组合型化学与生物反应带修复硝基苯、苯胺复合污染地下水研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
地下水作为水资源的重要组成部分,是举足轻重的供水水源。然而,我国大部分地区在长期的经济发展过程中诱发的地下水污染问题日益凸现,不同程度地呈加重趋势。针对复合有机污染地下水开展经济、快速、有效的净化技术与应用研究,将对改善地下水环境质量,保障城乡居民饮水安全,具有重要的社会和环境意义。
     本论文在现有可渗透反应屏障修复技术基础上进行改进,构建化学与生物反应带原位修复受硝基苯、苯胺复合污染的地下水。确定了硝基苯最佳还原介质及最佳处理条件;分离筛选到了两株苯胺、硝基苯耐冷降解菌,并确定了生物膜组件的构建方法;明确了组合型化学与生物反应带修复实际场地污染地下水的效能及反应带填料的更换周期。
     本论文的特色和创新之处主要为以下两点:1)发明了相对于PRB技术具有易施工、适用性更广、安装灵活、反应介质易更换等特点的地下水组合型化学与生物反应带修复技术。2)首次将活性生物膜组件作为反应填料并构成反应带,有效的修复了地下水中苯胺和硝基苯的污染。
     本研究成果能为受复合有机污染的地下水,尤其是地下管网密集的城市中被污染的含水层的原位修复,提供一定的理论依据和技术支持。
With the progress of technology and agriculture, the social economy has been rapidly developing. However, lots of negative impacts emerge at the same time. The human activities lead to the serious pollution of soil and water. For example, the application of large amount of pesticide, the random deposit of waste without proper landfill, the accidental release of organic pollutants and the leak caused by oil extraction or irregular maintenance of transportation facilities.
     Nitrobenzene and aniline are important chemical materials, which are widely used in medicine, pesticide industry, printing, plastics and national defense construction. Nitrobenzene in the environment mainly comes from the effluent of chemical and dye works, especially the high content of nitrobenzene in the aniline dye effluent. The persistent organics threat the air, groundwater and soil environment which are inseparable for human. Especially, the serious pollution of nitrobenzene and aniline in the groundwater has caused grave damage to water resources. Therefore, how to control the nitrobenzene and aniline pollution has been an urgent problem all over the world.
     In the international field of groundwater purification, there have been lots of technologies for different types of pollutants. Among them, permeable reactive barrier (PRB), is a typical and widely used groundwater remediation technology. PRB shows excellent disposal effectiveness and can sustain a long time in-situ application. However, due to the limitation of hydro geologic condition, PRB is mostly applied in the shallow groundwater remediation. For deep aquifers, it would be quite difficult to construct, especially in the cities with serried underground pipes. Meanwhile, there are still problems aggravate the hardship of design and use for PRB, such as the suction of soil particles, the precipitation of chemical composition in groundwater and the accumulation of bioactive substances. These will cause blockage in walls and make it difficult to renew the medium. It increases the challenge of PRB in the application of in-situ remediation of groundwater.
     This research takes nitrobenzene-aniline combined contaminated groundwater as the research object, improves current PRB remediation technology, and proposes the chemistry-biology combinational reaction zone, which is more easily constructed, more widely applied, more flexibly installed and more easy to renew the reaction medium. The design concept of the technology is incarnated in two aspects. On the one hand, carbon-iron micro-electrolysis deoxidizes nitrobenzene to aniline in battery of wells to increase biodegradability; On the other hand, nitrobenzene and aniline are biodegraded in the bioreactor. The groundwater is purified ultimately.
     This technology can enrich the technology and index system of in-situ remediation of polluted groundwater. It has great social and environmental significance in improving quality of groundwater and ensuring safety of urban and rural residents’drinking water.
     This paper confirmed the reducing medium and the best processing condition of nitrobenzene. The nitrobenzene and aniline Psychrotrophs were cultivated, identified and immobilized. The chemistry-biology combinational reaction zone was built up and the efficiency was analyzed in the actual site. The conclusions are as follows:
     (1)Zero-valence iron is flexible and shows preferable degradation effects for persistent nitrobenzene. When it is in acidic condition, the temperature is about 100°C, the diameter of scrap iron is about 0.9~3mm, the proportion of iron and coconut shell charcoal is 1:1, the convert ratio of nitrobenzene can reach 87.2% at 90min and 96.8% at 120min.
     (2) Two efficient nitrobenzene and aniline Psychrotrophs named NB and AN were separated, which are both gram negative. Appraised by physiology and biochemistry and 16SrDNA complete sequence determination, NB is preliminarily identified as Pseudomonas sp, AN is Delftia sp. Degradation dynamics tests of nitrobenzene and aniline in individual and mixed bacterium indicates that in the low concentration (1.2mg/L of aniline, 0.7mg/L of nitrobenzene), the degradation speed is correspondingly low (aniline is 0.38mg/d , nitrobenzene is 0.2mg/d). While in the high concentration (60mg/L of aniline, 46mg/L of nitrobenzene), the degradation speed both exceed 15mg/d. When the concentration of aniline is 130mg/L, the degradation speed is 32.5mg/d. Meanwhile, the degradation rate of nitrobenzene by individual bacterium can reach above 90% in both high and low concentration. It illustrates that the two kinds of individual bacterium both have preferable adaptability to oligotrophic conditions and toleration to toxicity of nitrobenzene and aniline. Immobilization indicates that the immersion method for nitrobenzene and aniline is viable. The steady symbiont of NB and AN can degrade nitrobenzene and aniline effectively in groundwater environment. The most befitting condition is PH at 6, 4-day-long immobilization time, immobilization temperature at 10℃,revolving speed at 95rpm.
     (3)The simulation of chemistry-biology combinational reaction zone using seepage slot indicates that, at first, the concentration of nitrobenzene decreases obviously by the adsorption of activated carbon and the reduction of iron. As the reaction goes on, the saturation of activated carbon adsorption and the decreasing activity of iron bring down the degradation rate. The concentration of nitrobenzene and aniline in water both approach zero after disposed in the bioreaction wells. According to the variation trend of nitrobenzene and aniline in the effluent from chemistry-biology reaction zone, the efficiency and replaceablility are considered. The replacement cycle of biofilm module in the biological wells is 30 days, and it is 90 days for the reaction medium in the chemical wells
     (4)According to the experiment of raw water in the actual sites, chemical reaction zone can convert nitrobenzene to aniline rapidly and largely. The concentration of aniline in raw water increases from 66.75mg/L to 106.74mg/L within 20 days. Replacing biofilm module at 30 days during remediation process can maintain the optimum efficiency of chemistry-biology reaction zone. The result of 70 days continuous treatment indicates that the concentration of aniline in the final effluent approaches zero and the concentration of residual falls to about 0.2mg/L.
引文
[1]周启星,林海芳等。污染土壤及地下水修复的PRB技术及展望[J],环境污染治理技术与设备,2001, 2( 5) 48- 54。
    [2]王连生。有机污染化学[M]北京:科学出版社,1999.
    [3] Montgomery, John H. Groundwater Chemicals Desk Reference [M]. Boca Raton: CRC Press. 2000.
    [4] Who. Nitrobenzene (Environmental Health Criterion 230) [R]. Geneva, 2003.
    [5]胡静,硝基苯生产废水的微电解预处理及综合处理技术研究,东南大学硕士学位论文,2003,1-3.
    [6] Kearney Pc, Dd Kaufman. Herbicides: chemistry, degradation and mode of action, 2ed [M]. New York: Marcel Dekker, Inc. 1976.
    [7] Itoh N, N Morinaga, T Kouzai. Oxidation of aniline to nitrobenzene by nonheme bromoperoxidase [J]. Biochemistry and molecular biology international, 1993, 29(4):785-797.
    [8]艾凯数据研究中心. 2009-2013年中国苯胺行业当前现状及未来趋势发展预测报告[R].北京, 2009.
    [9]郑金来,李君文,晁福寰.苯胺、硝基苯和三硝基甲苯生物降解研究进展[J].微生物学通报., 2001, 28(5):85-89.
    [10]Haigler B E.Spain J C.Biotransmation of nitrobenzene by bacteria containing toluene degradation pathways[J].Appl.Environ.Microbiol.1991.57(11).3156- 3161.
    [11]朱利中,张淳等,有机膨润土对吸附苯酚的性能及其在水处理中的应用初探[J].中国环境科学..1994,14(5):346-349.
    [12]刘兆昌张兰生聂永锋等.地下水系统的污染与控制[M],中国环境科学出版社北京1991,332-330
    [13] MacKay, D.M., and Cherry, J.A., "Groundwater Contamination: Limitations of Pump andTreat Remediation," [J] .Environmental Science and Technology., Vol.23, No.6, 1989, pp.630-634.
    [14]Langwaldt, J.H., Puhakka, J.A., 2000. On-site biological remediation of contaminated groundwater: a review. Environ. Pollu[J].t. 107, 187–197.
    [15] Tsai T. T., C. M. Kao, A. Hong, S. H. Liang, H. Y. Chien. Remediation of TCE-contaminated aquifer by an in situ three-stage treatment train system [J]..Colloids and Surfaces a-Physicochemical and Engineering Aspects, 2008,322(1-3):130-137.
    [16]吴玉成,钟佐燊,陈亮.去除地下水芳香烃污染物:实验室含水层土柱研究[J].长春科技大学学报.2000,30(1):61-64.
    [17]屈智慧,赵勇胜,张文静,等.包气带砂层中生物作用对垃圾渗滤液中污染物的去除研究[J].环境科学,2008,29(2):344-348.
    [18] Marley, M., Hazebrouck, D.J., Walsh, M.T., The Application of In Situ Air Sparging as an Innovative Soils and Groundwater Remediation Technology[J].Groundwater Monitoring Review, Spring 1992, pp.137-145.
    [19] Ji, W., Dahmani, A., Ahlfeld, D.P., Lin, J.D., and Hill III, E. Laboratory Study of AirSparging: Air Flow Visualization[J]. Groundwater Monitoring and Remediation, 1993 pp.115-126.
    [20] Feiten, D.W., Leahy, M.C., Bealer, L.J., and Kline, B.A..Case Study: Site Remediation Using Air Sparging and Soil Vapor Extraction. Proc. the Petroleum Hydrocarbons and Organic Chemicals in Groundwater[J].Prevention, Detection and Restoration, Houston, TX, 1992, pp.395-411.
    [21] Ji, W., Dahmani, A., Ahlfeld, D.P., Lin, J.D., and Hill III, E. Laboratory Study of Air Sparging: Air Flow Visualization[J]. Groundwater Monitoring and Remediation, 1993, pp.115-126.
    [22] Burchfield, S.D., and Wilson, D.J., "Groundwater Cleanup by in-situ Sparging. IV.Removal of Dense Nonaqueous Phase Liquid by Sparging Pipes [J].Separation Science and Technology, Vol.28, No. 17, 1993, pp.2529-2551.
    [23] Ahlfeld, D.P., Dahmani, A., and Ji, W. A Conceptual Model of Field Behavior of Air Sparging and Its Implications for Applications. [J].Groundwater Monitoring & Remediation, Fall 1994, pp. 132-139.
    [24] Ardito, C.P., and Billings, J.F.Alternative Remediation Strategies: TheSubsurface Volatilization and Ventilation System. [J].Proc. Petroleum Hydrocarbons and Organic Chemicals in Groundwater: Prevention, Detection, and Restoration, Houston, Texas, November 1990, pp.281-295.
    [25]Choi J. H., Y. H. Kim, S. J. Choi. Reductive dechlorination and biodegradation of 2,4,6-trichlorophenol using sequential permeable reactive barriers: Laboratory studies [J]. Chemosphere, 2007, 67(8):1551-1557.
    [26] Ahmad F., S. P. Schnitker, C. J. Newell. Remediation of RDX- and HMX-contaminated groundwater using organic mulch permeable reactive barriers [J]. Journal of Contaminant Hydrology, 2007, 90(1-2):1-20
    [27] Kao C. M., S. C. Chen, J. Y. Wang, Y. L. Chen, S. Z. Lee. Remediation of PCE-contaminated aquifer by an in situ two-layer biobarrier: laboratory batch and column studies [J]. Water Research, 2003, 37(1):27-38.
    [28] Lu X. X., J. T. Wilson, H. Shen, B. M. Henry, D. H. Kampbell. Remediation of TCE-contaminated groundwater by a permeable reactive barrier filled with plant mulch (Biowall) [J]. Journal of Environmental Science and Health Part a-Toxic/Hazardous Substances & Environmental Engineering, 2008, 43(1):24-35.
    [29] Groundwater Services Inc. Report for Full-Scale Mulch Wall Treatment of Chlorinated Hydrocarbon-Impacted Groundwater [R]. Houston, U.S., 2004.
    [30] Guiot S. R., R. Cimpoia, C. Rhofir, A. Peisajovich, G. Leclair. Biobarrier stability lab-scale studies for treatment of hydrocarbon-contaminated groundwater [J]. European Symposium on Environmental Biotechnology, Eseb 2004, 2004:255-259
    [31] He Y. T., J. T. Wilson, R. T. Wilkin. Transformation of reactive iron minerals in a permeable reactive barrier (biowall) used to treat TCE in groundwater [J]. Environmental Science & Technology, 2008, 42(17):6690-6696.
    [32] Vesela L., J. Nemecek, M. Siglova, M. Kubal. The biofiltration permeable reactive barrier: Practical experience from Synthesia [J].International Biodeterioration & Biodegradation, 2006, 58(3-4):224-230.
    [33] Petrier.C.Ch aracteristicso fPa ntachchlorophenateD egradationin A queousSolution by Mans of Ultrasound. [J].Environ.Sci.&Technol..1992,2 6(8):1639.
    [34]王连生编著.环境化学进展[M],第二版.化学工业出版社,1995.
    [35]张玉,韦鹏,张晟南,等.地下水水环境污染特征及其生物修复技术[J].环境地质,2008,S1期: 93-95.
    [36]罗育池,李传生. PRB技术及其在地下水污染修复中的应用[J].安徽农业科学, 2007,35(27):8656~8657,8660.
    [37] Yang, X., Beckmann, D., Fiorenza, S., Niedermeier, C., 2005. Field study of pulsed air sparging for remediation of petroleum hydrocarbon contaminated soil and groundwater[J]. Environ. Sci. Technol. 39, 7279–7286.
    [38]刘兆昌张兰生聂永锋等.地下水系统的污染与控制[M],中国环境科学出版社,1991.
    [39] Kato S., S. Haruta, Z. J. Cui, M. Ishii, Y. Igarashi. Network relationships of bacteria in a stable mixed culture [J]. Microbial Ecology, 2008, 56(3):403-411.
    [40]Naeem S, S Li. Biodiversity enhances ecosystem reliability [J]. Nature, 1997, 390(6659):507-509.
    [41]赵勇胜.地下水污染场地污染的控制与修复[J].长春工业大学学报(自然科学版).2007,28:116-123.
    [42]韦朝海,侯轶.有毒难降解有机污染物的高级氧化技术[J].环境保护.1998, (11):29 -31.
    [43] DRESCHER, E.; GAVASKAR, A. R.; SASS, B. M.., Batch and column testing to evaluate chemical oxidation of DNAPL source zones, in Proceedings of the First International Conference on Remediation of Chlorinated and Recalcitrant Compounds, 1998,Vol.C1-5, Monterey, CA: Battelle Press, Columbus, OH, pp. 425–432.
    [44] CONRAD, S. H.; GLASS,R.J.; AND PEPLINSKI, W. J., Bench-scale visualization experiments of DNAPL remediation processes in analog heterogeneous aquifers; surfactant ?oods and in-situ oxidation using permanganate: Journal Contaminant Hydrology[J], 2002, Vol. 58, pp. 13–49.
    [45] LIN, S.-S. AND GUROL, M. D. Heterogeneous catalytic oxidation of organic compounds by hydrogen peroxide: Water Science Technology[J], 1996,Vol. 34,No. 9, pp. 57–64.
    [46] CLINE, S. R.; WEST, O. R.; KORTE, N. E.; GARDNER, F. G.; SIEGRIST, R. L.; AND BAKER, J. L., KMnO4 chemical oxidation and deep soil mixing for soil treatment: .Geotechnology News[J]., 1997, December issue, pp. 25–28.
    [47] GARRIDO, J. A.; PE REZ-BENITO, J. F.; RODRIGUEZ, R. M.; DE ANDRES,J.AND BRILLAS, E., Autocatalysis by colloidal manganese dioxide in the permanganate oxidation of L-isoleucine[J]. Journal Of Chemical Research Synopses, 1987, Vol. 11, pp. 380–381.
    [48] IBARAKI,M. AND SCHWARTZ, F. W., Efficiency of chemical ?oods for the in-situ treatment of DNAPL source zones[J].Ground Water, 2001, Vol. 39, No. 5, pp. 660–666.
    [49] YAN,Y.E. AND SCHWARTZ, F. W. Oxidative degradation and kinetics of chlorinated ethylenes by potassium permanganate[J]. Journal Contaminant Hydrology, 1999,Vol. 37, pp. 343–365.
    [50] YAN,Y.E. AND SCHWARTZ, F. W. Kinetics and mechanisms for TCE oxidation by permanganate[J].Environmental Science Technology, 2000,Vol. 34, No. 12, pp. 2535–2541.
    [51] ZHANG,H. AND SCHWARTZ, F. W. Simulating the in-situ oxidative treatment of chlorinated ethylenes by potassium permanganate[J]. Water Resources Research, 2000,Vol. 36, No. 10, pp 3031–3042.
    [52] Y.B. Acar and A.N. Alshawabkeh, Principles of electrokinetic remediation[J].,Environ. Science and Technology , 1993,27:2638-2647.
    [53] Y.B. Acar, H. Li and R.J. Gale, Phenol removal from kaolinite by electrokinetics[J], J. Geotechnical Eng., 1992 ,118:1837-1852.
    [54] S. Pamukcu and J.K. Wittle, Electrokinetic removal of selected heavy metals from soil [J]. Environ. Prog., 1992, (11) :241-250.
    [55] Mater L, Sperb R M, Madureira L A S, et al.Proposal of a sequential treatmengt methodology for the safe reuse of oil sluge-contaminated soil. Journal of Hazardous Materials,136: 967-971.
    [56] LU Guo ping,, ZHENG Chun miao. Natural Attenuation of Fuel HydrocarbonContaminants :Correlation of Biodegradation with Hydraulic Conductivity in a Field Case Study[J]. ADVANCE IN EARTH SCIENCES,2004,19(3):403-408.
    [57] Daniela Zamfirescu, Peter Grathwohl. Occurrence and attenuation of specific organic compounds in the groundwater plume at a former gasworks site[J]. Journal of Contaminant Hydrology.2001,53:407-427.
    [58] Faisal I. Khan, Tahir Husain. Risk-based monitored natural attenuation—a case study[J]. Journal of Hazardous Materials,2001,B85:243-272.
    [59] Flynn R M, Rossi P, Hunkeler D. Investigation of virus attenuation mechanisms in a fluvioglacial sand using column esperiments [J]. Microbiology Ecology, 2004, 49: 83-95.
    [60] Anders Baun, Lotte A. Reitzel, Anna Ledin. Natural attenuation of xenobiotic organic compounds in a landfill leachate plume (Vejen, Denmark)[J]. Journal of Contaminant Hydrology.2003,65:269-291.
    [61]刘玲,徐文彬,甘树福. PRB技术在地下水污染修复中的研究进展.水资源保护.2006,(11):76-79.
    [62]王永广,杨剑锋.微电解技术在工业废水处理中的研究与应用[J].环境污染治理技术与设备.2002,3(4):69~73.
    [63]秀兰.微电解技术处理含铬电镀废水研究及其应用[J],工业水处理.2005,25(1): 69~71.
    [64]陈水平.铁屑内电解法处理船舶含油废水的研究[J].水处理技术.1999,25(5): 303~306.
    [65]杜连柱张兰英等。可渗透反应墙对地下水中多氯联苯的处理[J]..环境化学.2007,7:500-505
    [66]宗芳,赵勇胜等.混合PRB介质处理渗滤液污染地下水的可行性研究[J]..世界地质.2006(6):182-185
    [67]胡莺.地下水污染修复技术研究进展——零价铁PRB技术的应用与实践[J].云南地理环境研究,2007,1:11-15
    [68]张春永,沈迅伟,徐飞高等.一种新型微电解材料组合的性能研究[J].水处理技术,2005,31(1): 32-34,49
    [69]张蔚文.混合菌培养在生物降解中的意义[J].环境科学与技术, 1993, 60(1):16-20.
    [70]贾省芬,杨彦希,黄志勇,杨惠芳.处理城市污水的多功能混合菌研究[J].环境科学, 2000, 21(3):81-84.
    [71]谢航.水产养殖功能微生物的筛选与多菌种混合培养条件的研究[D].福州:福州大学生物科学与工程学院, 2005.
    [72]王静.混合菌的构建及其对硝基苯的好氧生物降解[D].大连:大连理工大学, 2008.
    [73]陆泗进.土壤柴油污染物微生物降解强化技术研究[D].北京:北京师范大学水科学研究院, 2007.
    [74]薛胜平,杜连祥,路福平.三种益生菌混合培养及共生机理研究[J].工业微生物, 2008, 38(2):28-32.
    [75]东秀珠,蔡妙英等。常见细菌系统鉴定手册[M].北京:科学出版社,2001.
    [76] Scherer M. M., S. Richter, R. L. Valentine, P. J. J. Alvarez. Chemistry and microbiology of permeable reactive barriers for in situ groundwater clean up [J]. Critical Reviews in Microbiology, 2000, 26(4):221-264.
    [77] Liu S. J., B. Jiang, G. Q. Huang, X. G. Li. Laboratory column study for remediation of MTBE-contaminated groundwater using a biological two-layer permeable barrier [J]. Water Research, 2006, 40(18):3401-340
    [78] Rasmussen G, G Fremmersvik, Ra Olsen. Treatment of creosote-contaminated groundwater in a peat/sand permeable barrier—a column study [J]. Journal of Hazardous Materials, 2002, 93(3):285-306.
    [79]杨永华,姚健,华晓梅.农药污染对土壤微生物群落功能多样性的影响[J].微生物学杂志, 2000, 20(2):23-25.
    [80] Lawrence, J.R., Swerhone, G.D.W. and Neu, T.R. A simple rotating annular reactor for replicated bio¢lm studies[J]. J. Microbiol. Methods,2000, 42:215-224
    [81] MacDonald, R. and Brozel, V.S. Community analysis of bacterial biofilms in a simulated recirculating cooling-water system by fuorescent in situ hybridization with rRNA-targeted oligonucleotide probes[J]. Water Res. 2000,34, 2439-2446.
    [82] Iwamoto, T., Tani, K., Nakamura, K., Suzuki, Y., Kitagawa, M.,Eguchi, M. andNasu, M.. Monitoring impact of in situ biostimulation treatment on groundwater bacterial community by DGGE[J]. FEMS Microbiol. Ecol.,2000,1123, 1-13
    [83]Byrnes Me, Dm Leydorf, Db Smet. Field sampling methods for remedial investigations [M]. CRC Press. 1994.
    [84]刘鹏,张兰英,焦雁林,刘娜,刘莹莹,高松.高效液相色谱法测定水中硝基苯和苯胺含量[J].分析化学, 2009, 37(5):741-744.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700