应用硅藻土处理含重金属离子废水相关理论基础及关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
含重金属离子废水的有效处理对于水体重金属污染控制与修复意义重大。目前含重金属离子废水处理方法主要有离子交换、化学沉淀、电动力修复、生物修复和吸附。在众多方法中,吸附法由于稳定、可靠、简单、低耗、低二次污染等优势而被广泛应用。作为一种重要的废水处理方法,其关键在于吸附材料的选择。针对含重金属离子废水处理,吸附材料必须能够有效地吸附与固定重金属离子,同时具备来源丰富、价格便宜、再生容易等优势。在系列吸附材料中硅藻土较好地符合了这些要求。
     硅藻土因具有多孔结构、大比表面积和众多活性基团,常被用作吸附材料。但是由于含有杂质和理化构造缺陷而存在吸附能力一般,可操作性差等不足,使硅藻土在含重金属离子废水处理应用中具有一定局限性。针对上述问题,本文围绕硅藻土开展了吸附、改性、成形及应用等系列研究,获取了一大批科学数据,对于水体重金属污染的有效防治和硅藻土资源的充分利用具有十分重要的意义。主要研究结果如下:
     (1)天然硅藻土对各重金属离子的吸附量,随着吸附时间的延长而迅速增大之后趋于平衡;随着吸附剂浓度的增加而先增大后减小;随着pH值的增大而不断增大;随着离子初始浓度的增大而先增大后减小;而温度对吸附量的影响规律不明显。对各重金属离子吸附能力大小顺序为Zn2+>Fe3+> Cd2+>Cu2+> Pb2+> Mn2+,吸附能力与各离子的水合半径及水合自由能密切相关。
     (2)天然硅藻土对Pb2+的最佳吸附条件为Wo8.0g/L、Co400mg/L、pH7.0、 T25℃、t120min,对Cd2+的为Wo6.0g/L、Co200mg/L、pH5.0、T25℃、t120min,对Cu2+的为W06.0g/L、C0300mg/L、pH5.0、T25℃、t120min,对Zn2+的为W8.0g/L、C0500mg/L、pH6.0、T25℃、t120min,对Mn2+的为W08.0g/L、Co150mg/L pH4.5、T25℃、t120min,对Fe3+的为W04.0g/L、C0400mg/L、pH5.0、T25℃t120min。
     (3)最适合描述天然硅藻土对Pb2+、Cd2+、 Cu2+、Zn2+、Mn2+、Fe3+的等温吸附模型分别为Tenkin、Tenkin、Langmuir、Tenkin、Freundlich和Freundlich模型;最适合描述天然硅藻土对各重金属离子的吸附动力学属性的模型是二级动力学模型;天然硅藻土对各重金属离子的吸附是容易进行的,以物理过程为主;吸附过程是自发的、吸热的、无序性增加的,吸附过程速率控制步骤均为发生在微孔内的吸附反应;经典吸附模型应用于天然硅藻土/重金属离子体系时存在明显的吸附剂浓度效应问题和参数值不稳定现象,平衡吸附量qe不是Ce的唯一函数,而是Ce与W0两个变量的函数,qe与Ce/W0具有一一对应的函数关系。
     (4)常规化学改性结果表明,最佳焙烧温度和酸液浓度(HCl,v/v)分别为400℃和10%;最佳钠盐、钡盐改性浓度(n/v)分别为0.4mol/L和0.05mol/L;最佳PAM改性浓度(m/v)为20g/L。焙烧、酸洗改性机制为去除硅藻土表面及孔道内的杂质,钠盐改性机制为增强硅藻土表面负电性,钡盐改性机制为通过沉积晶体擦除表面杂质,而PAM包覆改性表象上可以大幅度提升硅藻土的吸附容量(较天然硅藻土增加了近5倍),实质上主要是PAM自身絮凝作用的结果。
     (5)深度柱撑改性结果表明,与常规改性技术相比,聚羟基铝柱撑能够有效改善硅藻土的孔隙结构,显著提升硅藻土吸附能力,对Pb2+的吸附容量可达14.02mg/g(较天然硅藻土提高了39.88%),在众多吸附剂当中处于中上水平。最佳改性条件为:柱化剂浓度0.1~0.2mo1/L,A1/土比(n/m)10mmol/g,反应温度80。C反应时间120min,老化温度105℃,老化时间16h。
     (6)成形样品研发结果表明,粉体硅藻土最适投加比为93.0%,超细碳粉的最适投加比为7.0%,最适烧成温度范围为800-1000℃,最适焙烧时间为90min,最适硅藻土粉体粒径为2.40μm。硅藻土成形样品为有一定强度,大小尺寸均匀、粒径约为5mm,褐色椭圆颗粒;成形样品仍保留了原有的多孔形貌,表面杂质得到了清除,孔径增大,孔隙结构更加明朗;物相组成以方石英相为主。
     (7)硅藻土成形样品对Pb2+的吸附容量较天然硅藻土提高了7.58%,吸附能力没有下降反而得到了适度提升,说明成形过程对硅藻土的孔隙结构并没有造成破坏,反而有适度改善。成形样品可操作性也明显优于粉体硅藻土,试验结果达到了预期的目的,即在保证硅藻土吸附能力的前提下明显提高其可操作性。
     (8)应用硅藻土处理含Fe3+废水中试研究表明,以硅藻土成形样品为核心填料的组合处理工艺可以有效处理含Fe3+废水,出水水质可达GB/T18921-2002《城市污水再生利用、景观环境用水水质标准》要求。利用硅藻土成形样品再生酸洗废液与H202制备Fenton试剂处理垃圾渗滤液切实可行,硅藻土成形样品再生酸洗废液成功的利用实现了以废治废的环保理念。
The effective treatment of wastewater containing heavy metal ions is much important for the control and remediation of water heavy metal pollution. At present, the methods used for treatment of wastewater containing heay metal ions mainly includes ion exchange, colloid precipitation, electronic remediation, bioremediation and adsorption. Compared with other methods, the adsorption is used more widely due to its advantages of stable, reliable, simple, low power consumption, low repeated pollution. As an important method for wastewater treatment, the key issue of adsorption is adsorbent choice. For treatment of wastewater containing heavy metal ions, adsorbent should be in possession of potential for adsorbing and fixing heavy metal ions effectively, as well as rich source, low cost and easy regeneration. Diatomite is selected from series adsorbents due to it fit to all demands for adsorption application.
     Diatomite has micropore structure, large specific surface area and many active chemical groups. Hence, it is commonly used for adsorbent. However, diatomite has disadvantage of normal adsorption performance and poor maneuverability due to impurities and structure defects, these disadvantages limits application of diatomite in treatment of wastewater containing heavy metal ions. In order to improve the adsorption performance and maneuverability of diatomite, the studies on diatomite adsorption, modification, shaping and application have been conducted, a large number of scientific data have been acquired, and these data is very significant for the effective control of water heavy metal pollution and fully utility of diatomite store. Main results obtained from this study are summarized as follows.
     (1) Adsorption density (qe) of each heavy metal ions on natural diatomite increased swiftly at the begining and then slowly attained equilibrium with contact time prolonging, increased firstly and then decreased with increasing adsorbent concentration, increased constantly with increasing solution initial pH value, and increased at the beginning and then decreased with increasing ion initial concentration. However, the effect of solution temperature on ion adsorption was not obvious. The adsorption capacity of each heavy metal ions followed the sequence:Zn2+>Fe3+> Cd2+>Cu2+>Pb2+>Mn2+, and it was closely related with ions hydrated radius and hydration free energy.
     (2) The optimal conditions for Pb2+ions adsorption on natural diatomite is Wo8.0g/L, Co400mg/L, pH7.0, T2℃, t120min, that of Cd2+is Wo6.0g/L, Co200mg/L, pH5.0, T25℃,t120min, that of Cu2+is Wo6.0g/L, Co300mg/L, pH5.0, T25℃,/120min, that of Zn2+is Wo8.0g/L, Co500mg/L, pH6.0, T25℃, t120min, that of Mn2+is Wo8.0g/L, Co150mg/L, pH4.5, T25℃, t120min, that of Fe3+Wo4.0g/L, Co400mg/L, pH5.0,725℃, t120min.
     (3) The most suitable isotherm model for describing adsorption of Pb2+, Cd2+Cu2+, Zn2+, Mn2+, Fe3+on natural diatomite was Tenkin, Tenkin, Langmuir, Tenkin, Freundlich and Freundlich, respectively. The most suitable kinetic model for describing adsorption of each ion is Pseudo-second-order. The nature of each ion adsorption on natural diatomite was physical, favorable, and the control step of each ion adsorption process was adsorption reaction happened in diatomite micro-pores. The adsorption process of each ion on natural diatomite was spontaneous, endothermic, and disorder enhancing. Classical isotherm models have problems of obvious adsorption concentration effect and unstable parameters, equilibrium ion adsorption density qe is not single function of the equilibrium ion concentration Ce in bulk solution, while is the function of two variable viz. Ce and Wo, qe only depends on Ce/Wo.
     (4) The results of normal chemical modification indicated that, the optimal calcination temperature was400℃, the optimal acid solution (HC1) concentration (v/v) was10%, the optimal concentration of NaCl (n/v), BaCl1(n/v) and PAM (m/v) for diatomite modification was0.4mol/L,0.05mol/L and20g/L, respectively. Calcination and acid solution immersing only can remove the impurities from surface and pores of natural diatomite, modification by NaCl mainly increased diatomite adsorption capacity by enhancing surface negative charge, modification by BaCl2and H2SO4mainly improved diatomite pore structure by deposited crystal polishing, and PAM coated modification apparently increased adsorption capacity significantly (Adsorption density of Pb2+on diatomite modified by PAM is five times of natural diatomite). In fact, Pb2+ions removal mainly depended on PAM self flocculation.
     (5) The results of deep pillaring modification indicated that, compared with normal modification methods, polyhydroxyl-aluminum pillaring can improve diatomite pore structure obviously. Diatomite adsorption capacity attained greatly increase after pillaring. The adsorption capacity of Pb2+on pillared diatomite reached14.02mg/g, and it was higher than most other adsorbents. The experimental data showed that pillared diatomite yielding the optimal adsorption density (qe) of Pb2+was synthesized using the following parameters:addition of pillaring solution containing Al3+-oligomers with a concentration range of0.1-0.2mol/L to a suspension containing Na+-diatomite to obtain the required Al/diatomite ratio of10mmol/g; synthesis temperature of80℃for120min; aging at a temperature of105℃for16h.
     (6) The development of shaped diatomite sample indicated that, the optimal addition ratio of powder diatomite and superfine carbon was93.0%and7.0%, the optimal sintering temperature range was800-1000℃, the optimal calcination time was90min, the optimal diatomite particle size was2.40μm, while preparing pillared diatomite. The shaped diatomite sample was homogeneous brown oval particle with a size of5mm, and was not easy broken. The shaped diatomite samples remained original pore structure, its surface impurities was removed, its pore size was increased, and its pore structure became clear. The main phase of shaped diatomite samples was cristobalite.
     (7) The adsorption property of shaped diatomite samples was increased by7.58%compared with natural diatomite; it indicated that shaping didn't destroy diatomite pore structure, instead improved. The maneuverability of shaped diatomite samples was better than natural diatomite. The aim of shaping attained, viz. increasing diatomite maneuverability significantly based on ensuring its adsorption property.
     (8) The results of diatomite application in treatment of wastewater containing Fe3+ions indicated that, industry wastewater containing Fe3+can be disposed effectively by the treatment process with core material of shaped diatomite samples, the effluent quality reached the requirement of GB/T18921-2002. it was feasible to dispose landfill leachate by Fenton reagent which prepared by H2O2and waste acid solution obtained from shaped diatomite sample regeneration. The successful use of waste acid solution achieved environmental protection idea "waste control by waste".
引文
[1]Singh O V, Labana S, Pandey G, et al. Phytoremediation:An overview of metallic ion decontamination from soil [J]. Applied Microbiology and Biotechnology,2003, 61:405-412.
    [2]周怀东,彭文启,杜霞,等.中国地表水水质评价[J].中国水利水电科学研究院学报,2004,2(4):255-264.
    [3]国家环保总局.2000年环境状况公报(摘录)[J].环境教育,2001,(4):46-47.
    [4]朱圣清,藏小平.长江主要城市江段重金属污染状况及特征[J].人民长江,2001,32(7):23-25.
    [5]刁维萍,倪吾钟,倪天华,等.水环境重金属污染的现状及其评价[J].广东微量元素科学,2004,11(3):1-5.
    [6]常晋娜,瞿建国.水体重金属污染的生态效应及生物检测[J].四川环境,2005,24(4):29-33.
    [7]李晓静,周晓阳.重金属污染与植物修复[J].北方园艺,2010,(4):214-217.
    [8]Kieffer P, Dommes J, Hoffmann L, et al. Quantitative changes in protein expression of cadmium-exposed poplar plants [J]. Proteomics,2008,8:2514-2530.
    [9]阎海,潘纲,霍润兰.铜、锌和锰抑制月形藻生长的毒性效应[J].中国环境科学,2001,21(4):365-368.
    [10]黄永杰,刘登义,王友保,等.八种水生植物对重金属富集能力的比较研究[J].生态学杂志,2006,25(5):541-545.
    [11]孔繁翔,陈颖,章敏.镍、锌、铝对羊角月牙藻生长及酶活性影响研究[J].环境科学学报,1997,17(2):193-198.
    [12]徐德福,李映雪,李久海,等.几种挺水植物对重金属锌的抗性能力及其影响因素[J].生态环境学报,2009,18(2):476-479.
    [13]简敏菲,弓晓峰,游海,等.鄱阳湖水土环境及其水生维管束植物重金属污染[J].长江流域资源与环境,2004,13(6):589-593.
    [14]刘丹赤,邵长明.鱼体内重金属含量测定及其分布状况的研究[J].中国测试技术,2007,33(4):121-123.
    [15]赵红霞,周 萌,詹 勇,等.重金属对水生动物毒性的研究进展[J].中国兽医杂志,2004,40(4):39-41.
    [16]赵红霞,詹勇,许梓荣.重金属对水生动物毒性的研究进展(一)[J].内陆水产,2003,1:38-40.
    [17]杨宵霖,郑舜琼.环境铅污染对妇女生育功能危害的调查[J].环境与健康杂志,1998,15(1):154-156.
    [18]秦俊法,李增禧.镉的人体健康效应[J].广东微量元素科学,2004,11(6):1-10.
    [19]蒋绍阶,梁建军.净水中残余铝的危害与控制[J].重庆建筑大学学报,1999,21(6):27-30.
    [20]李兵,廖家莉,张东,等.蛭石对Cs的吸附性能研究[J].四川l大学学报:自然科学版,2008,45(1):115-120.
    [21]于旭彪,吴晓芙,芦鹏,等.固液体系中蛭石吸附Cu2+动力学研究[J].湘潭大学学报:自然科学版,2007,29(2):80-86.
    [22]Das N C, Bandyopadhyay M. Removal of lead by vermiculite medium [J]. Apply Clay Science,1991,6:221-231.
    [23]Mathialagan T, Viraraghavan T. Adsorption of cadmium from aqueous solutions by vermiculite [J]. Separation Science and Technology,2003,38(1):57-76.
    [24]刘 勇,肖 丹,杨文树,等.蛭石吸附Pb2+的动力学和热力学机理研究[J].四川大学学报:工程科学版,2005,37(5):62-67.
    [25]Kithomem, Paul J W. Kinetics of anmmonium adsorption and desorption by the natural zeolite clinoptilolite [J]. Soil Science Society of America Journal,1998, 62(3):622-629.
    [26]Ando H, mihara C. The fate of ammonium nitrogen applied to flooded rice as affected by zeolite addition [J]. Soil Science Society of America Journal,1996,42: 531-538.
    [27]Haidoutic. Inactivation of mercury in contaminated soils using natural zeolites [J]. Science of the Total Environment,1997,208:105-109.
    [28]工春峰,李健生,工连军,等.粉煤灰合成NaA型沸石对重金属离子的吸附动力学[J].中国环境科学,2009,29(1):36-41.
    [29]胡克伟,贾冬艳,查春梅,等.天然沸石对重金属离子的竞争性吸附研究[J].中国土壤与肥料,2008,3:66-68.
    [30]Sjblom R, Bjurstrm H, Pusch R. Feasibility of compacted bentonite barriers in geological disposal of mercury-containing waste [J]. Applied Clay Science,2003, 23:187-193.
    [31]Pivato A, Raga R. Tests for the evaluation of ammonium attenuation in MSW landfill leachate by adsorption into bentonite in a landfill liner [J]. Waste Manage, 2006,26(2):123-132.
    [32]VillarM V, Garcia-Sineriz J L, Barcena I, et al. State of the bentonite barrier after five years operation of an in situ test simulating a high level radioactive waste repository [J]. Engineering Geology,2005,80:175-198.
    [33]Hu Q H, Qiao S Z, Haghseresht F, et al. Adsorption study for removal of basicred dye using bentonite [J]. Industry Engineering Chemistry Research,2006,45 (2): 733-738.
    [34]朱霞萍,白德奎,李锡坤,等.镉在蒙脱石等粘土矿物上的吸附行为研究[J].岩石矿物学杂志,2009,28(6):643-647.
    [35]叶 玲,张敬阳.螯合物调控蒙脱石电动电位及其吸附铬离子性能[J].高等学校化学学报,2009,30(12):2478-2483.
    [36]Shahwan T, Akar D, Eroglu A E. Physicochemical characterization of the retardation of aqueous Cs+ ions by natural kaolinite and clinoptilolite minerals [J]. Journal of Colloid and Interface Science,2005,285:9-17.
    [37]郭坤梅,马毅杰.几种粘土矿物对Pb2+的吸附作用及其主要影响因素的探讨[J].地质地球化学,1997(4):109-112.
    [38]Parkman R H, Charnock J M, Livens F R, et al. A study of the interaction of strontium ions in aqueous solution with the surfaces of calcite and kaolinite [J]. Geochimicaet Cosmochimica Acta,1998,62(9):1481-1492.
    [39]贾 燕,汪 洋.重金属废水处理技术的概况及前景展望[J].中国西部科技,2007,4:10-13.
    [40]刘有才,钟 宏,刘洪萍.重金属废水处理技术研究现状与发展趋势[J].广东化工,2005,32(4):36-39.
    [41]黄 明,魏彩春,陆燕勤,等.化学分类法处理电镀生产废水[J].桂林工学院学报,2003,23(1):79-81.
    [42]郭 嘉,陈延林,罗 晔,等.新型离子交换纤维的应用研究及展望[J].高科技纤维与应用,2005,30(6):35-38.
    [43]Ridha A M F, Tellier S, Dubreuil J F, et al. Removal of heavy metals from industrial effluents by electrodeposition on carbon felt electrode [R]. Heidelberg:Proc.Intern Conf.on Heavy Metals in the Environment,1983,940-942.
    [44]杨 璐,胡 澄.铬污染水体修复技术研究进展[J].广西轻工业,2008,7:96-97.
    [45]张永利,戴九兰,工仁卿,等.土壤重金属污染的微生物生态效应研究进展[J].生态科学,2007,26(2):186-190.
    [46]Barnes L J. Proceedings of Europaran Metallurgical Confernce [M]. New York: Elsevier,1991,28-30.
    [47]陈明利,张艳丽,吴晓芙,等.人工湿地植物处理含重金属生活废水的实验研究[J].环境科学与技术,2008,31(12):164-168.
    [48]Bliznakov G. and Gocheva E. Physicochemical properties of some Bulgarian Kieselguhrs:II. Adsorption Properties of Some Bulgarian Kieselguhrs [J]. Izv Khim, 1978,11(1):142-152.
    [49]杨宇翔,陆荣三,戴安邦.国产硅藻土结构的研究[J].化学学报,1996,54:57-64.
    [50]肖万生,陈晋阳,翁克难,等.长白山硅藻土热处理相变及方英石形成机制探讨[J].矿物学报,2005,25(1):20-25.
    [51]袁 笛,王 莹,李国宏,等.硅藻土吸附工业废水中汞离子的研究[J].环境保护科学,2005,31(128):27-29.
    [52]徐文征.生物硅藻士反应器处理城市生活污水中试研究[D].上海:同济大学,2005.
    [53]刘景华,吴晓丽,魏丽丹,等.硅藻土微波改性及对污水中硫化物吸附的研究[J].非金属矿,2006,29(3):36-37.
    [54]叶力佳,杜玉成.硅藻土对重金属离子Cu2+的吸附性能研究[J].矿冶,2005,14(3):69-71.
    [55]王银叶,单 杰,张春青.X分子筛-硅藻土复合吸附剂对废水中亚甲基蓝吸附性能的研究[J].2009,40(5):53-56.
    [56]郭晓芳,刘云国,樊霆,等.改性新型Mn-硅藻土吸附电镀废水中铅锌的研究[J].非金属矿,2006,29(6):42-45.
    [57]许树成.硅藻土开发应用与特性研究[J].阜阳师范学院学报:自然科学版,2009,17(3):29-31.
    [58]刘 洁,赵东风.硅藻土的研究现状及进展[J].环境科学与管理,2009,34(5):104-106.
    [59]詹树林,林俊雄,方明辉.硅藻土在工业污水处理中的应用研究进展[J].工业水处理,2006,26(9):10-13.
    [60]杨宇翔,王鹏,陈荣三.硅藻土比表面的研究[J].南京大学学报,1991,27(4):706-714.
    [61]郑水林,李 杨,杜玉成.吉林某矿含粘土硅藻土提纯工艺研究[J].非金属矿,1997,4:49-50.
    [62]郑水林,王利剑.酸浸和焙烧对硅藻土性能的影响[J].硅酸盐学报,2006,34(11):1382-1386.
    [63]刘频,赵黔榕,袁朗白.改性硅藻土对Pb(Ⅱ)的吸附作用[J].云南化工,2003,30(5):11-13.
    [64]赵黔榕,刘应隆,李璧玉.改性硅藻土对Cu(Ⅱ)吸附性能的研究[J].云南师范大学学报,2000,20(6):55-57.
    [65]Al-Degs Y, Khraisheh M A, Tutunji M F, et al. Sorption of lead ions on diatomite and manganese oxides modified diatomite [J]. Water Research,2001,35(15): 3724-3728.
    [66]Khraisheha M A M, Al-Ghoutib M A, Allenb S J, et al. Effect of OH and silanol groups in the removal of dyes from aqueous solution using diatomite [J]. Water Reaserch,2005,39(5):922-932.
    [67]王泽民,马小凡,孙文田,等.酸法提纯硅藻土及废酸综合利用研究[J].非金属矿,1995,(103):36-37.
    [68]Shawabkeha R A, Tutunji M F. Experimental study and modeling of basic dye sorption by diatom iceous clay [J]. Applied Clay Science,2003,24:111-120.
    [69]朱健,王平,罗文连,等.硅藻土对Fe3+的吸附性能及热力学研究[J].中南林业科技大学学报:自然科学版,2010,30(12):108-115.
    [70]向红霞,罗 琳,敖晓奎.改性硅藻土与细菌复合体对Mn(II)的吸附特性及动力学研究[J].非金属矿,2008,31(1):15-18.
    [71]张 烨,王 平,王韬远,等.钡盐沉积改性硅藻土的制备及其吸附重金属Pb2+[J].环境污染与防治,201 1,33(11):49-53.
    [72]杨文,王平,王韬远,等.PAM包覆改性硅藻土吸附模拟废水中的Cd2+[J].中南林业科技大学学报:自然科学版,2011,31(7):130-135.
    [73]Al-Ghouti M A, Khraisheh M A M., Allen S J, et al. The removal of dyes from textile wastewater:a study of the physical characteristics and adsorption mechanisms of diatomaceous earth [J]. Journal Environment Management,2003, 69(3):229-238.
    [74]Zhu J, Wang P, Wu X F, et al. Adsorption of Pb2+ ions on diatomite modified by polypropylene acetamide and barium chloride in aqueous solution [J]. African Journal of Agriculture Research.2012,7(24):3614-3620.
    [75]Yang W, Wang P, Zhu J, et al. The diatomite modified by PAM and applied to adsorb Pb (Ⅱ) in the simulated wastewater [J]. Advanced Materials Research.2011, 382-389.
    [76]李门楼.改性硅藻土处理含锌电镀废水的研究[J].湖南科技大学学报:自然科学版,2004,19(3):81-83.
    [77]罗道成.改性硅藻土对废水中Pb2+、Cu2+、Zn2+的吸附性能研究[J].中国矿业,2005,14(7):69-71.
    [78]李增新,王国明,孟 韵.壳聚糖改性硅藻土处理实验室有机废液[J].实验技术与管理,2009,26(8):23-24.
    [79]Gao B J, Jiang P F, An F Q, et al. Studies on the surface modification of diatomite with polyethyleneimine and trapping effect of the modified diatomite for phenol [J]. Applied Surface Science,2005,250(1-4):273-279.
    [80]Amara M, Kerdjoudj H. Modification of the cation exchange resin properties by impregnation in polyethyleneimine solutions:Application to the separation of metallic ions [J]. Talanta,2003,60(5):991-1001.
    [81]刘 云,吴平霄,党 志,等.柱撑蛭石吸附去除废水中重金属离子的实验研究[J].矿物岩石,2004,26(4):8-13.
    [82]刘 勇,李 晖,张永丽,等.羟基铝柱撑蛭石的制备及其吸附磷酸根性能研究[J].四川大学学报:工程科学版,2008,40(4):77-82.
    [83]任广军,翟玉春,宋恩军,等.无机有机柱撑膨润土对水中苯胺的吸附行为研究[J].硅酸盐学报,2004,32(8):988-991.
    [84]Kloprogge J T. Synthesis of smectites and porous pillared clay catalysts:A review [J]. Journal of Porous Materials,1998,5:5-41.
    [85]Gil A, Gandia L M, Vicente M A. Recent Advances in the synthesis and catalytic applications of pillared clays [J]. Catalysis Reviews-Science and Engineering,2000, 42(1-2):145-212.
    [86]Pinnavaia T J, Tzou M S, Landau S D, et al. On the pillaring and delamination of smectite clay catalysts by polyoxo cations of aluminum [J]. Journal of Molecular Catalysis,1983,27(1-2):195-212.
    [87]Phsu H A. Reaction of OH-A1 polymers with smectites and vermiculites [J]. Clays and Clay Minerals,1992,40(3):300-305.
    [88]Rey-Perez-Caballero del F J, Poncelet G. Microporous 18 A Al-pillared vermiculites: Preparation and characterization [J]. Micro-porous and Mesoporous Materials,2000, 37(3):313-327.
    [89]吴伟民,吴平霄,李媛媛,等Fe-SDS-柱撑蒙脱石制备与吸附镉的实验研究[J].矿物学报,2009,29(3):302-308.
    [90]陈捷,刘延,黄磊,等.焙烧温度对Ti02柱撑膨润土结构、吸附及光催化性能的影响[J].高等学校化学学报,2008,29(7):1406-1411.
    [91]孙宏伟,钟顺和,张 鎏.硅藻土微孔陶瓷膜管的制备与性能[J].硅酸盐通报,1997.5:51-53.
    [92]李 青,钟顺和.硅藻土-莫来石复合陶瓷膜支承体的制备及表征[J].催化学报,1999,20(1):41-44.
    [93]苏雪筠,吕 明,朱小龙.硅藻土基多孔陶瓷的制备及性能研究[J].中国陶瓷,2002,38(4):1-3.
    [94]Vasconcelos P V, Labrincha J A, F.Ferreira J M. Porosity development of diatomite layers processed by tape casting [J]. Ceramics International,1998,24:447-454.
    [95]Vasconcelos P V, Labrincha J A, Ferreira J M F. Permeability of diatomite layers processed by different colloidal techniques [J]. Journal of the European Ceramic Society,2000,20:201-207.
    [96]诸爱珍.硅藻土基多孔陶瓷的研制[J].陶瓷,2004,1:17-18.
    [97]巫红平,吴任平,于岩,等.硅藻土基多孔陶瓷的制备及研究[J].硅酸盐通报,2009,28(4):641-646.
    [98]张学斌,胡晓翠,徐俊,等.硅藻土多孔陶瓷的烧结过程研究[J].中国非金属矿工业导刊,2005,51:30-33.
    [99]张学斌,胡晓翠,徐俊,等.硅藻土多孔陶瓷膜管的研制和性能表征[J].中国非金属矿工业导刊,2005,53:36-38.
    [100]张学斌,胡晓翠,徐 俊,等.硅藻土多孔陶瓷的耐蚀性及酸/碱处理研究[J].中国非金属矿工业导刊,2005,57:27-43.
    [101]吴建锋,杨学华,徐晓虹,等.体积密度可控的多孔陶瓷滤料的研制[J].佛山陶瓷,2006,19:1-3.
    [102]高如琴,郑水林,许辉,等.粉体粒度对硅藻土基微孔陶瓷结构和性能的影响 [J].人工晶体学报,2008,37(4):890-894.
    [103]高如琴,郑水林,许辉,等.硅藻土基多孔陶瓷的制备及其对孔雀石绿的吸附和降解[J].硅酸盐学报,2008,36(1):21-24.
    [104]王 萍,李国昌.焙烧温度对硅藻土陶粒孔隙特征的影响[J].金属矿山,2008,381:133-137.
    [105]严刚,肖举强.硅藻土与FeCl组配处理含Pb2+废水研究[J].金属矿冶,2007,375:103-115.
    [106]丁社光.硅藻土对铅离子的静态吸附试验研究[J].重庆工商大学学报:自然科学版,2007,24(1):51-55.
    [107]沈岩柏,朱一民,王忠安,等.硅藻土对水相中Pb2+的吸附[J].东北大学学报:自然科学版,2003,24(10):982-985.
    [108]张秀丽,曹 新,赵增迎.改性硅藻土处理含重金属Cu2+废水[J].中国非金属矿工业导刊,2007,59:58-62.
    [109]沈岩柏,朱一民,魏德洲.硅藻土对锌离子的吸附特性[J].东北大学学报:自然科学版,2003,24(9):907-910.
    [110]汪德进,黄银芝.硅藻土吸附水中Cr(Ⅵ)的实验[J].化学工程师,2007,141(6):28-30.
    [111]杜玉成,叶力佳,刘燕琴.硅藻土吸附重金属离子Cd2+的动力学研究[J].中国非金属矿工业导刊,2004,38:38-40.
    [112]荆立坤,工银叶,王 强.纳米分子筛和硅藻土去除水中锰离子的研究[J].天津城市建设学院学报,2008,14(3):207-209.
    [113]杨宇翔,王 鹏,吴介达,等.用微电泳法研究改性硅藻土的表面性质[J].无机化学学报,1998,14(1):47-52.
    [114]Chang T W, Wang M K, Lin C. Adsorption of copper in the different sorbent/water ratios of soil systems[J]. Water Air and Soil Pollution,2002,138(1/4):199-209.
    [115]杨宇翔,吴介达,工 鹏,等.硅藻土表面酸性质的研究[J].无机化学学报,1996,12(4):356-360.
    [116]Bayat B. Combined removal of zinc (Ⅱ) and cadmium (Ⅱ) from aqueous solution by adsorption onto high-calcium trukish fly ash [J]. Water Air and Soil Pollution, 2002,136(1/4):69-92.
    [117]Caillerie J B, Aimeur M R, Kortobi Y E. Water adsorption on pyrogenic silica followed by HMAS NMR [J]. Journal of Colloid Interface Science,1997,194: 434-439.
    [118]叶力佳.硅藻土对废水中重金属离子的吸附性能研究[D].北京:北京工业大学,2003.
    [119]赵芳玉.临江三级硅藻土吸附重金属的研究[D].长春:吉林大学,2009.
    [120]吕春欣.改性硅藻土对重金属离子吸附性能的研究[D].长春:吉林大学,2009.
    [121]Mare A Anderson, Alan J. Rubin,水溶液吸附化学——无机物在固—液界面上的吸附作用[M].刘莲生,张正斌,刘国盛译.北京:科学出版社,1989.
    [122]于旭彪.蛭石-水溶液体系中Cu(Ⅱ)的吸附特性研究[M].长沙:中南林业科技大学,2007.
    [123]孙玉玲,倪晋仁.朗格缪尔等温式的适用性分析——以黄土吸持铜离子为例[J].环境化学,2002,21(1):37-44.
    [124]Tao Z Y, Chu T W. On the application of the Langmuir Equation to estimation of adsorption equilibrium constants on a powdered solid aqueous solution [J]. Journal of Colloid and interface Science,1998,201:71-76.
    [125]Cervera M I, Arnal M C. Removal of heavy metals by using adsorption on alumina or chitosan [J]. Analytical and Bioanalytical Chemistry,2003,375:820-825.
    [126]O'Connor D J, Connolly J P. The effect of concentration of adsorbing solids on the partition coefficient [J]. Water Research,1980,14:1517-1523.
    [127]Voice T C, Rice C P, Weber W J. Effect of solids concentration on the sorptive partitioning of hydrophobic pollutants in aquatic systems [J]. Environmental Science and Technology,1983,17:513-518.
    [128]Cox L, Hermosin M C, Celis R. Sorption of two polar herbicides in soils and soil clay suspension [J]. Water Research,1997,31:1309-1316.
    [129]Sanudo-Wilhelmy S A, Rivera-Duarte I, Flegal A R. Distribution of colloidal trace medals in the San Francisco Bay estuary [J]. Geochimica Cosmochimica Acta,1996, 60(24):4933-4944.
    [130]Zhao L X, Song S E, Du N, et al. A sorbent concentration-dependent Langmuir isotherm [J]. Acta Physica-Chemica Sinica,2012,28(12):2905-2910.
    [131]Pan G, Liss P S, Krom M D. Particle concentration effect and adsorption reversibility [J]. Colloids and Surface A,1999,151:127-133.
    [132]Nagayasu T, lmamura K, Nakanishi K. Adsorption characteristics of various organic substances on the surface of tantalum, titanium, and zirconium [J]. Journal of Colloid and Interface Science,2005,286:462-470.
    [133]Greathouse J A, Cygan R T. Molecular dynamics simulation of uranyl (Ⅵ) adsorption equilibria onto an external montmorillonite surface [J]. Physical Chemistry Chemical Physics,2005,7:3580-3586.
    [134]Pan G, Liss P S. Metastable-equilibrium adsorption theory Ⅱ. Experimental [J]. Journal of Colloid and Interface Science,1998,201:77-85.
    [135]Hao X, Spieker W A, Regalbuto J R. A further simplification of the revised physical adsorption (RPA) model [J]. Journal of Colloid and Interface Science,2003,267: 259-264.
    [136]Cseh R, Bena R. The adsorption of phloretin to lip id monolaters and bilayers cannot be explained by Langmuir adsorption isotherms alone [J]. Biophysical Journal,1998, 74:1399-1408.
    [137]Bai R, Yang R T. Heterogeous extended Langmuir model with multiregion surfaces for adsorption of mixture [J]. Journal of Colloid and Interface Science,2002,253: 16-22.
    [138]Regdon L, Dekany I, Lagaly G. A new way for calculation the adsorption capacity from surface excess isotherm [J]. Colloid Polym. Science,1998,276:511-517.
    [139]Pan G, Krom M D, Herut B. Adsorption-desorption of phosphate on airborne dust and riverborne particulates in east mediterranean seawater [J]. Environmental Science and Technology,2002,36:3519-3524.
    [140]Temkin M I, Pyzhev V. Kinetics of ammonia synthesis on promoted iron catalysts [J]. Acta Physiochimica URSS,1940,12:327-356.
    [141]Dubinin M M. () Theory of the bulk saturation of microporous activated charcoals during adsorption of gases and vapors [J]. Russian Journal of Physics and Chemistry, 1965,39:697-704.
    [142]赵 芳,吴晓芙,张艳丽,等.固液相离子吸附体系中的吸附剂浓度效应与Langmuir方程的适用性[J].环境化学,2007,26(3):335-338.
    [143]赵 芳,吴晓芙,黄中子,等.液/固离子吸附体系中的强度因子[J].中南林业科技大学学报:自然科学版,2007,27(1):109-117.
    [144]Wu X F, Hu Y L, Zhao F, et al. Ion adsorption components in liquid/solid systems [J]. Journal of Environmental Sciences,2006,18(6):1167-1175.
    [145]李仁炳,丁社光.硅藻土吸附Cu2+吸附平衡等温式及穿透曲线的测定[J].重庆 工商大学学报:自然科学版,2008,25(3):286-287.
    [146]Weber T W, Chakraborty R K. Pore and solid diffusion models for fixed-bed adsorbers [J]. AICE Journal,1974,20(2):228-238.
    [147]Chen H, Dai G, Zhao J, et al. Removal of copper(Ⅱ) ions by a biosorbent-Cinnamomum camphora leaves powder [J]. Journal of Hazardous Material,2010,177 (1-3):228-236.
    [148]Hui K S, Chao C Y H, Kot S C. Removal of mixed heavy metal ions in wastewater by zeolite 4A and residual products from recycled coal fly ash [J]. Journal of Hazardous Materials,2005,127B(1-3):89-101.
    [149]马红梅,朱志良,张荣华,等.弱碱性环氧阴离子交换树脂去除水中铜的动力学研究[J].离子交换与吸附,2006,22(6):519-526.
    [150]Al-Asheh S, Banat F, Masad A. Physical and chemical activation of pyrolyzed oil shale residue for the adsorption of phenol from aqueous solutions [J]. Environmental Geology,2003,44:333-342.
    [151]Nyffeler P, Li Y, Santschi P H. A kinetic approach to describe traceelement distribution between particles and solution in natural aquatic systems [J]. Geochim Cosmochim Acta,1984,48:1513-1522.
    [152]Cestari A R, Vieira E F S, Matos J D S, et al. Determination of kinetic parameters of Cu2+ interation with chemically modifief thin chitosan membranes [J]. Journal Colloid Interface Science,2005,285:288-295.
    [153]Sparks D. Comparition of kinetics equation to desribe potassium-calcium exchange in pure and in mixed system [J]. Soil Science,1984,138(2):115-112.
    [154]Elkhatib E A. Kinetics of Arsenite sorption in soils [J]. Soil Science Society of America Journal,1984,48(4):758-762.
    [155]Sverjensky D A, Sahai N. Theoretieal predietion of single-site surfae protonation equilibrium eonstants for oxides and silieates in water [J]. Geochemical Cosmochimica Acta,1996,60:3773-3797.
    [156]Sahai N, Sverjensky D A. Solvation and eleetrostatie model for speeific eleetrolyte adsorption [J]. Geochemical Cosmochimica Acta,1997,61:2827-2848.
    [157]何宏平.蒙脱石等粘土矿物与金属离子的作用特征及机理研究[D].广州:中科院广州地球化学研究所,1999.
    [158]李 贞,宋文彪.新型吸附剂硅藻土处理含镉废水吸附性能的研究[J].昆明工 学院学报,1993,18(4):71-74.
    [159]夏士朋,石 诚.改性硅藻土处理废水中重金属离子[J].河南化工,2002(5),24-25.
    [160]邵振华,周明华,雷乐成.旋流澄清/涂膜硅藻土过滤处理电镀废水[J],中国给水排水,2005,21(8):14-17.
    [161]NDe Castro Dantas T, Dantas Neto A A, Dea. Moura M C P. Removal of chromium from aqueous solutions by diatomite treated with microemulison [J]. Water Research, 2001,35 (9):2219-2224.
    [162]Murathan A, Benli S. Removal of Cu2+,Pb2+ and Zn2+ from aqueous solutions on diatomite via-adsorption in fixed bed [J]. Fresenius Environmental Bulletin,2005, 14(6):468-472.
    [163]Ridba A, Aderdour H, Zineddine H, et al. Aqueous silver (I) adsorption on a low density Moroccan silicate [J]. Annales de Chimie-Science des Materiaux 1998, (23): 161-164.
    [164]彭书传.硅藻土复合净水剂处理印染废水[J].环境科学技术,1998,1(2):24-25.
    [165]杨宇翔,张亚匡,吴介达,等.硅藻土脱色机理及在印染废水中应用的研究[J].工业水处理,1999,1(1):14-17.
    [166]Shawabkeh R A, Tutunji M F. Experimental study and modeling of basic dye sorption by diatomaceous clay [J]. Applied Clay Science,2003,24:111-120.
    [167]谷志攀,何少华,周 炀,等.硅藻土吸附废水中染料的研究[J].矿业快报,2008,7:43-46.
    [168]朱利中,魏 林.有机黏土吸附处理水中苯酚的水处理技术[J].1996,22(2):107-112.
    [169]张 红,改性硅藻土对污水中有机污染物(苯酚)吸附性能的研究[D].北京:北京工业大学,2001.
    [170]温彦平.硅藻土对饮用水中微量卤代烃吸附性能的研究[J].太原理工大学学报,2002,33(5):547-550.
    [171]刘 锋,赵 雪,蒋京东,等.利用硅藻土深度处理酒精废水的实验研究[J].江苏环境科技,2008,21(2):24-25.
    [172]Huttenloch P, Roehl Ke, Czuda K. Sorption of nonolar aromatic contaminants by chlorosilane surface modified nature minerals [J] Environmental Science and Technology,2001,35(21):4260-4264.
    [173]杨宇翔,陈荣三,戴安邦.几种硅藻土及其中硅藻壳体的电镜研究[J].微体古生物学报,1992,9(3):319-329.
    [174]杨志军,葛 云,韦彩慧,等.粤西徐闻九亩硅藻土对水体中Zn2+的吸附实验研究[J].矿产与地质,2007,21(2):210-213.
    [175]赵芳.蛭石-水溶液体系中锌、镉离子吸附特性与离子吸附理论[D].长沙:中南林业科技大学,2007.
    [176]Sameer Al-Asheh, Fawzi Banat. Adsorption of copper and zinc by oil shale [J]. Environmental Geology,2001,40(6):693-698.
    [177]Jiang K, Sun T, Sun L, et al. Adsorption characteristic of copper, lead, zinc and cadmium ions by tourmaline [J]. Journal of Environmental Sciences,2006,18(6): 1221-1225.
    [178]桂正良.离子相对水化热和绝对水化热[J].四川师范大学学报:自然科学版,1987,2:58-65.
    [179]Mabrouk E, Ali S, Mourad B. modeling the adsorption of mercury onto natural and aluminum pillared clays [J]. Environmental Science Pollution Research,2012,25(4): 353-367.
    [180]Ponnusamy S K, Subramaniam R, Vasanthakumar S, et al. Removal of cadmium (Ⅱ) from aqueous solution by agricultural waste cashew nut shell [J]. Korean Journal of chemistry Engineering,2012,29(6):756-768.
    [181]Voice T C, Weber W J. Sorbent concentration effects in liquid/solid partitioning [J]. Environment Science and Technology,1985,19(9):789-796.
    [182]Pan G, Liss P S, Krom M D. Particle concentration effect and adsorption reversibility [J]. Colloids and Surface A,1999,151:127-133.
    [183]Wu X F, Zhao F, Chen M L, et al. Factors affecting the adsorption of Zn2+ and Cd2+ ions from aqueous solution onto vermiculite [J]. Adsorption Science and Technology, 2008,26(3):145-155.
    [184]Wu X F, Zhou H L, Zhao F, et al. Adsorption of Zn2+ and Cd2+ ions on vermiculite in buffered and unbuffered aqueous solutions[J]. Adsorption Science and Technology, 2009,27(10):907-919.
    [185]Ahmet D, Ahmet G, Eyyup D. Ammonium removal from aqueous solution by ion-exchange using packed bed natural zeolite [J]. Water SA,2002,28(3):329-335.
    [186]Al-Asheh S, Banat F, Masad A. Physical and chemical activation of pyrolyzed oil shale residue for the adsorption of phenol from aqueous solution [J]. Environment Geology,2003,44:333-342.
    [187]刘 云,吴平霄,党 志,等.柱撑蛭石吸附去除废水中重金属离子的实验研究[J].矿物岩石,2004,26(4):8-13.
    [188]任广军,翟玉春,宋恩军,等.无机有机柱撑膨润土对水中苯胺的吸附行为研究[J].硅酸盐学报,2004,32(8):988-991.
    [189]孙长顺,金奇庭,秦莉红,等EDTA络合铜在无机柱撑膨润土上的吸附研究[J].环境工程学报,2007,1(9):131-135.
    [190]何正先,张宝述,彭同江,等.钛柱撑蒙脱石对罗丹明B的吸附性能[J].西南科技大学学报,2011,26(4):18-22.
    [191]陈学青,曹吉林,侯丽红,等.成型膨润土和钛柱撑膨润土对水中Pb2+和氯乙酸吸附及再生[J].环境工程学报,2007,1(5):36-40.
    [192]Kloprogge J T. Synthesis of smectites and porous pillared clay catalysts:A review [J]. Journal of Porous Materials,1998,5:5-41.
    [193]Gil A, Gandia L M, Vicente M A. Recent Advances in the synthesis and catalytic applications of pillared clays [J]. Catalysis Reviews-Science and Engineering,2000, 42(1-2):145-212.
    [194]Pinnavaia Thomas J, Tzou Ming-Shin, Landau Steven D, et al. On the pillaring and delamination of smectite clay catalysts by polyoxo cations of aluminum [J]. Journal of Molecular Catalysis,1983,27(1-2):195-212.
    [195]PHsu A Ho. Reaction of OH-Al polymers with smectitesand vermiculite [J]. Clays and Clay Minerals,1992,40(3):300-305.
    [196]Del F J Rey-Perez-Caballero, Poncelet G. Microporous 18 A Al-pillared vermiculites: Preparation and characterization [J]. Micro-porous and Meso-porous Materials,2000, 37(3):313-327.
    [197]吴伟民,吴平霄,李媛媛,等Fe-SDS-柱撑蒙脱石制备与吸附镉的实验研究[J].矿物学报,2009,29(3):302-308.
    [198]陈捷,刘 延,黄磊,等.焙烧温度对Ti02柱撑膨润土结构、吸附及光催化性能的影响[J].高等学校化学学报,2008,29(7):1406-1411.
    [199]Mohan D, Pittman Jr C U, Bricka M, et al. Sorption of arsenic, cadmium, and lead by chars produced from fast pyrolysis of wood and bark during bio-oil production [J]. Journal of.Colloid Interface Science,2007,310(1):57-73.
    [200]Bedoui K, Bekri-Abbes I, Srasra E. Removal of Cadmium (Ⅱ) from aqueous solution using pure smectite and lewatite S 100:the effect of time and metal concentration [J]. Desalination.2008,223:269-273.
    [201]Ulmanu M, Maranon E, Fernandez Y, et al. Removal of copper and cadmiu m ions from diluted aqueous solutions by low cost and waste material adsorbents [J]. Water Air Soil Pollut,2003,142:357-373.
    [202]Gupta S S, Bhattacharyya K G. Removal of Cd(Ⅱ) from aqu eous solution by kaolinite, montmorillon ite and their poly (oxozirconium) and tetrabutylammonium derivatives [J]. Jounal of Hazardous Material,2006,128:247-257.
    [203]Kandah M I. Zinc and cadmium adsorption on low-grade phosphate [J]. Separation and Purification Technology,2004,35:61-70.
    [204]Singh D B, Rupainwar D C, Prasad G, et al. Study on the Cd removal from water by adsorption [J]. Journal of Hazardous Material,1998,60(1),29-40..
    [205]何宏平,何九杲,朱建喜,等.蒙脱石、高岭石、伊利石对重金属离子吸附容量的实验研究[J].岩石矿物学杂志,2001,20(4):573-578.
    [206]张佳.中孔活性炭的化学改性及其对Pb2+的吸附性能研究[D].南京:南京理工大学,2007.
    [207]彭 婧,吴晓芙,李芸,等.水洗和酸洗蛭石样本的离子吸附性能比较分析[J].中南林业科技大学学报:自然科学版,2012,32(12):78-82.
    [208]孙洪良.有机膨润土吸附水中重金属和有机污染物的性能及机理研究[J].化学研究与应用,2007,19(7):745-750.
    [209]Calacal E, Whittemore O J. The sintering of diatomite [J]. American Ceramic Society Bulletin,1987,66(5):790-793.
    [210]吴建锋,杨学华,徐晓虹,等.硅藻土基轻质多孔陶瓷滤球的研制[J].武汉理工大学学报,2007,29(5):17-19.
    [211]刘媛媛,肖 慧,李寿德.铁尾矿烧结多孔保温材料气孔形成的机理研究[J].新型建筑材料,201 0,4:47-49.
    [212]王连星,宁青菊,姚治才,等.多孔陶瓷材料[J].硅酸盐通报,1998(1):41-45.
    [213]刘媛媛,肖 慧,李寿德.铁尾矿烧结多孔保温材料气孔形成的机理研究[J].新型建筑材料,2010,4:47-49.
    [214]刘邦武,李惠琪,张丽民.等离子表面冶金层中气孔形成机理[J].金属热处理,2005,2:17-20.
    [215]Zhang H, Choi H. J. Huang C.P. Optimization of Fenton process for the treatment of landfill leachate [J]. Journal of Hazardous Material,2005,125(1-3):166-174.
    [216]Kim J. S., Kim H. Y., Won C. H., et al. Treatment of leachate produced in stabilized landfills by coagulation and Fenton oxidation process [J]. Journal of the Chinese Institute of Chemistry Engineering,2001,32(5):425-429.
    [217]王喜全,刘学文Fenton法处理中年垃圾渗滤液双氧水利用率及处理效率[J].环境工程,2007,2(25):92-93.
    [218]Choi H J. Evaluation of fenton's process for the treatment of landfill leachate [J]. UMI Microform,1998:51-79.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700