钒酸盐复合耐指纹涂料的研制及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了满足电镀锌板高质量高性能的要求,近年来出现了耐指纹处理这种新型表面处理技术。由于耐指纹板具有较高的产品附加值,已经广泛地应用于汽车、航空、电气和家用等领域。目前电镀锌板耐指纹处理的传统方法是使用铬酸盐复合有机树脂涂料液进行处理,由于涂覆过程中使用的六价铬具有致癌性,对人体和环境都有严重的危害。迄今为止国内外尚未出现一种无铬处理可以在耐蚀性方面完全替代铬酸盐处理。因此需要寻找一种环境友好且具有良好耐蚀性的耐指纹处理方法。
     耐指纹处理液是由无机组分和有机组分两部分组成,本文的研究思路是分步进行研究。首先进行无机氧化剂的研究,采用钒酸盐作为成膜主盐在电镀锌板表面制备新型的化学转化膜——钒酸盐转化膜。单因素试验研究钒酸盐处理液的pH值、成膜温度、成膜时间及钒酸盐浓度等工艺条件的影响。通过正交实验优化确定制备工艺,结果如下:钒酸盐浓度为30g/L,pH值为6,成膜温度为20℃,成膜时间10min。利用扫描电子显微镜(SEM)、能谱分析仪(EDS)、X射线光电子能谱(XPS)及盐雾试验(NSS)等技术手段研究转化膜的微观组织形貌、成分、结构及耐蚀性等性能。XPS结果显示转化膜主要是由五价钒的氧化物或氢氧化物组成,并含有少量的四价钒及二价锌的氧化或氢氧化合物;结合电化学测试等结果提出转化膜的形成过程可分为锌溶解、稳定成膜、转化膜溶膜三个阶段。由此提出可能的成膜机理,认为转化膜的形成可能是基体的溶解和转化膜的沉积两者共同作用的结果;借助EIS等技术研究了锌基体表面钒酸盐转化膜在3.5wt% NaCl溶液浸泡过程中的腐蚀行为,深入分析了转化膜的失效机制。
     采用钒酸盐复合有机树脂涂层构成耐指纹处理体系以优化膜层防护性能,通过试验筛选采用水性丙烯酸作为成膜剂,钒酸盐和L-抗坏血酸作为混合氧化剂,纳米SiO2作为阻隔剂,硅烷偶联剂KH560作为界面改性剂,磷酸作为酸度调节剂。通过形貌观察、耐蚀性及组成测试考察了复合有机树脂涂层的性能。结果显示自制的钒酸盐复合有机树脂涂层具有较平整的表观形貌,优于同类商品涂层的耐蚀性能。硅烷偶联剂的分子桥作用使纳米SiO2、钒酸盐等无机物与水性有机丙烯酸树脂桥连在锌基体表面实现复合成膜。通过NSS及量化计算等方法对这一过程进行了验证。最后对锌基体表面复合有机涂层的形貌、结构、耐蚀性及其成膜过程等进行了系统地研究。
     硅烷偶联剂具有独特的结构和性能,在金属表面处理方面有着广泛地应用。试验研究了KH171、KH570及KH560三种硅烷偶联剂的水解工艺,采用电导率法表征硅烷的水解过程,电化学测试结果表明硅烷水解工艺经过两次水解过程可以使硅烷水解液更加稳定。结果还显示二次水解工艺能够使硅烷膜具有良好耐蚀性,三种硅烷水解液中以KH560得到膜层的耐蚀效果最好。采用两步法工艺得到钒酸盐复合硅烷涂层,即先在锌基体表面涂覆硅烷膜,然后再通过钒酸盐处理液进行处理的方式来制备复合膜。通过SEM观察复合膜前后的表观形貌;XPS和红外光谱测试了复合硅烷膜的表面组成和结构;采用中性盐雾试验和电化学方法测量了复合涂层的耐蚀性能。试验结果表明:复合硅烷膜的表面形貌相对于单纯硅烷膜,其表面的微裂纹明显减少;XPS和红外光谱结果显示硅烷膜可以与锌基体表面紧密键合;耐蚀性测试结果显示复合硅烷膜具有极佳的耐蚀性,这是由于其良好的微观结构。对复合硅烷膜在3.5wt% NaCl溶液中浸泡不同时间的研究结果表明:复合膜的失效机制分为三个阶段,即浸泡初期、浸泡中期和浸泡后期。分别采用不同的等效电路图对各阶段相应的膜层结构变化对进行了合理解释。
To meet the requirements of high quality and performance of electrogalvanized steel sheet, a new surface treatment which is called anti-fingerprint treatment has been developed in recent years. The anti-fingerprint plate has been widely used in automotive, aerospace, electrical and domestic areas due to its high added value. However, the anti-fingerprint treatment baths are usually prepared with hexavalent chromium, which are carcinogenic and harmful to human health and environment. Nowadays , there is no non-chromium anti-fingerprint treatment which can substitute chromium treatment. Therefore, new alternative and more environmentally friendly anti-fingerprint treatments need to be developed.
     Anti-fingerprint treatment baths are composed of inorganic and organic parts. The research idea was to study the components of friendly anti-fingerprint treatment for electrogalvanized steel (EG) plates separately. Firstly, inorganic oxidants were studied. The vanadate conversion coating as chromate replacement was prepared on EG plates previously treated in a solution mainly composed of vanadate in this paper. Influences of pH value, film forming temperature, film forming time and vanadate concentration on the conversion coating were studied by the single factor experiments respectively. Next, the preparation process was determined through the orthogonal experiments. The optimum processing parameters of vanadate conversion coating were confirmed as follows: vanadate solution concentration is 30g/L, pH value of solution is 6, treating temperature is 20℃, and treating time is 10 min. The morphology, composition, structure and corrosion resistance of the coating were investigated by using scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDS), X-ray photoelectron spectroscopy (XPS) and neutral salt spray test (NSS) respectively. The film mainly consists of vanadium and oxygen, which mainly exist as the oxides or its hydrates of V5+ as well as a small amount of oxide or its hydroxide of V4+ and Zn2+ according to the XPS results. The formation process and mechanism of the conversion coating were proposed by using the results combining the electrochemical measurements. The formation process can be divided into three steps: dissolution of zinc, stable film formation and dissolution of film. The possible formation mechanism was proposed that the formation of the vanadate conversion coating is cooperated with the dissolution of zinc substrate and the deposition of conversion coating. The corrosion behavior and failure mechanism of vanadate conversion film were in depth investigated by using EIS with the film immersed in 3.5wt% NaCl solution for different times.
     Performances of the coating were further optimized by using vanadate/organic resin composite system (namely anti-fingerprint treatment system). Water-based acrylic resin was selected as the film-forming agent, mixture of L-ascorbic acid and vanadate as a mixed oxidant, nano-SiO2 as a barrier agent, silane coupling agent KH560 as an interface modifier and phosphoric acid as acidity regulator. The surface morphology, composition and corrosion resistance of the complex coating were studied respectively. The results showed that there was a more flat morphology for the vanadate/organic resin composite coating and corrosion resistance of the complex coating was much better than that of the similar products. Inorganic additives such as nano-SiO2 and vanadate were connected to the water-based acrylic resin by the molecular bridge of silane coupling agent; the methods of NSS and quantum chemical calculation were used to describe this process. Finally, the morphology, structure, corrosion resistance and its formation process of the composite coating were investigated by SEM, XPS, NSS and EIS.
     Silane coupling agent has been widely used in the the field of surface treatment of metals, based on its unique structure. Firstly, researches on the hydrolysis of three silane coupling agents (KH171, KH570 and KH560) were carried out in this paper. The hydrolysis process of silane was characterized using the method of conductivity, which indicated that the process was comprised of two hydrolysis steps. The reasonable concentration of silane solution was determined by the electrochemical tests. The results of hydrolysis showed that the silane solution was more stable after the second hydrolysis, and corrosion resistance of the coating prepared from KH560 solution was the best among three solutions. Secondly, a two-step method was used to prepare the vanadate/silane composite coating. The silane film was firstly made on the surface of zinc substrate, and then the sample was immersed in vanadate treatment solution. The morphology, composition and structure of the composite coating were investigated by SEM, XPS and infrared spectra (IR), and corrosion resistance of the coating was analyzed by NSS and electrochemical tests. The surface micro-cracks of composite coating were significantly reduced compared with that of simple silane treated film. XPS and IR results showed there were some chemical bonds between the silane film and the zinc substrate. Corrosion test results showed that the better microstructure of the composite silane film had more excellent corrosion resistance. The corrosion resistance results of films with different immersion time in 3.5wt% NaCl solution showed that the failure process can be divided into three stages: chloridion absorption, conversion coating dissolution and penetration into the coating. Different equivalent electrical circuits were used to explain the structure of the composite film.
引文
[1] Nakamoto T, Kihara A, Kajita T. Developments in Special Film Coaing Steel Sheet[R]. Kobe Steel Works Engineering reports, 2000, 50(3):24-26.
    [2] Martyak N M, Mccaskie J E, Harrison L. Corrosion Behavior of Zinc-Chromate Coatings[J]. Metal Finishing, 1996, 94(2):65-67.
    [3] Magalh?es A A O, Margarit I C P, Mattos O R. Electrochemical Characterization of Chromate Coatings on Galvanized Steel[J]. Electrochimica Acta, 1999, 44(24):4281-4287.
    [4] Zhang X, Sloofa W G, Hovestad A, et al. Characterization of Chromate Conversion Coatings on Zinc Using XPS and SKPFM[J]. Surface and Coatings Technology, 2005, 197(2):168-176.
    [5] Buchheit R G, Hughes A E. Chromate and Chromate-free Coatings, sect. Ab American Society for Materials[M], Materials PK Ohio, Corrosion :Fundamentals, Testing and Protection 2003, 13:720-736.
    [6] Sax N I, Lewis R J. Dangerous Properties of Industrial Materials[M], 7th ed., Vol.3, Van Nostrand Reinhold, New York, 1989:3056-3057.
    [7] Katz S A, Salem H. The Toxicology of Chromium with Respect to Its Chemical Speciation:a Review[J]. Journal of Applied Toxicology, 1993, 13(3):217-224.
    [8]苟淑云,张开华,郑之旺等.有机涂层钢板的生产工艺及发展[J].攀钢技术,2001,24(4):56-61.
    [9] Kenji T, Seiji N, Nobuo T, et al. Production of Electrolytically Chromated Galvanized Steel Sheet Excellent in Resistance to Corrosion, Fingerprinting and Chromium Elution and in Stabilized Productivity and to Provide Electrolytic Chromating Bath Used in that Case:JP 08325794[P]. 1996-12-10.
    [10]佐タ木,雅启.光触媒酸化チタン含有涂装ステンレムス钢板[R].ステンレス,1999,2:28-32.
    [11]须田新.クロメ-ト皮膜の高分子化に及ぼすシリヵの影[J].表面技术,1995,46(3):63-68.
    [12]近藤隆明,许亚华译.铬酸盐膜结构对电镀锌钢板表面特性的影响[J].宝钢情报,1992,(2):85-92.
    [13] Akira Matsuda.具有耐指纹及高耐蚀性的铬化处理电镀锌钢板—“RIVER ZINC F”[J].宝钢情报,1992,(2):58-62.
    [14] Hirohiko Sakai.耐指纹有机皮膜处理钢板KOBEZINK K2的开发[J].神户制钢技报,1990,40(3):93-96.
    [15]倪富荣译.耐指纹有机皮膜处理钢板“神户电镀锌K2”的开发[J].宝钢情报,1992,(2):63-68.
    [16] Jitsukawa M, Yamashita M. Advanced Coated Steel Sheets with Excellent Functions to Satisfy Ecological Requirements[J]. NKK Technical review, 2003, 88:58-72.
    [17] Masaru S, Takenori D, Takeshi T, et al. Production of Corrosion Resistant Surface Treated Steel Sheet Excellent in Fingerprint Resistance and Electrical Conductivity:JP 01-130762[P]. 1989-05-23.
    [18] Kazuyuki O, Norifumi H, Akihiko H. Chromating Solution for Substrate for Clear Coat:JP 04-193957[P]. 1992-07-14.
    [19] Masayuki Y, Shigeo T, Itomochi M. Method and Polymer Composition for Surface Treatment of Metallic Material:JP 06-077209[P]. 1994-04-15.
    [20] Masayuki A, Rikuo O. Metal Surface Treating Agent for Forming Coating Film Excellent in Fingerprint Resistance, Corrosion Resistance and Adhesion of Coating Film and Method of Treating Therewith:JP 08-073775[P]. 1996-03-19.
    [21] Masayuki A, Mayumi Y. Surface Treatment Composition for Metallic Material and Method for Treating Therewith:JP 09-241576[P]. 1997-09-16.
    [22] Tomoyuki S, Atsuhiko T, Yasuhiro S, et al. Metallic Surface Treating Agent, Treatment and Surface Treated Metallic Material:JP 10-001789[P]. 1998:01-06.
    [23] Toshiaki S, Yosuke O, Kiyotada Y. Water-based Rustproofing Agent, Rustproofing Method and Rustproofed Metallic Material:JP 10-060233[P]. 1998:03-03.
    [24] Ryu H, Kiichi U, Ryosuke S. Surface Treatment for Metal, Process for Surface Treatment of Metallic Substrances and Surface-treated Metallic Substances:EP 1426466A1[P]. 2004-06-09.
    [25]梶田富男,小宮幸久,中元忠繁.クロムフリー鋼板「グリーンコートGX処理」の開発[J]. R&D神戸製鋼技報,2001,51(1):53-55.
    [26] Sawada Y. Iron and Steel Production and Technology in Japan during 2004[J]. ISIJ International. 2005, 45(6):771-790.
    [27] Yoshimi N, Ando S, Matsuzaki A, et al. Properties of Chromium-free Coated Steel Sheet GEO-FRONTIER-COAT[J]. NKK Technical review, 2001, 84:24-28.
    [28]岳远广,张启富,江社明等.耐指纹液的发展现状[J].材料保护,2007,40(2):38-41.
    [29]王颖,倪富荣.宝钢电镀锌耐指纹钢板的发展及在电子行业的应用[J].宝钢技术,2003,(3):6-8.
    [30]钱余海,李自刚,李平.无铬及含铬电镀锌耐指纹钢板的性能对比研究[J].表面技术,2005,34(5):35-37,45.
    [31]宝山钢铁(集团)公司.一种耐指纹钢板的生产方法:中国,1118790A[P],1996-03-20.
    [32]宝山钢铁(集团)公司.一种铬酸盐系耐指纹处理剂:中国,1238360A[P],1999-12-15.
    [33]宝山钢铁(集团)公司.卷钢型耐指纹水基涂料:中国,1239728A[P],1999-12-29.
    [34]陈锦虹,卢锦堂,许乔瑜等.镀锌层无铬钝化研究的进展[J].腐蚀科学与防护技术,2003,15(5):277-281.
    [35] Magalh?es A A O, Margarit I C P, Mattos O R. Molybdate Conversion Coatings on Zinc Surfaces[J]. Journal of Electroanalytical Chemistry, 2004, 572(2):433-440.
    [36] Da Silvaa C G, Margarit-Mattosa I C P, Mattos O R, et al. The Molybdate–zinc Conversion Process[J]. Corrosion Science, 2009, 51(1):151-158.
    [37] Lin B L, Lu J T, Kong G. Effect of Molybdate Post-sealing on the Corrosion Resistance of Zinc Phosphate Coatings on Hot-dip Galvanized Steel[J]. Corrosion Science, 2008, 50(4):962-967.
    [38] Socha R P, Fransaer J. Mechanism of Formation of Silica–silicate Thin Films on Zinc[J]. Thin Solid Films, 2005, 488(1-2):45-55.
    [39] Dalbin S, Maurin G, Nogueira R P. Silica-based Coating for Corrosion Protection of Electrogalvanized steel[J]. Surface and Coatings Technology, 2005, 194(2-3):363-371.
    [40] Socha R P, Nicolas P, Fransaer J. Effect of Deposition Conditions on the Formation of Silica-silicate Thin Films[J]. Surface and Coatings Technology, 2007, 201(12):5960-5966.
    [41] Mourtalier V, Gigandet M P, Ricq L, et al. Electrochemical Characterisation of Anodic Oxidation Films Formed in Presence of Corrosion Inhibitors[J]. Applied Surface Science, 2001, 183(1-2):1-9.
    [42] Bibber J W. Non-chrome-containing Conversion Coatings for Zinc and Zinc Alloys : Environmentally Friendly Alternatives Provide Equal or Better Adhesion and Corrosion Resistance as Conventional Methods[J]. Metal Finishing, 2008, 106(4):41-46.
    [43] Kangde Y, Shizhe S, Ningxiang S. Investigation on Corrosion Resistance of Metal Superficially Modified with Alkoxy Titanates[J]. Materials Chemistry and Physics, 1991, 28(3):303-308.
    [44] Klimow G, Fink N, Grundmeier G. Electrochemical Studies of The Inhibition of the Cathodic Delamination of Organically Coated Galvanised Steel by Thin Conversion Films[J]. Electrochimica Acta, 2007, 53(3):1290-1299.
    [45] Zhu L, Yang F, Ding N. Corrosion Resistance of the Electro-galvanized Steel Treated in a Titanium Conversion Solution[J]. Surface and Coatings Technology, 2007, 201(18):7829-7834.
    [46]朱立群,杨飞.环保型镀锌层蓝色钝化膜耐腐蚀性能的研究[J].腐蚀与防护,2006,27(10):503-507.
    [47]陈旭俊,陈振家.硼酸盐缓蚀作用机理的研究:对缓蚀过程中溶解氧作用的新见解[J].中国腐蚀与防护学报,1992,12(4):275-283.
    [48]李燕,陆柱.钨酸盐缓蚀机理的研究进展[J].材料保护, 2000, 33(11 ):29-31.
    [49] Van de Leest R E, Krijl G. A tungstate Conversion Coating on Tin[J]. Thin Solid Films, 1980, 72(2):237-246.
    [50] Da Silva C G, Correia A N, Lima-Neto P D, et al. Study of Conversion Coatings Obtained from Tungstate-phosphoric Acid Solutions[J]. Corrosion Science, 2005, 47(3):709-722.
    [51] Hosseini M, Ashassi-Sorkhabi H, Allah H, et al. Corrosion Protection of Electro-galvanized Steel by Green Conversion Coatings[J]. Journal of Rare Earth, 2007, 25(5):537-543.
    [52] Arenas M A, Casado C, Nobel-Pujol V, et al. Influence of the Conversion Coating on the Corrosion of Galvanized Reinforcing Steel[J]. Cement and Concrete Composites, 2006, 28(3):267-275.
    [53] Song Y K, Mansfeld F. Techical Note : Corrosion Protection of Electrogalvanized Steel by a Cerium-Based Conversion Coating[J]. Corrosion, 2006, 62(12):1067-1073.
    [54]卢琳,李晓刚,宫丽等.镀锌层无铬(Ⅵ)钝化的现状与发展趋向[J].轧钢,2007,24(5):41-44.
    [55]安成强,郝建军,牟世辉.镀锌钢板无铬钝化技术的发展[J].表面技术,2003,32(2):6-8.
    [56]康举,韩利华,梁英华.镀锌层无铬钝化的研究进展[J].上海化工,2008,33(6):18-22.
    [57]周本省.热钾碱法脱碳系统中钒缓蚀剂的几个问题[J].化肥工业,1980,6:52-56.
    [58] Bienstock D, Field J H. Corrosion Inhibitors for Hot-carbonate systems[J]. Corrosion, 1961, 17(12):87-90.
    [59]周本省,李国华.钒酸盐缓蚀剂的有效氧化态及其在致钝过程中的速度控制步聚[J].中国腐蚀与防护学报,1990,10(1):43-50.
    [60] Baes C F, Mesmer R E. Hydrolysis of Cations[M]. Melbourne, FL:Robert E.Krieger Publishing Co., 1986:210.
    [61] Pope M T. Heteropoly and Isopoly Oxometalates[M], Springer-Verlag, Berlin. 1983:34.
    [62] Mikhailovskii Y N, Berdzenishvili G A. Activation and Passivation Properties of Oxoanions in Aluminum Corrosion Processes[J]. Protection of Metals, 1986, 22(5):699-704.
    [63] Davenport A J, Aldykiewicz A J, Isaacs H S, et al. on X-ray Methods in Corrosion and Interfacial Electrochemistry[M]. The Electrochemical Society, Pennington, NJ 1992,(92-I):306.
    [64] Cook R L, Taylor S R. Pigment-derived Inhibitors for Aluminum Alloy 2024-T3[J]. Corrosion, 2000, 56(3):321-333.
    [65] Hamdy A S, Beccaria A M. Corrosion Protection Performance of Thickened Oxide Conversion Coatings Containing Vanadium Ions Formed on Aluminium Composites[J]. corrosion prevention and control, 2001, 48(4):143.
    [66] Hamdy A S, Butt D P. Novel Anti-corrosion Nano-sized Vanadia-based Thin Films Prepared by Sol–gel Method for Aluminum Alloys[J]. Journal of Materials Processing Technology, 2007. 181(1-3):76-80.
    [67] Guan H, Buchheit R G.. Vanadate Conversion Coatings for Aluminum Alloys[J]. Corrosion, 2004, 60:284.
    [68] Ralston D, Chrisanti S, Young T L, et al. Corrosion Inhibition of Aluminum Alloy 2024-T3 by Aqueous Vanadium Species[J]. Journal of the Electrochemical Society, 2008, 155(7):C350-C359.
    [69] Iannuzzi M, Young T, Frankel G S. Aluminum Alloy Corrosion Inhibition by Vanadates[J]. Journal of the Electrochemical Society, 2006, 153(12):B533-B541.
    [70] Iannuzzi M, Frankel G S. Mechanisms of Corrosion Inhibition of AA2024-T3 by Vanadates[J]. Corrosion Science, 2007, 49(5):2371-2391.
    [71] Iannuzzi M, Kovac J, Frankel G S. A Study of the Mechanisms of Corrosion Inhibition of AA2024-T3 by Vanadates Using the Split Cell Technique[J]. Electrochimica Acta, 2007, 52(12):4032-4042.
    [72] BaghniI M, Yinshun W, Wei Z, et al. Effect of Coolant Inhibitors on AZ91D[J]. Rare Metals 2004, 23(3):255-259.
    [73] Yang K H, Ger M D. Study of Vanadium-based Chemical Conversion Coating on the Corrosion Resistance of Magnesium Alloy[J]. Materials Chemistry and Physics, 2007, 101 (2-3):480-485.
    [74] Ras M H, Pistorius P C. Possible Mechanisms for the Improvement by Vanadium of the Pitting Corrosion Resistance of 18% Chromium Ferritic Stainless Steel[J]. Corrosion Science, 2002, 44(11):2479-2490.
    [75] Rudolph G, Buchheit R G, Guan H, et al. Corrosion Resistant Coating with Self-healing Characteristics[P]. US. Patent:7,315,075 B2, 2006.
    [76] Zhao J, Frankel G, McCreery R L. Corrosion Protection of Untreated AA-2024-T3 in Chloride Solution by a Chromate Conversion Coating[J]. Journal of the Electrochemical Society, 1998, 145(7):2258.
    [77] Prosek T, Thierry D. Mobility and Mode of Inhibition of Chromate at Defected Areas of Organic Coatings under Atmospheric Conditions[J]. Corrosion 2004, 60(12):1122-1133.
    [78] Nazarov A, Thierry D, Prosek T, et al. Protective Action of Vanadate atDefected Areas of Organic Coatings on Zinc[J]. Journal of the Electrochemical Society, 2005, 152(7):B220-B227.
    [79] Sigel H, Sigel A. In Metal Ions in Biological Systems Vanadium and Its Role in Life[M]. Sigel H and Sigel A Editors, Marcel Dekker, Inc, New York (1995).
    [80] Nielsen F H. In Metal Ions in Biological Systems Vanadium and its Role in Life[M], Sigel H and Sigel A Editors, Marcel Dekker, Inc., New York (1995).
    [81] Crans D C, Shin P K. Spontaneous and Reversible Interaction of Vanadium (V) Oxyanions with Amine Derivatives[J]. Inorganic Chemistry, 1988, 27(10):1797-1806.
    [82] Crans D C, Ehde P M, Shin P K, et al. Structural and Kinetic Characterization of Simple Complexes as Models for Vanadate-protein Interactions[J]. Journal of the American Chemical Society, 1991, 113(10):3728-3736.
    [83] Amado A M, Aureliano M, Ribeiro-Claro P J A, et al. Teixeira-Dias, Combined Raman and 51V NMR Spectroscopic Study of Vanadium (V) Oligomerization in Aqueous Alkaline Solutions[J]. Journal of Raman Specroscopy, 1993, 24:699.
    [84] Aureliano M, Gandara R M C. Decavanadate Effects in Biological Systems[J]. Journal of Inorganic Biochemistry, 2005, 99(5):979-985.
    [85] Orvig C, Thompson K H, Battell M, et al. In Metal Ions in Biological Systems Vanadium and Its Role in Life[M], H. Sigel and A. Sigel Editors, Marcel Dekker, Inc, New York (1995).
    [86] Grabowski G M, Paulauskis J, Godleski J. Mediating Phosphorylation Events in the Vanadium-Induced Respiratory Burst of Alveolar Macrophages[J]. Toxicology and Applied Pharmacology, 1999, 156 (3):170-178.
    [87] Takaya M. Determination Method for Vanadium(V) and Vanadium(IV) controlling the pH of Media for a Solid-Liquid Extraction Column[J]. Industrial Health, 2000, 38(1):91-94.
    [88] Opresko D M. Toxicity Summary for Vanadium[R]. Oak Ridge National Laboratory, 1991.
    [89] Domingo J L. Vanadium:A Review of the Reproductive and Developmental Toxicity[J]. Reproductive Toxicology, 1996, 10(3):175-182.
    [90]陈克强.热镀锌板耐指纹工艺及装置简介[J].重型机械科技,2000,(1):39-42.
    [91]王芳芳.镀锌板无铬耐指纹处理涂液的开发[D].哈尔滨:哈尔滨工业大学硕士论文,2007:7-1.
    [92] Wu Q H, Thissen A, Jaegermann W, et al. Photoelectron spectroscopy study of oxygen vacancy on vanadium oxides surface[J]. Applied Surface Science, 2004, 236 (1-4):473-478.
    [93] Silversmit G, Depla D, Poelman H, et al. Determination of the V2p XPS Binding Energies for Different Vanadium Oxidation States(V5+ to V0+)[J]. Journal of Electron Spectroscopy and Related Phenomena, 2004, 135(2-3):167-175.
    [94] Mendialdua J, Casanova R, Barbaux Y. XPS Studies of V2O5, V6O13, VO2 and V2O3[J]. Journal of Electron Spectroscopy and Related Phenomena, 1995, 71(3):249-261.
    [95] Sawatzky G A, Post D. X-ray Photoelectron and Auger Spectroscopy Study of Some Vanadium Oxides[J]. Physical Review B: Condensed Matter, 1979, 20(4):1546-1555.
    [96] Demeter M, Neumann M, Reichelt W. Mixed-valence Vanadium Oxides Studied by XPS[J]. Surface Science, 2000, 454–456:41-44.
    [97] Amirudin A, Thierry D. Corrosion Mechanisms of Phosphated Zinc Layers on Steel as Substrates for Automotive Coatings[J]. Progress in Organic Coatings, 1996, 28 (1):59-75.
    [98] Jegannathan S, Narayanan T S N, Ravichandran K, et al. Performance of Zinc Phosphate Coatings Obtained by Cathodic Electrochemical Treatment in Accelerated Corrosion Tests[J]. Electrochimica Acta, 2005, 51(2):247-256.
    [99] Cachet C, Ganne F, Joiret S, et al. EIS Investigation of Zinc Dissolution in Aerated Sulphate Medium. Part II:Zinc Coatings[J]. Electrochimica Acta, 2002, 47(21):3409-3422.
    [100]Cachet C, Ganne F, Maurin G, et al. EIS Investigation of Zinc Dissolution in Aerated Sulphate Medium. Part I:Bulk Zinc[J]. Electrochimica Acta, 2002, 47(3):509-518.
    [101]Lin B L, Lu J T, Kong G. Synergistic Corrosion Protection for Galvanized Steel by Phosphating and Sodium Silicate Post-sealing[J]. Surface andCoatings Technology, 2008, 202(9):1831-1838.
    [102]Arenas M A, Damborenea J D. Interference by Cerium Cations during the Multi-step Zinc Dissolution Process in a Chloride-containing Electrolyte[J]. Corrosion Science, 2006, 48(10):3196-3207.
    [103]Tsai C Y, Liu J S, Chen P L, et al. A Two-step Roll Coating Phosphate/molybdate Passivation Treatment for Hot-dip Galvanized Steel Sheet[J]. Corrosion Science, 2010, 52(10):3385-3393.
    [104]Cachet C, Wiart R. Reaction Mechanism for Zinc Dissolution in Chloride Electrolytes[J]. Journal of Electroanalytical Chemistry, 1981, 129(1-2):103-114.
    [105]Cachet C, Wiart R. The Kinetics of Zinc Dissolution in Chloride Electrolytes : Impedance Measurements and Electrode Morphology[J]. Journal of Electroanalytical Chemistry, 1981, 111(2-3):235-246.
    [106]Zhuravlev L T. The Surface Chemistry of Amorphous Silica. Zhuravlev Model[J]. Colloids and Surfaces A, 2000, 173(1-3):1-38.
    [107]Byers, John T. Silane Coupling Agents for Enhanced Silica Performance[J]. Rubber World, 1998, 218(6):38-47.
    [108]毋伟,陈建峰,屈一新.硅烷偶联剂的种类与结构对二氧化硅表面聚合物接枝改性的影响[J].硅酸盐学报,2004,32(5):570-575.
    [109]Wu W, Chen J F, Shao L, et a1. Study on Polymer Grafting Modification of the Surface of Nano Silicon Dioxide[J]. Journal of University of Science and Technology Beijing, 2002, 9(6):426-430.
    [110]毋伟,陈建峰,邵磊等.聚合物接枝改性超细二氧化硅表面状况及形成机理[J].北京化工大学学报,2003,30(2):1-4.
    [111]Frisc M J, Trucks G W, Schlegel H B, et a1. Gaussian 98(Revision A.9) [M]. Pittsburgh, PA:Gaussian.Inc. 1998.
    [112]Dongju J, Hyunwoo J. Anti-fingerprint Coating Material for Stainless Steel Outer Case of Home Appliance:US 2010216929[P], 2010-08-26.
    [113]Vargas M A L, Busca G, Montanari T, et al. Preparation and Characterization of Silicon Hydride Oxide : A Fully Hydrophobic Solid[J]. Journal of Materials Chemistry, 2005, 15:910-915.
    [114]Colomban P H, Review Raman Studies of Inorganic Gels and of Their Sol-to-Gel, Gel-to-Glass and Glass-to-Ceramics Transformation[J]. Journal of RamanSpecroscopy, 1996, 27(10):747-758.
    [115]Riegel B, Blittersdorf S, Kiefer W, et al. Kinetic Investigations of Hydrolysis and Condensation of the Glycidoxypropyl-trimethoxysilane /aminopropyl-triethoxy-silane System by Means of FT-Raman Spectroscopy I[J]. Journal of Non-Crystalline Solids, 1998, 226(1-2):76-84.
    [116]Cheng B, Xiao Y, Wu G, et al. The Vibrational Properties of One-dimensional ZnO:Ce Nanostructures[J]. Applied Physics Letters, 2004, 84:416-419.
    [117]Chen J T, Wang J, Zhang F, et al. The Effect of La Doping Concentration on the Properties of Zinc Oxide Films Prepared by the Sol–gel Method[J]. Journal of Crystal Growth, 2008, 310(10):2627-2632.
    [118]Asmar R A, Atanas J P, Ajaka M, et al. Characterization and Raman Investigations on High-quality ZnO Thin Films Fabricated by Reactive Electron Beam Evaporation Technique[J]. Journal of Crystal Growth, 2005, 279(3-4):394-402.
    [119]Kendall K, Padget J C. Latex coalescence[J]. International Journal of Adhesion and Adhesives, 1982,2(3):149-154.
    [120]吴海江,杨飞英,卢锦堂.热镀锌层上改进型硅烷膜的耐蚀性能[J].中国腐蚀与防护学报,2009,29(2):119-122.
    [121]彭天兰,满瑞林,别子俊等.镀锌钢板表面耐腐蚀硅烷膜的制备[J].涂料工业,2008,38(12):63-65.
    [122]彭天兰,满瑞林,别子俊等.氨丙基甲基二甲氧基硅烷防腐保护镀锌钢板的研究[J].河南化工,2008,25(9):14-16.
    [123]吴海江,卢锦堂.热镀锌钢板钼酸盐/硅烷复合膜层的耐腐蚀性能[J].材料保护,2008,41(10):10-13.
    [124]徐斌,满瑞林,倪网东等.镀锌钢板表面硅烷、铈盐复合膜的制备及耐腐蚀性能研究[J].涂料工业,2007,37(12):46-50.
    [125]卢锦堂,张双红,孔纲等.镀锌钢上钼酸盐/硅烷复合膜的组成与耐蚀性[J].华南理工大学学报:自然科学版,2009,37(12):12-17.
    [126]徐斌,满瑞林,彭天兰等.镀锌钢板的硅烷复合膜表面改性[J].腐蚀科学与防护技术,2008,20(2):135-139.
    [127]Montemor M F, Cabral A M, Zheludkevich M L, et al. The Corrosion Resistance of Hot Dip Galvanized Steel Pretreated with Bis-functional Silanes Modified with Microsilica[J]. Surface and Coatings Technology, 2006, 200(9):2875-2885.
    [128]Montemor M F, Trabelsi W, Zheludevich M, et al. Modification of Bis-silane Solutions with Rare-earth Cations for Improved Corrosion Protection of Galvanized Steel Substrates[J]. Progress in Organic Coatings, 2006, 57(1):67-77.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700