods for microfluidic analytical applications [J]. Electrophoresis,2000,21(1):12-26.
    [21]Heckele M, Schomburg W. Review on micro molding of thermoplastic polymers [J]. Journal of Micromechanics and Microengineering,2004,14(3):1-14.
    [22]李铁一.血管造影诊断学[M].北京:原子能出版社,1986.
    [23]Andreas G. Transillumination dilation of coronary artery stenosis [J]. Lancet,1978,1:263-266.
    [24]王传栋,刘庆,赵成如等.介入导管的研究进展[J].医学影像学杂志,2003,13(9):682-686.
    [25]朱常委.多腔精密医用导管挤出胀大机理及机头数字化设计的理论研究[D].北京:北京化工大学,2008.
    [26]董超,刘作勤,易玉海等.国产血管内介入治疗导管的临床应用[J].医学影像学杂志,2003,13(10):770-771.
    [27]奚廷斐,郑玉峰.介入医学工程现状和发展趋势[J].中国材料进展,2010,29(12):17-27.
    [28]刘道志.介入医疗器械与材料产业的现状和发展建议[J].新材料产业,2007,11:24-34.
    [29]张友根.“十二五”我国挤出成型设备科学发展的分析研究(下)[J].塑料包装,2011,21(4):11-17.
    [30]崔霞.我国医药卫生人才队伍发展策略研究[D].长沙:中南大学,2012.
    [31]张玉龙.疾病的价值研究[D].济南:山东大学,2012.
    [32]陈冰梅,张伟伟,张竹等.我国医用导管的生产及发展状况[J].山东医药工业,1992,11(2):38-40.
    [33]李亮,吴大鸣.精密挤出—挤出成型研究的新动向[J].塑料,2002,1(31):30-33.
    [34]吴大鸣.精密挤出技术的开发和应用展望[J].塑胶工业,2007,2:8-14.
    [35]李亮,吴大鸣.精密挤出成型的研究[J].塑料工业,2002,30(2):24-28.
    [36]吴大鸣,刘颖,郭奕崇.精密医用塑料导管的应用前景[J].塑料制造,2006,6:38-44.
    [37]Gepp S, Ottnad T, Irlinger F, et al. Fabrication of micro-dies for extrusion of polymer melts [C]//Proceedings of Annual Technical Conference of the Society of Plastics Engineers (ANTEC 2011), Boston, US A.2011:1243-1247.
    [38]Whiteside B,Martyn M, Coates P, et al. Micromoulding:process characteristics and product properties [J].Plastics, Rubber and Composites,2003,32(6):231-239.
    [39]Yamasaki S, Nishiguchi D, Kojio K, et al. Effect of aggregation structure on rheological properties of thermoplastic polyurethanes [J]. Polymer,2007,48(16):4793-4803.
    [40]Meng Q, Hu J. Self-organizing alignment of carbon nanotube in shape memory segmented fiber prepared by in situ polymerization and melt spinning [J]. Composites Part A:Applied Science and Manufacturing,2008,39(12):314-321.
    [41]Lee S, Kwon O, Chun B, et al. Effects of mechanical strain on the electric conductivity of multiwalled carbon nanotube (MWCNT)/polyurethane (PU) composites [J]. Fibers and Polymers, 2009,10(1):71-76.
    [42]Chen W, Tao X, Liu Y. Carbon nanotube-reinforced polyurethane composite fibers [J]. Composites Science and Technology,2006,66(15):3029-3034.
    [43]Fernandez M, Landa M, Mufloz M, et al. Tackiness of an electrically conducting polyurethane-nanotube nanocomposite [J]. International Journal of Adhesion and Adhesives,2010, 30(7):609-614.
    [44]Kang I, Schulz M, Kim J, et al. A carbon nanotube strain sensor for structural health monitoring [J]. Smart Materials and Structures,2006,15(3):737-748.
    [45]Loh K, Kim J, Lynch J. Self-sensing and power harvesting carbon nanotube composites based on piezoelectric polymers [C]//Proceedings of the 4th International Conference on Bridge Maintenance, Safety and Management, Seoul, Korea.2008:3329-3336.
    [46]Guo X, Richard E. Design and analysis of crosshead annular die for braided medical tubing extrusion [J]. Journal of Reinforced Plactics and Composites,2001,20(10):821-834.
    [47]Niranchana, R. Validation of a program that simulates flow in an extrusion die [D]. Lowell: University of Massachusetts,2005.
    [48]Koziey B, Vlachopoulos J, Vlcek J, et al. Profile die design by pressure balancing and cross flow minimization [C]//Technical Papers of the Annual Technical Conference-Society of Plastics Engineers Incorporated,1996:247-252.
    [49]Sun D, Yu C. Pracical method to design hollow profile dies [J]. Plastics, Rubber and Composites Processing and Applications,1991,16(2):109-114.
    [50]Hurez P, Tanguy P, Blouin D. A new design procedure for profile extrusion dies [J]. Polymer Engineering & Science,1996,36(5):626-635.
    [51]Cunha A, Covas J, Oliveira P. Optimization of polymer extrusion with genetic algorithms [J]. IMA Journal of Management Mathematics,1998,9(3):267-277.
    [52]Wilczynski K. SSEM:A computer model for a polymer single-screw extrusion [J]. Journal of Materials Processing Technology,2001,109(3):308-313.
    [53]Chan G, Hon K. Integration of computing techniques for plastics extrusion die design [J]. Computer-Aided Engineering Journal,1990,7(2):37-42.
    [54]Carneiro O, Nobrega J, Pinho F, et al. Computer aided rheological design of extrusion dies for profiles [J]. Journal of Materials Processing Technology,2001,114(1):75-86.
    [55]龚炫.微管挤出机头流道数值模拟及微管成型研究[D].广州:华南理工大学,2009.
    [56]邹武.快速换径管材新型结构及挤出成型研究[D].青岛:青岛科技大学,2007.
    [57]王斌修,王婉,郭丽华.微细介入导管的挤出机头设计[J].现代塑料加工应用,2005,1(5):46-48.
    [58]朱元吉,王婷兰,王晓枫.塑料异型材挤出口模图形的设计[J].中国塑料.1999,13(12):71-74.
    [59]王芳,朱元吉,谢源林.塑料异型材挤出模头稳定性设计的数值方法[J].中国塑料,2004,18(8):94-98.
    [60]朱元吉,胡善刚,郁军.关于提高塑料异型材挤出模稳定性的调研[J].化学建材,2003,1:17-19.
    [61]邹维东,郭奕崇,吴大鸣等.小截面精密异型管材挤出模拟与实验研究[J].工程塑料应用,2006,34(3):54-57.
    [62]辛业波,冯连勋.螺旋芯棒吹膜机头的优化设计[J].理论与研究,2007,33(9):1-4.
    [63]郝春燕.橡胶包覆机头的流道构型及流场分析[D].北京:北京化工大学,2008.
    [64]薛平,赵永生,王哲等.逆向挤出在木塑异型材挤出口模设计中的应用[J].现代塑料加工应用,2005,17(6):54-57.
    [65]朱常委,吴大鸣.挤出胀大逆向求解在多腔精密医用导管机头设计中的应用[J].塑料,2009,38(1):1-5.
    [66]朱常委,吴大鸣.多腔精密医用导管机头结构及口模设计研究[J].塑料,2008,37(5):99-102.
    [67]李凯.聚合物微挤出流动过程数值分析与试验研究[D].大连:大连理工大学,2008.
    [68]金翼飞.聚合物微挤出流变学理论与试验研究[D].大连:大连理工大学,2010.
    [69]罗新桃.聚合物微挤出变形数值模拟与实验研究[D].长沙:中南大学,2012.
    [70]Madou M. Fundamentals of Microfabrication:The Science of Miniaturization [M].2nd ed. Boca Raton, FL:CRC Press,2002.
    [71]Rotting O, Ropke W, Becker H, et al. Polymer microfabrication technologies microsyst [J].Microsystem Technologies,2002,8(1):32-36.
    [72]Martyn M, Whiteside B, Coates P, et al. Studies of the process-property interaction of the micromoulding process [C]//ANTEC 2002 Annual Technical Conference. Vol.2002,2002.
    [73]Giboz J, Copponnex T, Mele P. Microinjection molding of thermoplastic polymers:a review [J]. Journal of Micromechanics and Microengineering,2007,17(6):96-109.
    [74]Chou S, Krauss P, Renstrom P. Imprint of sub-25 nm vias and trenches in polymers [J]. Applied Physics Letters,1995,67(21):3114-3116.
    [75]Roos N, Luxbacher T, Glinsner T, et al. Nanoimprint lithography with a commercial 4-in. bond system for hot embossing [C]//26th Annual International Symposium on Microlithography. International Society for Optics and Photonics,2001:427-435.
    [76]Lebib A, Chen Y, Cambril E, et al. Room-temperature and low-pressure nanoimprint lithography [J]. Micro-and Nano-Engineering,2002,61-62(7):371-377.
    [77]Malaquin L, Carcenac F, Vieu C, et al. Using polydimethylsiloxane as a thermocurable resist for a soft imprint lithography process [J]. Microelectronic Engineering,2002,61:379-384.
    [78]Roos N, Schulz H, Bendfeldt L, et al. First and second generation purely thermoset stamps for hot embossing [J]. Micro-and Nano-Engineering,2002,61-62(7):399-405.
    [79]Schift H, Heydermann L, Padeste C, et al. Chemical nano-patterning using hot embossing lithography [J]. Micro-and Nano-Engineering,2002,61-62(7):423-428.
    [80]Yao D, Kim B. Injection molding high aspect ratio microfeatures [J]. The Journal of Injection Molding Technology,2002,6(1):11-17.
    [81]Despa M, Kelly K, Collier J. Injection molding of polymeric LIGA HARMS [J]. Microsystem Technologies,1999,6(2):60-66.
    [82]Yu L, Koh C, Lee L, et al. Experimental investigation and numerical simulation of injection molding with micro-features [J]. Polymer Engineering & Science,2002,42(5):871-888.
    [83]Dunkel K, Bauer H, Ehrfeld W, et al. Injection-moulded fibre ribbon connectors for parallel optical links fabricated by the LIGA technique [J]. Journal of Micromechanics and Microengineering,1998, 8(4):301-306.
    [84]Gornik C. Injection moulding of parts with microstructured surfaces for medical applications [J]. Macromolecular Symposia,2004,217(1):365-374.
    [85]Macintyre D, Thorns S. The fabrication of high resolution features by mould injection microelectron [J]. International Conference on Micro-and Nanofarbication,1998,41/42(3):211-214.
    [86]Michaeli W, Rogalla A, Ziegmann C. Processing technologies for the injection moulding of hybrid microstrucrures [J]. Macromolecular Materials and Engineering,2000,279(1):42-45.
    [87]Tseng S, Chen Y, Kuo C, et al. A study of integration of LIGA and m-EDM technology on the microinjection molding of ink-jet printers'nozzle plates [J]. Microsystem Technologies,2004, 12(1-2):116-119.
    [88]Wicht H, Bouchaud J. NEXUS market analysis for MEMS and microsystems Ⅲ 2005-2009 [J]. MST-news, Verlag VDI/VDE Innovation+Technik GmbH,2005,5:33-34.
    [89]Wechsung R, Fatatry A, Goetz F, et al. Market analysis for microsystems Ⅱ 2002-2005 [R]. A NEXUS Task Force Report.2002.
    [90]Michaeli W, Spennemann A. A new injection moulding technology for micro parts [J]. Journal of Polymer Engineering,2001,20(2-3):87-98.
    [91]Spennemann A, Michaeli W. Process analysis and machine technology for the injection molding of microstructures [C]//Proceedings of the annual technical conference (ANTEC 1999).1999:2-6.
    [92]Becker E, Ehrfeld W, Betz H, et al. Production of separation nozzle systems for uranium enrichment by a combination of x-ray lithography and galvanoplastics [J]. Naturwissenschaften,1982,69(11): 520-523.
    [93]Harmening M, Bacher W, Bley P, et al. Molding of three dimensional microstructures by the LIGA process [C]//Micro Electro Mechanical Systems,1992, MEMS'92, Proceedings. An Investigation of Micro Structures, Sensors, Actuators, Machines and Robot. IEEE,1992:202-207.
    [94]Menz W, Bacher W, Harmening M, et al. The LIGA technique-A novel concept for microstructures and the combination with Si-technologies by injection molding [C]//Micro Electro Mechanical Systems,1991, MEMS'91, Proceedings. An Investigation of Micro Structures, Sensors, Actuators, Machines and Robots. IEEE,1991:69-73.
    [95]Mohr J. LIGA:A technology for fabricating microstructures and microsystems [J]. Sensors and Materials,1998,10(6):363-373.
    [96]Chung S, Hein H, Mohr J, et al. LIGA technology today and its industrial applications [C]//Proc. SPIE.2000:44-55.
    [97]Mekaru H, Yamada T, Yan S, et al. Microfabrication by hot embossing and injection molding at LASTI [J]. Microsystem Technologies,2004,10(10):682-688.
    [98]Khan M, Saile V. Applications of LIGA technology to precision manufacturing of high-aspect-ratio micro-components and-systems:a review [J]. Microelectronics Journal,2004,35(2):131-143.
    [99]Thian S, Tang Y, Fuh J, et al. Formation of micromoulds via UV lithography of SU8 photoresist and nickle electrodeposition [J]. Journal of Engineering Manufacture,2005,220(2):329-333.
    [100]Takahata K, Gianchandani Y. Batch mode micro-electro discharge machining [J]. Journal of Microelectromechanical Systems,2002,11(2):102-110.
    [101]Despa M, Kelly K, Collier J. Injection molding of polymeric LIGA HARMs [J]. Microsystem Technologies,1999,6(2):60-66.
    [102]Lee B, Kwon T. Fabrication method of two-level polymeric microstructure with the help of deep X-ray lithography [J]. Microsystem Technology,2008,14:1739-1744.
    [103]陈祥献.光刻热熔微透镜阵列的电铸成形复制技术研究[J].仪器仪表学报,1998,19(1):56-60.
    [104]沈龙江.微透镜阵列注射成型复制度评价与工艺参数优化[D].长沙:中南大学,2007.
    [105]Tanaka T, Nomura T, Funabiki Y, et al. Fabrication of a tapered structure by means of exposure to diffracted UV light [C]//Micro-NanoMechatronics and Human Science,2006 International Symposium on. IEEE,2006:1-6.
    [106]莫顺培UV-LIGA和微细电火花加工技术组合制造三维金属结构的研究[D].大连:大连理工大学,2009.
    [107]刘文涛.基于UV-LIGA和EDM的三维微型腔制作工艺研究[D].大连:大连理工大学,2008.
    [108]Schaller T, Bohn L, Mayer J, et al. Microstructure grooves with a width of less than 50 μm cut with ground hard metal micro end mills [J]. Precision Engineering,1999,23(4):229-235.
    [109]Olsson A, Larsson O, Holm J, et al. Valve-less diffuser micropumps fabricated using thermoplastic replication [J]. Micro Electro Mechanical Systems,1997,26-30(1):305-310.
    [110]Fahrenberg J, Bier W, Maas D, et al. A microvalve system fabricated by thermoplastic molding [J]. Journal of Micromechanics and Microengineering,1999,5(2):169-171.
    [111]Goll C, Bacher W, Bustgens B, et al. Microvalves with bistable buckled polymer diaphragms [J]. Journal of Micromechanics and Microengineering,1996,6(1):77-79.
    [112]Goll C, Bacher W, Bustgens B, et al. An electrostatically actuated polymer microvalve equipped with a movable membrane electrode [J]. Journal of Micromechanics and Microengineering,1997,7(3): 224-226.
    [113]Martin J, Bacher W, Hagena O. F, et al. Strain gauge pressure and volume-flow transducers made by thermoplastic molding and membrane transfer [J]. Micro Electro Mechanical Systems,1998, 25-29(1):361-366.
    [114]Weule H, Huntrup V, Tritschler H. Micro-cutting of steel to meet new requirements in miniaturization [J]. CIRP Annals-Manufacturing Technology,2001,50(1):61-64.
    [115]白清顺,罗智,杨凯等.复杂曲面微模具的加工仿真及实验研究[J].工艺与检测,2009,6:105-108.
    [116]Masuzawa T, Fujino M, Kobayashi K, et al. Wire electro-discharge grinding for micro-machining [J]. CIRP Annals-Manufacturing Technology,1985,34(1):431-434.
    [117]Yu Z, Masuzawa T, Fujino M. Micro-EDM for three-dimensional cavities-development of uniform wear method [J]. CIRP Annals-Manufacturing Technology,1998,47(1):169-172.
    [118]Yu Z, Masuzawa T, Fujino M.3D micro-EDM with simple shape electrode part 1:machining of cavities with sharp corners and electrode wear compensation [J]. International Journal of Electrical Machining,1998,3:7-12.
    [119]Yu Z, Masuzawa T, Fujino M.3D micro-EDM with simple shape electrode Part 2:machining and error analysis of conical and spherical cavities [J]. International Journal of Electrical Machining, 1998,3:71-78.
    [120]Rajurkar K, Yu Z.3D micro-edm using cad/cam [J]. CIRP Annals-Manufacturing Technology,2000, 49(1):127-130.
    [121]Zhao J, Mayes R, Chen G, et al. Effects of process parameters on the micro molding process [J]. Polymer Engineering & Science,2003,43(9):1542-1554.
    [122]赵万生,李志勇,王振龙等.微三维结构电火花铣削关键技术研究[J].微细加工技术,2003,3:48-55.
    [123]Tong H, Li Y, Wang Y, et al. Servo scanning 3D micro-EDM based on macro/micro-dual-feed spindle [J]. International Journal of Machine Tools and Manufacture,2008,48(7):858-869.
    [124]Cao D, Jiang J, Yang R, et al. Fabrication of high-aspect-ratio microscale mold inserts by parallel uEDM [J]. Microsystem Technologies,2006,12(9):839-845.
    [125]Rauwendaal C. Polymer Extrusion [M]. Fourth ed. Hanser Verlag,2002.
    [126]Martyn M, Whiteside B, Coates P, et al. Micromoulding:consideration of processing effects on medical materials [C]//ANTEC 2003 Conference Proceedings,2003:2582-2586.
    [127]Pan W, Qin Y. FE analysis of multi-cycle micro-forming through using closed-die upsetting models and forward extrusion models [J]. Journal of Materials Processing Technology,2008,201(1-3): 220-225.
    [128]Zhao D, Jin Y, Wang M, et al. Experimental study on the rheological characteristics of polymer melts under micro scale effect [C]//Materials Science Forum,2009,628:429-434.
    [129]Eringen A, Okada K. A lubrication theory for fluids with microstructure [J]. International Journal of Engineering Science,1995,33(15):2297-2308.
    [130]Chien R, Jong W, Chen S, et al. Study on rheological behavior of polymer melt flowing through micro-channels considering the wall-slip effect [J]. Journal of Micromechanics and Microengineering,2005,15(8):1389-1396.
    [131]Chen S, Chien R, Tsai R, et al. Preliminary study of polymer melt rheological behavior flowing through micro-channels [J]. International Communications in Heat and Mass Transfer,2005, 32(3-4):501-510.
    [132]Chen C, Liaw W, Chien R, et al. Rheological behavior of POM polymer melt flowing through micro-channels [J]. European Polymer Journal,2008,44(6):1891-1898.
    [133]Thompson P, Troian S. A general boundary condition for liquid flow at solid surfaces [J]. Nature, 1997,389(6649):360-362.
    [134]Rosochowska M, Rosochowski A, Olejnik L. FE simulation of micro-extrusion of a conical pin [J]. International Journal of Material Forming,2010,3(1):423-426.
    [135]Zhao D, Jin Y, Wang M, et al. Experimental study and molecular dynamics simulation on wall slip in micro extrusion flowing process [J]. Journal of Mechanical Engineering Science,2011,225(5): 1175-1190.
    [136]Whiteside B, Martyn M, Coates P, et al. Micromoulding:process measurements, product morphology and properties [J]. Plastics, Rubber and Composites,2004,33(1):11-17.
    [137]Rotting O, Ropke W, Becker H, et al. Polymer microfabrication technologies [J]. Microsystem Technologies,2002,8(1):32-36.
    [138]Gates B, Xu Q, Stewart M, et al. New approaches to nanofabrication:molding, printing, and other techniques [J].Chemical Reviews,2005,105(4):1171-1196.
    [139]Tseng. Software design and experimental verification of polymer flow through a pipe extrusion die [D]. Lowell:University of Massachusetts,1991.
    [140]Lareau R. Process and part optimization of poly (ether) block amide 63D microbore tubing [D]. Lowell:University of Massachusetts,2003.
    [141]Dillon B, Schott N. A Feasibility Study of Polypropylene and Polypropylene/Polyethylene Blends for Foamed Wire and Cable Jacketing Applications [M]. Lowell:University of Massachusetts,2005.
    [142]Henry J. A study of effects of select processing and material variables on jacket shrinkage in a PVDF-HFP tube-on extrusion process [D]. Lowell:University of Massachusetts,2003.
    [143]Debbaut B. Prediction of extensions in 3-D blow moulding simulation [J]. Journal of Reinforced Plastics and Composites,1997,16(14):1255-1262.
    [144]Hecker J, Edwards R. Effects of roughness on the thrombogenicity of a plastic [J]. Journal of Biomedical Materials Research,1981,15(1):1-7.
    [145]Tae H, Moo S, Sang Y, et al. Studies on melt-spinning process of hollow fibers [J]. Journal of Applied Polymer Science,1998,68(8):1209-1217.
    [146]Takarada W, Ito H, Kikutani T, et al. Studies on high-speed melt spinning of noncircular cross-section fibers. Ⅰ. Structural analysis of as-spun fibers [J]. Journal of Applied Polymer Science, 2001,80(9):1575-1581.
    [147]Takarada W, Ito H, Kikutani T, et al. Studies on high-speed melt spinning of noncircular cross-section fibers. Ⅱ. On-line measurement of the spin line, including change in cross-sectional shape [J]. Journal of Applied Polymer Science,2001,80(9):1582-1588.
    [148]Takarada W, Ito H, Kikutani T, et al. Studies on high-speed melt spinning of noncircular cross-section fibers. Ⅲ. Modeling of melt spinning process incorporating change in cross-sectional shape [J]. Journal of Applied Polymer Science,2001,80(9):1589-1600.
    [149]Liang R, Mackley M. The gas-assisted extruison of molten polyethlene [J]. Journal of Rheology, 2001,45(1):211-226.
    [150]Bhattacharyya A, Joshi M. Development of polyurethane based conducting nanocomposite fibers via twin screw extrusion [J]. Fibers and Polymers,2011,12(6):734-740.
    [151]黄宜宾.聚合物气体辅助共挤成型的理论和实验研究[D].南吕:南吕大学,2011.
    [152]周骥.聚合物共混和枝化反应以及挤出成型过程计算机模拟研究[D].上海:上海交通大学,2010.
    [153]黄伟,郭奕崇,吴大鸣.PA12双腔医用导管挤出成型工艺实验研究[J].工程塑料应用,2008,36(2):30-34.
    [154]邹维东.小截面异型管材挤出工艺研究[D].北京:北京化工大学,2006.
    [155]陈应文.PA11微管精密挤出成型工艺的研究[D].广州:华南理工大学,2011.
    [156]龚炫.微管挤出机头流道数值模拟及微管成型研究[D].广州:华南理工大学,2009.
    [157]郑婧玲,戈大伟,陈应文等.单腔医用微管挤出成型管径壁厚的变化规律[J].塑料,2012,41(2):24-27.
    [158]傅学军,刘岩,卢涛等.机头温度对薄壁小口径软管成型尺寸的影响[J].现代塑料加工应用,2000,13(3):30-32.
    [159]申长雨等.塑料模具计算机辅助工程[M].郑州:河南科学技术出版社,1998.
    [160]Reddy M, Schaub E, Reifschneider L, et al. Design and optimization of three-dimensional extrusion dies using adaptive finite element method [J]. Finite Elements in Analysis and Design,2009,45(5): 333-340.
    [161]Hurez P, Tanguy P, Blouin D. A new design procedure for profile extrusion dies [J]. Polymer Engineering & Science,1996,36(5):626-635.
    [162]Svabik J, Placek L, Saha P. Profile die design based on flow balancing-Balancing with flow separation [J]. International Polymer Processing,1999,14(3):247-253.
    [163]Szarvasy I, Sienz J, Pitman J, et al. Computer aided optimisation of profile extrusion dies [J]. International Polymer Processing,2000,15(1):28-39.
    [164]唐志玉.塑料模流变学设计[M].北京:国防工业出版社,1991.
    [165]杨安吕.塑料异型材挤出模技术[M].北京:机械工业出版社,1999.
    [166]徐佩弦.高聚物流变学及其应用[M].北京:化学工业出版社,2003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700