Zn-Mn合金电镀工艺及其基础理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
镀锌以其较好的抗蚀性和低廉的价格己被广泛地应用于各种钢铁制品的防腐,但是,随着工业和科技的发展,镀锌层远不能满足抗蚀性需要,20世纪70年代,人们发现锌基合金镀层具有耐蚀性高、延展性好、涂装性好、低氢脆性、内应力小等优点,必将取代锌镀层、铬镀层和镉镀层,在汽车、航空、航天、仪器、仪表、建筑和电子等工业中得到广泛应用。目前,Zn-Fe、Zn-Co、Zn-Ni、Zn-Sn已得到深入研究并己投入使用。锌锰合金镀层是新近引起人们注意的新型锌基合金镀层之一,由于其具有十分优良的抗蚀性而引起研究者的广泛关注,7.5微米厚的锌锰合金镀层盐雾实验2000小时后才生红锈,是同厚度锌镀层的7-8倍,而且具有优良的涂装性,研究发展前景十分广阔:目前美国、日本、英国、意大利、俄罗斯、印度等国都已开展锌锰合金电沉积的研究。但由于锌锰合金电沉积还存在一些问题如无合适阳极、阴极电流效率低、镀液不稳定等,国外对锌锰合金电沉积的研究处于实验室研究阶段。国内目前还未见这方面的研究报道。本文着重研究硫酸盐-柠檬酸体系Zn-Mn合金电沉积工艺及其基础理论。
     通过配方优化首次研制出锌锰合金电镀添加剂ZM,经Hull Cell和扫描电镜研究表明该添加剂光亮电流密度区域宽,能够在0.9-4.2 A·dm~(-2)的电流密度范围内获得镜面光亮、结构致密的合金镀层。用该添加剂获得的镀层附着强度高,完全符合国家标准。
     在国内首次研究了硫酸盐柠檬酸体系锌-锰合金电沉积的工艺条件,得出了含锰为50%左右的锌锰合金镀层的最佳镀液配方和工艺条件。首次采用阴离子膜技术和不锈钢阳极,防止了二价锰离子的氧化、保持了镀液中锌锰的平衡。研究发现了锌锰合金电沉积在高电流密度下存在异常共沉积的现象。首次探索了在使用惰性阳极的情况下,镀液循环使用的方法:用氢氧化钡除去硫酸根离子后,按比例加入硫酸锌、硫酸锰可使镀液各离子浓度恢复。通过控制合适的锌锰离子比(Zn~(2+)/Mn~(2+)为1:2.0~3),使阴极电流密度降低至3.5A·dm~(-2)(为提高锰含量文献一般为30A.dm~(-2)左右,电流效率较低)。
     稳态极化曲线和分电流曲线研究发现了锌、锰离子还原时电流值随阴极电势的负移先上升后下降的变化规律,发现檬酸钠可提高镀层中锰含量但却减低电流效率、Na_2SeO_3增大锌锰电沉积的沉积量,升温不利于锰离子的还原反应而有利于析氢,首次发现了pH升高到7,锌锰沉积量迅速下降的现象。
     通过研究发现锌锰合金电流效率低的主要原因是锰沉积时阴极电势较负,造成阴极大量析氢,氢气的析出一方面消耗电量另一方面阴极析氢又使界面pH升高,使锌锰标准电极电势负移而阻碍锌锰合金的阴极沉积。研究发现Na_2SeO_3能显著提高锌锰合金电沉积电流效率。
     首次用循环伏安法、恒电势电解法、恒电流阶跃法研究了Na_2SeO_3提高电流效率的作用机理。研究发现Na_2SeO_3在锌锰共沉积的条件下在阴极是分两步还
    
    中南大学博士学位论文
    摘要
    原,即:首先在一O.gV处被还原为单质硒,然后在一1 .25V处被还原为多硒阴离子。
    证明了多硒和多硒阴离子都在阴极存在特性吸附:
    、.2
    了.﹃、1尸护
     了.压
    Z气丫.二
     了.、
    M+xH++xse032·+4e=
    l一夕
    人少决二J+n0H’
     夕
    人试女3od+Ze=
    九爱沦孺
    用交流阻抗法证明了上述反应机理是正确的,NaZSeO3提高电流效率的机理是:
    NaZSeO3阴极还原物在金属阴极(锰)上产生吸附附,阻止了氢原子在金属阴极
     (锰)上的吸附,因而阻止了氢离子的阴极还原,同时NaZSeO3阴极还原产物还
    与锰离子形成团簇离子而有利于锰离子的阴极还原因而提高了阴极电流效率。
     通过稳态极化曲线和分电流曲线,揭示了锌锰合金共沉积由正常到异常的转
    变规律,锌分电流值达到极限电流后随阴极电势的负移而下降,锰的分电流值也
    存在这种现象,但当锌分电流处于低谷时锰的分电流值处于高峰值此时便发生了
    锌锰异常共沉积。发现锌锰的交换电流密度、锌锰离子摩尔比、锌锰离子总浓度、
    添加剂及其它沉积条件都对转换电流密度有影响。研究发现锰存在欠电势沉积。
    发现了惰性阳离子降低锌锰分电流曲线的峰值的现象。
     首次提出了合金电沉积的界面层作用模型,主要内容为:
     (1)、OHP面上的配位离子在阴极电子云的推斥下,脱去配位体,脱去配
    位体后的金属离子受阴极电子的作用进入IHP面与金属阴极电子云形成电子配
    物,继而被还原为吸附原子,在结晶力的作用下吸附原子进入金属晶体,放出晶
    格能。
     (2)、金属阴极/溶液界面状态的变化影响合金电沉积的行为,即各还原组
    分在阴极面上的位置分率和OHP面上金属离子浓度的分布对合金电沉积行为产
    生显著的影响,这些影响是造成异常共沉积、欠电势沉积、电流效率高低、合金
    组成等的主要因素。惰性阳离子在OHP面上的分部对合金共沉积有阻碍作用。
     (3)、运用界面层作用模型观点,建立了合金共沉积动力学方程。
    ‘k:二nFK’阴:〔C备,:二】二exp(
    一ZF丫-
     RT
    )一△C乱2:二,一△C井r“:expl
    _丝鲤二兰与
     RT
    用该方程推导出的锌、锰、氢分电流曲线与实验事实
A Study on Process and Fundamentals of Zn-Mn
    Alloy Electrodeposition Abstract
    Zinc deposit has been widely used to protect steel from corrosion for many years due to its good corrosion resistance and low cost. However, the corrosion resistance of the zinc-coatings can not fill with the demands of the development of industry and new technology. Not until the late 1970 s that alloyed zinc finishes have been suggested as excellent corrosion resistance coatings. Up to date, zinc-nickel, zinc-iron, zinc-cobalt, zinc-tin have received more attention and usage in industries such as automobile, electrical, home appliances, instruments, machines and so on. Zinc-manganese alloy deposit, a new alloy variant was appearing in zinc based alloy deposits, reporting to have even better corrosion resistance than other zinc alloys. Many countries such as America, Japan, British, Italy, Russia, India have made research in Zn-Mn electrodeposition. However, it quickly became apparent that this new alloy system had its drawbacks, particularly in terms of process control and current efficiency. In china, how
    ever, zinc-manganese alloy electroplating has not been reported by now. In this dissertation, based on current research through out the world, tries to study the electroplating process of zinc-manganese alloy and the concerned fundamentals .The main subjects of the dissertation are as fellows:
    First of all, the additive named ZM of zinc-manganese alloy electroplating was made, the main composite is op-10 as carrying agent brighter, benzalancetone as main brighter, polyethylene glycol, sodium benzoate as assistant brighter. The additive has wide bright current density region. Different anode materials, such as zinc, zinc-manganese composite, graphite, stainless steel were studied, stainless steel was the best in stability of bath. Ion exchange membrane is used to prevent Mn2+ from moving to anode and be oxidized to Mn3+.
    The process of zinc-manganese alloy electrodeposition based on zinc sulfate, manganese sulfate and sodium citrate bath has been studied. Through the analysis of the alloy electroplating solution in gradients, the process variables and their relationship between content of manganese in the alloy coating, the optimum process has been obtained, the additive to improve the cathode current efficiency was found ; it was found that the deposits with a manganese content 40-60% exhibit excellent corrosion resistance; the corrosion resistance of zinc-manganese alloy coating will be even better after "phosphated" and passivated.
    The electrochemical behavior of the Zn-Mn electrodeposition has been studied
    IV
    
    
    
    respectively by linear sweep Voltammetry and Cyclic Voltammetry and partial current method. The reasons that. cathode current efficiency is very low when Zn-Mn deposits is due to the H2 produce in cathode, It has been discovered that additive Na2SeO3 is efficient to increase the Mn% in coating and the cathode current efficiency.
    The mechanism which additive Na2SeO3 improve the cathode current efficiency was studied through several kinds of electrochemical methods, the mechanism is as fellow:
    M + xH+ + xSe032'+4e = MSe + nOH' (I)
    xad 1-0
    MSe3ad + 2e = MSe (II)
    The adsorption of Se32"can prevent the reducation of H+ and help the deposition of manganese.
    The anomalous co-deposition of Zn and Mn is studied by several electrochemical methods, the rule of transition from normal to anomalous co-deposition is unveiled. The transition current density is affected by exchange current density of Zn2+ and Mn2+when be reduced, the additive, anode ions do not reduce in cathode. The under-potential deposition of manganese is found when zinc is deposited ahead. For the first time the dissertation points out that the anomalous co-deposition of Zn-Mn results from the difference partial current density of Zn and Mn when they are reduced.
    A model of alloy deposition affected by interfacial state of electrode and solution is presented in this paper, the
引文
1.屠振密 主编 电镀合金原理与工艺,国防工业出版社 1993:2,3,282-287,237-239
    2.屠振密,张景双,杨哲龙等.电镀锌基合金的应用与发展.材料保护,1993,26(7):15-17.
    3.符德学,舒余德.锌锰合金电沉积的研究现状,电镀与涂饰 2000,4:54-56
    4.屠振密,杨哲龙,张景双.新防护性镀层—锌基合金的研究和发展.电镀与精饰,1986,8(1):12-18.
    5.李华为,刘云丽,车承焕.电镀铁系锌基合金的现状分析.电镀与环保,1998,18(3):16-18.
    6.胡铁骑,吴以南.合金电镀的发展.电镀与环保,1993,13(5):4-7.
    7. Crotty D. Zinc Alloy Plating for the Automotive Industry. Metal Finishing, 94(9) 1996,54,56-58.
    8. Krishniyer A, Ramasubramanian M, Popov B N. Electrodeposition & Characterization of a Corrosion Resistant Zinc-Nickl-Phosphorus Alloy. Plating and Surface Finishing, 1999, 86(1): 99-103.
    9. Swathirajan S, Mikhail Y M. Characterization of New Corrosion Resistant Nickel-Zinc-Phosphorus Alloy Obtained by Electrodeposition. J. Electrochemical Society, 1989, 136(8):2188.
    10. Roper M E, O'Grady J. Zinc Alloy Coatings—A European Perspective. Metal Finishing, 1996, 74(4) 13-15.
    11. Natorski T. J. Zinc and Zinc Alloy Plating in the 90's. Metal Finishing, 1992,90(3):15-17.
    12. Brenner A. Electrodeposition of Alloy, Vol.2. Academic Press, New York, 1963, 77-79: 222-235,.
    13. Sumitomo Metal Industries, Ltd. Zinc and Zinc Alloy Electroplating on Steel. JP 82 63688(C1.C25D3/22), 17 Apr 1982, Appl. 80/137482, 30 Sep 1980; 4pp.
    14. G.DiWijcox. Zinc Manganese Alloys electrodeposition, Trans IMF, 1996,74(4): 115-118
    15. M.Sagiyar.electrodeposition of Zinc-Manganese on Steel Strip ,Plating and Surface finishing, 1987, 11:77-82
    16. M.Selvanm etal Electrodeposition of Zinc-manganese Alloy from sulphate-Citrate Bath, 1989, 5(5): 352
    17. G.Govind.etal Electrodeposition of Zinc-Manganese Alloy Coating for Corrsion Restistant Applications 1989, 5(6): 422
    18. Majid r.Kalantary Zinc-Alloy Electrodeposition for Corrosition Plating and
    
    Surface Finishing, 1994, 6: 80
    19. B.Bozzini,etal Zn-Mn Alloy Electrtodeposition on Steel,Trans IMF1997,75(5): 175
    20. D.R.Gabe,etal Zinc-Manganese Alloy Electrodeposition METAL FINISHING, 1993, 8: 34
    21. B.Bozzini,etal Electrodeposition and Plastic Behavior of low-Manganese Zinc-Manganese Alloy Coatings for Automotive,Metal Finishing, 1999, 3:33
    22. Benedetto Bozzini Morphological Artefacts in EDX Analyses of Electrodeposited Zn-Mn films.Trans IMF, 2000, 28(3): 93
    23.邓朝阳.Zn-Co,Zn-Co-TiO_2电镀工艺及其基础理论研究,中南大学博士论文,2000,7
    24.谢勤.Zn-Ni,Zn-Ni-P合金电镀工艺及基础理论研究,中南大学博士论文,2001,5
    25.渡稻勉.特许公报(日),平3-79787:481~485
    26.刘仁志.电镀添加剂及其作用机理.电镀与精饰,1985,7(3):20-23.
    27.陈永言.氯化钾镀锌添加剂作用机理的研究.材料保护,1996,29(5):7-9.
    28. Uncomplexed Acid Bath. J. Applied Electrochemistry, 1996,26:283-290.
    29. Baldwin K R, Robinson M J, Smith C J E. A Study into the Electrodeposition Mechanisms of Zinc-Nickel Alloys from an Acid-sulfate Bath. Transaction Institute of Metal Finishing, 1994,72(2):79-88.
    30. Kalantary M R. Zinc Alloy Electrodeposition for Corrosion Protection. Plating and Surface Finishing, 1994,81(6):80-82.
    31.曾令喜.高浊点氯化钾(氯化钠)镀锌光亮剂的研制与应用.材料保护,1996,29(11):28-30.
    32. Mabbett N. Developing an Effective Interface with Local, State and regional Environmental Authorities. Plating and Surface Finishing, 1983,70(5):84-90.
    33. Martin S. Zinc Plating Bath with Polymer Brighteners. US 4397718, 9 Aug 1983.
    34.喻敬贤,陈永言,黄清安.某些添加剂对锌在玻碳电极上电结晶的影响.武汉大学学报(自然科学版),1996,42(6):686-692.
    35.钟树琼,苏天明.氯化钾(钠)镀锌添加剂的使用体会.材料保护,1995,28(9):36
    36.梁新中.宽温氯化钠全光亮镀锌.材料保护,1997,30(5):18-20.
    37. Oniciu L, Musesan L. Some Fundamental Aspects of Levelling and Brightening in Metal Electrodeposition. J. Applied Electrochemistry, 1991,21:565-574.
    38. Rameshbapu G N K, Kumaresan R. Additive Characteristics in Mixed Chloride Zinc Electrolytes. Bulletin of Electrochemistry, 1997, 13(4): 166-169.
    39. Krishnan R M, Eleankovan T, Aruna A, et al. Effect of Organic Acid in Nickel
    
    Plating. Bulletin of Electrochemistry, 1996, 12(5-6):270-273.
    40.郭粤湘.电镀添加剂的整平机理.电镀与精饰,1990,12(2):6-9.
    41. Mockute D, Bernotiene G. Behavior of Benzylidene Acetone during Zinc electrodeposition in Weakly Acid Solution Containing a Nonionic Surfactant and/or Carboxylic Acid. J. Applied Electrochemistry, 1997,27:691-694.
    42. Franklin T C. Review Some Mechanisms of Additives in Electrodeposition Processes. Surface and Coatings Technology, 1987,30:415-428.
    43. Franklin T C. Some Mechanisms of Additives in Eiectrodeposition Processes. Plating and Surface Finishing, 1994,81(4):62-67.
    44.陈春成,涂振密,黄瑞光等主编,电子工业生产技术手册,10电镀篇,北京:国防工业出版社,1992。
    45.张景双,安茂忠,杨哲龙,屠振密.电镀锌及锌合金镀层钝化处理的应用与发展,材料保护,1999,32(7):14~16。
    46.屠振密,杨哲龙,安茂忠等.电镀锌基合金的耐蚀性.表面技术,1998,27(2):25-28.
    47. Wilcox G D, Wharton J A. A review of Chromate Free Passivation Treatments for Zinc and Zinc Alloys. Transaction Institute of Metal Finishing,1997,75(6):B 140.
    48.卢燕平,任玉苓,邱明煊等.电镀锌钢板涂敷型低铬钝化研究.表面技术,1998,27(2):9-13.
    49.安茂忠,张景双,杨哲龙等.锌-镍合金钝化膜的组成和结构对耐蚀性的影响.材料保护,1994,27(1):11-15.
    50.王鸿建.电镀工艺学.哈尔滨:哈尔滨工业大学出版社,1988年,91
    51. Barnes C, Ward J J. Trivalent Chromium Passivated Processes. Transaction Institute of Metal Finishing, 1982,60(1)
    52.卢锦堂,宋进兵,陈锦红 等.无铬钝化的研究进展.材料保护,1999,32(3):24-26.
    53. Wharton J A, Wilcox G D, Baldwin K R. Non-Chromate Conversion Coating Treatment for Electrodeposited Zinc-Nickel Alloys. Transaction Institute of Metal Finishing, 1996,74(6):210.
    54. Cowicson D R, Scholefield A R. Passivation of Tin-Zinc Alloy Coated Steel. Transaction Institute of Metal Finishing, 1985.63(2):56.
    55.夏保佳,杨哲龙,张景双.锡锌合金镀层钼酸盐及其抗蚀性研究,表面技术,1993,22(3)
    56.周金宝.镀锌层无铬钝化工艺的新进展.电镀与环保,1996,11(5):7.
    57.韩克平,叶向荣,方景礼.镀锌层表面硅酸盐防腐膜的研究.腐蚀科学与防护技术,1997,9(2):167.
    58. Wilcox G D,Wharton JA A Review of chromate Free Passivation Treatment for Zinc and Zinc Alloys.Trans IMF,1987,74(2)
    
    
    59. Wharton J A,The Electrodeposition of Zinc Chroium Alloys and the Formation of Conversion Coatings Without Use of Chromate Solution, Trrans,IMF, 1993,7(1)
    60.兴水勋(日).镀锌与钝化处理工艺与特性.上海电镀,1986,(3):50.
    61.黄盛朗.镀锌及锌合金发展综述.电镀与环保,1996,16(2):3-6.
    62. Sakashita M et al. Corrosion Science, 1977,17:473.
    63.安茂忠,杨哲龙,张景双等.电镀防护性锌基合金镀层钝化膜的耐蚀性.中国腐蚀与防护学报,1998,18(1):41-45.
    64.吴双成.镀锌层的铬磷化处理与浸有机膜工艺.电镀与涂饰,1997,16(1):38-40
    65.汪泉法,黎燕.金属磷化技术,电镀与环保,1994,14(4):17-19
    66. British Patent.29,131
    67. British Patent.828,916
    69 方景礼.材料保护,1991,24(8):9
    70. British Patent. 17,563
    71.汪泉法,黎燕.金属的磷化处理技术进展云南化工,1994,1:13~16
    72. British Patent.8,66
    73. C.L.Faust,et al Air Force Tech.Report No,Suppl.3,Materials Lab,Wright Air Development Center ,Clincnnati,Ohio, 1952
    74. M.Sagiyama,et al ,sae Tech.Paper 860,268(1986)
    75. G.Sovibdarajan,et al ,Electrochem 1989,5:422-426
    76. D.R.Gabe et al, Met.Fin. 1993,91(8):34~36
    77. Forster F et al Allgeines electrochemiches Verhalten der metalle.Z.Elektrochem, 1911, 17:882~887.
    78. Glasstone S,Studyies of electrolytic polarization.IV.The electrodeposition potentials of iron, cobaltand nickel,J.Chem.Soc, 1962,129:2887~2892.
    79. Abber Brenner Electrodeposition of Alloys Vol,Ⅱ,Academic Press,New York, 1963,222~235.
    80. Higashi K, et al Mechanism of the electrodeposition of zinc alloys containing of cobalt ,J, ELECTROCHEM. Soc, 1981, 128(10):2081~2085
    81.蔡加勒,周绍民.锌-镍电沉积层结构及其电化学特征.电镀与环保,1993,13(3):3-5.
    82.邓朝阳,谢勤,刘会基,舒余德.铁族锌基合金异常共沉积研究进展 电镀与环保 2000,20(4):1
    83.何为.锌镍合金的异常共沉积与正常共沉积的转变.表面技术,1998,27(2):22-24.
    84. Felloni L,Fratesi R Electrodeposition of Zinc-Nickel Alloys ,J.Applied Electrochemistry, 1998,27(2);574~582
    85. Kolb D M et al J.Electroanal Chem, 1974,54:25
    
    
    86. Nicol M J, Philip H I. Underpotential deposition and its relation to the anomalous deposition of metals in alloys. J. Electroanal. Chem., 1976,70:233-237.
    87.沈慕昭,胡志彬.离子软硬度对锌合金电沉积的影响.电镀与精饰,1994,16(3):4-8.
    88.张召.Zn-Fe,Zn-P电镀工艺及其基础理论研究,中南工业大学大学博士论文,1999.10
    89.肖卓炳等合金异常共沉积研究 材料保护 2000,33(7):19
    90.沈品华.张立茗.我国电镀现状和未来.材料保护,1985,18(6):11.
    91.覃奇贤,郭鹤桐,刘淑兰等编.电镀原理与工艺.天津:天津科学技术出版社,1993年,111-114,77.
    92.冯巧丽,朱玲,路云鹤等.高浊点氯化钾光亮镀锌添加剂的应用.材料保护,1995,28(7):29-30.
    93.谢原寿,柳金丰,刘卫湘.新型氯化钠镀锌光亮剂的研究.电镀与环保,1998,18(2):3-6.
    94.中华人民共和国国家标准.金属基体上的金属覆盖层(电沉积层和化学沉积层)附着强度试验方法.GB5270-85.
    95. Natorski T J. Zinc and Zinc Alloy Plating in the 90s'. Metal Finishing, 1992,90(3):15-17
    96. Wilcox G D, Gabe D R. Electrodeposited Zinc Alloy Coatings. Corrosion Science, 1993,35(5-8): 1251-1258.
    97. Kautek W, Sahre M, Paatsch W. Transition metal effects in the corrosion protection of electroplated zinc alloy coatings. Electrochimica Acta, 1994,39(8/9):1151-1157.
    98. Ramanauskas R, Quintana P, Maldonado L. Corrosion resistance and microstructure of electrodeposited Zn and Zn alloy coatings. Surface and Coatings Technology, 1997,92(1-2): 16-21.
    99. Park H, Szpunar J A. The Role of Texture and Morphology in Optimizing the Corrosion Resistance of Zinc-Based electrogalvanized Coatings. Corrosion Science, 1998,40(4/5):525-545.
    100. Higashi K, Fukushima M, Urakawa T. Mechanism of the electrodeposition of zinc alloys containing a small amount of cobalt. J. Electrochemical Society, 1981.128(10):2081-2085.
    101. N.Zech,etal,Anomalous Codeposition of Iron Group Metals I Experimental Reaults,J.Electrochem. Soci, 146(8), 1999,2886-2891
    102. N.Zech, etal,Anomalous Codeposition of Iron Group Metals Ⅱ Mathematical Model ,J.Electrochem. Soci, 146(8), 1999,2892-2900
    103. Zehbour Panossian Simultaneous Deposition of Zinc With Iron-Group Metals
    
    Metal Finishing 6, 1999 88
    104.张允诚,胡如南,向荣主编.电镀手册(上册).北京:国防:工业出版社,1997年,95-154.
    105.葛华才,黄定启,谢麟祥.金属及二元合金镀层耐蚀性能的研究.华南理工大学学报(自然科学版),1993,21(4):13-18.
    106.吴荫顺主编.金属腐蚀研究方法.北京:科学出版社,1984年,240-246.
    107.卢燕平,梅淑文,任玉玲等.镀锌层彩色低铬钝化材料保护,28(5):14~16
    108.雷作咸 胡梦珍编译.金属磷化处理机械工业出版社 1992:26
    109.张连鸿.锌锰系室温磷化液的研制 材料保护,2001,34(5):48
    110.董家梅.钢铁常温“四合一”涂装前处理液的研究,材料保护,2000,33(4):23-24
    111.唐春华.锌及锌合金板材的磷化工艺材料保护,2000,33(11):26
    112.航空工业部标准 HB5062-77.钢铁化学氧化(发蓝)点滴法耐蚀标准.,
    113.GB 9791-88.锌和镉上铬酸盐转化膜试验方法.
    114. Sakurai, Hitoshi, Kishikawa, Seiji. Coating bath and process for black chromating of Zinc-alloy or galvanized surface. Eur. Pat. Appl. EP 805,222, 01.05.1996
    115. Jovic V D, Zejnilovic R M. Characterization of Elrctrochemically Formed Thin Layers of Binary Alloys by Linear Sweep Voltammetry. J. Applied Electrochemistry, 1988,18:511-520.
    116.吴浩青 李永舫 电化学动力学,高等教育出版社,1998:12-22
    117.周绍民 等编 金属电沉积—原理与研究方法,上海科学技术出版社,1987:178-187
    118.舒余德 陈白珍 编著 冶金电化学研究方法 中南工业大学出版社,1990:73-100
    119.H.克舍(西德)著,吴荫顺译,金属腐蚀,化学工业出版社,1984:96-120
    120.龚竹青 编著 理论电化学,中南工业大学出版社,1987,191-270,
    121.L,I 安特罗波夫著,吴忠达 朱耀斌 吴万伟译,理论电化学,高等教育出版社,1982:446-448
    122.A.J.巴德 L.R.福克纳著,电化学方法—原理及应用,化学工业出版社,1986,30
    123.田昭武著.电化学研究方法.北京:科学出版社,1984:240-246,327.
    124.黄子卿.电解质溶液理论导论.北京:科学出版社,1983:84-86.
    125.曹楚南.腐蚀电化学原理.北京:化学工业出版社,1985:186,236,243-244,252-261.
    126.吴荫顺,方智,何积铨等.腐蚀与防护全书—腐蚀试验方法与防腐蚀检测技术.北京:化学工业出版社,1996:40.
    127.黄秋龙编译.金属腐蚀与钝化的新概念.材料保护,1990,23(12):28-33.
    
    
    128.蒋汉瀛主编.冶金电化学.北京:冶金工业出版社,1983:34.
    129.项斯芬,严宣申,曹庭礼等.《无机化学丛书》第五卷 硫硒 碲分族.北京:科学出版社,1995:214.
    130.查全性.电极过程动力学导论(第二版).北京:科学出版社,1987:226-229.326-349,446.
    131.陈永言.线性电位扫描方法在电镀生产研究中的应用.电镀与涂饰,1997,16(1):1-5.
    132.吴继勋,刘永勤,卢燕平等.锌-镍合金共沉积的交流阻抗行为.材料保护,1994,27(1):16-19.
    133.中国腐蚀与防护学会主编.宋诗哲编著.腐蚀电化学研究方法.北京:化学工业出版社,1988年,95-96
    134.陈云清等Mn/Se,MnO_2/Se,Mn/SeO_2体系形成的团簇离子的质谱研究,高等学校化学学报,Vol.21,No.5,2000,743-746
    135.D.F.Shriver等著,高忆慈等译,无机化学,高等教育出版社(二版),1997:483-486
    136. A.K.Ghosh,et al,A photoacoustic spectrscopic investigation of the optical energy gap in Zn-Mn-Se type dilute magnetic semiconductors,Solid State Communications, 2000, 113: 41-45
    138.黄昆.固体物理学.北京:人民教育出版社.1979:153-158.
    139.顾秉林,王喜坤.固体物理学.北京:清华大学出版社,1989:17-18,78-101.
    140.[瑞士]G Busch,H Schade著.郭威孚.史敬孚译.固体物理学讲义.北京:高等教育出版社,1987:169-176.
    141.J.O.M博克里斯等著 冯宝文等译 量子电化学哈尔滨工业大学出版社 1988:97-117。
    142.周良才 电解锰电流效率研究中国锰业 1992,4:18
    143.陈筵喜 电化学反应器析气电极的电流分布模型 化工学报 1992,5:44
    144.曹楚南 编著 腐蚀电化学 化工工业出版社 1985,12:215-250
    145.吕云阳,王文绍,刘颂禹等.《无机化学丛书》第六卷,卤素,铜分族,锌分族.北京:科学出版社,1995:700-701.
    146.钟家湘,郑秀华,刘颖编著.金属学教程.北京:北京理工大学出版社,1995年,68.
    147.固体能带理论 谢希德 陆栋 主编 复旦大学出版社 1998:316-318
    148.陈建华 电化学调控浮选能带理论及在有机抑制剂研究中的应用,中南工业大学博士论文,1999:23-26
    149.方俊鑫 殷之文 主编 电介质物理学 科学出版社,1989:84-105
    150.方俊鑫 陆栋 主编 固体物理学 上海科学技术出版社,1980:142-184-200-145
    151.吕世骥 范印哲 编固体物理教程,北京大学出版社,1990:118-200
    
    
    152.金松寿 著 量子化学基础及应用,上海科学技术出版社,1980:389-426
    153.武汉大学,吉林大学等校编无机化学,高等教育出版社,1983:431
    154. Schmickler, W.A theory for nonadiabatic electrochemical electron-transfer reactions involving the breaking of a bond ,Chemical Physics Letters, 1999,317 (3-5): 458
    155.路贵民 乐启帜 Zn-Mn和Zn-Ti二元合金热力学性质,中国有色金属学报 2001,11(1):95~98
    156.郭源等γ-二氧化锰/K3[Fe(CN)6]溶液界面的电子转移反应,物理化学学报,2001,17(7):636~640。
    157.舒余德.SbS_3~(3-)离子放电机理的研究.中南矿冶学院学报,1980,28(3):53~61.
    158.M A 安德森,A J 鲁宾.水溶液吸附化学---无机物在固液界面上吸附作用.北京:科学出版社,1989:2~5.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700