钒电池电极改性及电池性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钒电池是近年来开发出的一种新型储能电池,因其能量效率高,使用寿命长,对环境友好以及价格便宜,操作和维护费用低等诸多特点,得到了迅速发展。但目前钒电池还存在一些问题,影响钒电池性能的因素有很多,其中电极材料性能、正负极电极反应是重要因素。本论文针对钒电池电极材料进行了改性研究,计算了不同工作电极反应的动力学参数。分析了电池充放电过程中电池性能的变化及其电池失效的原因。
     主要研究内容和取得的成果如下:
     1.在胶中添加不同的导电填料,研究导电胶的导电性和电化学性能,测试结果表明,40%膨胀石墨导电胶的电阻率较低,40%石墨毡导电胶的电阻率高,以碳黑为导电填料,掺杂膨胀石墨和微粒石墨,导电胶的导电性能得到改善。电化学性能测试表明,40%石墨毡导电胶的析氧电位较高,不容易发生析氧腐蚀。
     2.采用循环伏安法和线性极化法研究了硫酸氧钒溶液中V5+/V4+电对在不同工作电极上的氧化还原反应。结果表明,在石墨电极上表现出较好的可逆性;导电塑料电极在硫酸氧钒溶液中有较宽的水稳定区;而在铂电极上硫酸氧钒更易析氢。Ⅴ(Ⅳ)电化学还原成Ⅴ(Ⅳ)的速率常数远小于Ⅴ(Ⅳ)电化学氧化成Ⅴ(Ⅴ)的速率常数。因此,使用硫酸氧钒溶液进行CV测试经常不出现V4+/V3+的还原峰。计算了V5+/V4+在石墨、铂片和导电塑料板电极上氧化反应的动力学参数,交换电流密度分别为石墨电极1.60×10-3A·cm-2,铂电极2.541×10-4A·cm-2,导电塑料电极3.814×10-A·cm-2,而在导电塑料板电极上,V4+/V3+交换电流密度为3.235×10-6A·cm-2。
     3.利用循环伏安法和计时电流法对1.0-2.5 mo1·L-1 H2S04+0.1-1.0 mo1·L-1VOS04电解液中Ⅴ(Ⅳ)的扩散系数进行了估算。Ⅴ(Ⅳ)的扩散系数随Ⅴ(Ⅳ)浓度的增加有明显的减小,从1.58×10-3降至2.03×10-4cm·S-1;而溶液的硫酸浓度对Ⅴ(Ⅳ)的扩散系数影响较小。V5+/V4+电对的氧化还原反应是受扩散控制的不可逆反应过程,提高电解液中Ⅴ(Ⅳ)的浓度可以加速氧化反应速度;电解液中的硫酸浓度对Ⅴ(Ⅳ)的氧化反应影响不明显。
     4.采用高锰酸钾溶液对石墨毡进行氧化处理,考察了溶液的浓度、温度对石墨毡性能的影响,结果表明,经过不同高锰酸钾溶液处理的石墨毡表面有更多的表面活性基团,其亲水性得到改善。石墨毡表面在经过高锰酸钾溶液氧化过程中沉积上高锰酸钾时,不利于Ⅴ(Ⅳ)在其上面进行反应。经过90℃水浴下饱和高锰酸钾溶液处理的石墨毡电极出现了三对钒离子的氧化还原峰,电化学性能得到改善。
     5.采用化学沉积法和物理吸附法在石墨毡表面沉积SnO2是可行的。采用物理吸附法沉积SnO2时,SnO2沉积量较少,且只是依浮在石墨毡表面;而采用化学沉积法沉积SnO2时,可以得到均匀且与石墨毡表面结合紧密的SnO2薄膜。石墨毡表面沉积SnO2后,V3+/V2+电对、V4+/V3+电对、V5+/V4+电对的氧化反应峰电流均提高,氧化反应峰出峰持续时间提高,说明Sn02对钒离子在电极表面的反应具有一定的催化作用。且包覆Sn02后电极的电化学窗口变宽,延缓了电极的析氢和析氧反应。
     6.对钒电池反复充放电,研究失效的钒电池的性能。结果表明,失效钒电池正极一侧的导电塑料集流板和石墨毡都存在有氧腐蚀,碳流失造成集流板电阻升高;石墨毡中的碳纤维坑蚀现象明显;钒电池充电过程中正极析出的氧原子具有强氧化性,与碳的反应活性相似于500℃以上空气中的氧;本研究对正极在充电过程中存在的阳极析氧过程做了初步的探讨,找到极板腐蚀的原因。钒电池负极在充电过程中存在析氢过程,在石墨毡上生成-CH2官能团。
     7.在聚乙烯中掺杂碳黑的导电塑料板上可以实施电化学镀镍,得到具有一定厚度且与导电塑料基体之间结合力大于2.3 MPa的镍镀层。在导电塑料板上的镍电镀层可以保留镀件基体的表面特征,基体表面的平整度高,镍镀层表面更光亮。光镍镀层在NaCl水溶液中的腐蚀电位高于哑光镍镀层的腐蚀电位,且在相同的极化电压下光镍镀层的阳极溶解速度远小于哑光镍的溶解速度。
All-vanadium redox flow battery is a new energy storage system developed quickly in recent years. It has some special properties such as high storage efficiency, long service life, environmental friendly, low price, and low costs of operation and maintenance. However, there are many factors influenced VRB performance. Among those factors, the performance of electrode materials and anode and cathode reaction plays an important role in VRB performance. In this paper, the electrode materials of VRB were modified, and the kinetic parameters of varies working electrodes reaction were also calculated. Achievements in this paper are listed as follows:
     1. The conductivity and the electrochemical properties of the conductive pastern doped different conductive fillers were studied. The results showed that the resistivity of 40% dilates graphite were lower compared with 40% graphite felt. The conductivity of conductive pastern doped dilates graphite and particulate graphite was improved. The electrochemical performance test showed that the oxygen evolution was difficult to occur due to the high oxygen evolution potential of 40% graphite felt.
     2. The redox reaction of V5+/V4+ couple in VOSO4 solution on various electrodes was studied by cyclic voltammetry and linear polarization method. The results showed that the couple had better redox reversibility, the conductive plastic electrode had broad water stable region, and hydrogen was likely to evolve on platinum electrode. The rate constant of V(IV) electrochemical reduction into V(III)was far less than V(IV) electrochemical oxidation into V(V). Therefore, the reduction peak of V4+/V3+ was not located in the cyclic voltammetry test. The kinetic parameters of oxidation reaction of V5+/V4+ couple on graphite, platinum, and conductive plastic plate were also calculated, and the exchange current density of the couple was 1.60×10-3 A·cm-2,2.541×10-5 A·cm-2, and 3.814×10-5 A·cm-2, respectively, and the exchange current density of the V4+/V3+ couple on conductive plastic plate was 3.235×10-6 A·cm-2.
     3. The diffusion coefficient of V(IV) in 1.0-2.5 mol·L-1 H2SO4+0.1-1.0 mol·L-1 VOSO4 which was obviously decreased from 1.58×10-3 to 2.03×10-4 cm·S-1 with increasing concentration of V(IV) was estimated by the cyclic voltammetry and chronoamperometry. However, the sulfuric acid concentration had little effect on diffusion coefficient of V(IV). The redox reaction of V5+/V4+ couple was an irreversible reaction controlled by diffusion. The oxidization rate can be accelerated by improving the concentration of V(IV), and the sulfuric acid concentration has no obvious effect on the oxidization of V(IV).
     4. Graphite felt was treated with potassium permanganate solution, and the effect of concentration and bath temperature on graphite felt performance was experimentally investigated. The results showed that the hydrophilicity was improved due to the appearance of surfactant group on the surface of graphite felt. The potassium permanganate deposited on graphite felt was unfavorable to the reaction of vanadium ions, however, the graphite felt treated with saturation potassium permanganate at 90℃bath could completely embody the vanadium ion valence changes, and improve the electrochemical performance of the graphite felt.
     5. SnO2 thin films on the surface of graphite felt was successfully deposited by chemical deposition and physical adsorption. Compared with chemical deposition, lesser SnO2 grain was adsorbed on the surface of graphite felt by physical adsorption, while uniform and well-knit SnO2 thin film can be obtained by chemical deposition. The results showed that the peak current and the duration time of oxidation of V3+/V2+ couple, V4+/V3+ couple, and V5+/V4+ couple enhanced after depositing SnO2, this indicated that SnO2 performs a catalytic action on the reaction of vanadium ions on the surface of the electrode, and both the hydrogen and the oxygen evolution overvoltage on the SnO2 modified electrode enhanced.
     6. The performances of inoperative battery after repeated charge-discharge cycles were studied. The results showed that both conductive plastic current collector plate of the anode and the graphite felt were corroded by oxygen corrosion, and the resistance of the plate increased due to the loss of carbon, while pitting corrosion was observed on the surface of carbon fiber. The oxygen atom evolving on cathode during charging process has strong oxidizability, and its reactivity with carbon is similar to the oxygen in 500℃air. The oxygen evolution on anode during the charging process of the cathode was studied and the reason of electrode corrosion was found. Hydrogen was evolved during the charging process of the cathode, and the-CH2 generated on the graphite felt.
     7. Nickel coating on the carbon-polythene composite plate was prepared by electrodeposition in a nickel sulphate solution, and the adhesion strength between the nickel coating and substrate can be more than 2.3 MPa. The growth of nickel coating could inherit some characteristics of the substrate geometrics, and therefore the coating roughness was strongly depended on the roughness of the composite plate substrate. The corrosion potential of the bright coating in the NaCl aqueous solution was more positive than that of the dull coating, and the anodic dissolving rate of the bright one was also far lower at the same polarization potential compared with the dull one.
引文
1. National Aeronautics and Space Administration, Redox flow cell development and demonstration project [R], NASA TM-79067, U.S. Deptment of Energy,1979.
    2. Sun E,Skyllas-Kazacos M.A study of the V(Ⅱ)/V(Ⅲ) redox couple for flow cell applications[J], Power Sources,1985,15(2-3):179-190.
    3. Sun E,Rychcik M, Skyllas-Kazacos M. Investigation of V(Ⅳ)/V(Ⅴ) system for use in positive half-cell of a redox battery[J], Power Sources,1985,16(2):85-95.
    4. Skyllas-Kazacos M, Rychick M, Robins R. All-vanadium redox battery [P], US:4786567,1986-11-22.
    5. Skyllas-Kazacos M. Kasherman D,Hong R, et al. Characteristics and performance of 1KW UNSW vanadium redox battery[J], Power Sources,1991,35(4):399-404.
    6. Kazacos M, McDermott R. Vanadium compound dissolution [P], African:88/9244.
    7. Skyllas-Kazacos M, Kazacos M, McDermott R. Vanadium charging cell and Vanadium dual battery system[P], AU:2815289,1998-07-05.
    8. Zhong S H, Kazacos M, Skyllas-Kazacos M, et al. Flexible conducting plastic electrode and process for its preparation [P], US:5665212,1997-09-09.
    9. Skyllas-Kazacos M, Kazacos M, Stabilized electrolyte solutions, methods of preparation thereof and redox cells and batteries containing stabilized electrolyte solutions [P], US:6143443,2000-11-07.
    10. Sykkas-Kazacos M, M.Rychcik et al. New all vanadium redox flow cell [J], Electrochem. Soc.1986, 133:1057-1058.
    11. Sykkas-Kazacos M, Grossmith F. Efficient vanadium redox flow cell [J], Electrochem. Soc.1987,134: 2950-2953.
    12. Sykkas-Kazacos M, D.Kasherman et al. Characteristics and performance of 1kW vanadium redox battery [J], Power Sources,1991,35:399-404.
    13. Menictas C, Sykkas-Kazacos M. Small-scale laboratory testing and golf-cart trials of 3 molar vanadium electrolyte [R], Report to pinnacle Mining NL,1998.
    14. Largent R et al. Proceedings IEEE23rd Photovoltaic Specialists Conference[C], Louisville, Kentucky, May 1993.
    15. Akira Shibata, Kanji Sato. Development of Vanadium redox flow battery for electricity storage [J], Power Engineering,1999, (6):130-135.
    16. HWANG O H. Cross linking of anion exchange membrane by accelerated electron radiation as a separator for the all vanadium redox flow battery [J], J of Membrane Science,1997,132(1):55-61.
    17. VRB Power System. Vanadium redox flow battery [EB/OL], [2004-07-23]. http://www.vrbpower.com/vrb_power.htm.
    18.黄可龙,伍秋美,刘素琴.钒氧化还原液流电池石墨—炭黑复合电极性能[J],电源技术,2004,28(2):91-93.
    19.张环华,肖楚民,张平民.全钒离子氧化还原液流电池电极活性物质的研究[J],广东工业大学学报,2000,17(4):78-80,84.
    20.袁俊,余晴荞,刘逸枫,等.全钒液流电池性能及其电极材料的研究[J],电化学,2006,12(3):271-274.
    21.彭声谦,许国镇,杨华锉,等.用从石煤中提取的V2O5制备矾电池用VOSO4的研究[J],无机盐工业,1997,29(1):3-6.
    22.许茜,赖春艳,尹远红,等.提高钒电池电解液的稳定性[J],电源技术,2002,26(1):29-31.
    23.田波,严川伟,屈庆.钒电池电解液的电位滴定分析[J],电池,2003,33(4):261-263.
    24.吕止中,胡嵩麟,罗绚丽,等.质子交换膜对钒氧化还原液流电池性能的影响[J],高等学校化学学报,2007,28(1):145-148.
    25.罗冬梅,许茜,隋智通.添加剂对钒电池电解液性质的影响[J],电源技术,2004,28(2):94-96.
    26. Huang Ke-Long, Li Xiao-gang, Liu Su-qin,et al. Research progress of vanadium redox flow battery for energy storage in China[J], Renewable Energy,2008,33,186-192.
    27. Xi Jingyu, Wu Zenghua, Qiu Xinping,et al. Nafion/SiO2 hybrid membrane for vanadium redox flow battery[J], Journal of Power Sources,2007,166,531-536.
    28.李晓兵,常芳,崔艳华,等.钒电池用石墨毡电极材料性能比较研究[J],电池工业,2007,12(1):41-43.
    29.杨裕生,张立,文越华,等.液流电池蓄电技术的进展与前景[J],电源技术,2007,31(3):175-178.
    30.常芳,崔艳华,李晓兵,等.五价钒电解液稳定性研究[J],化学研究与应用,2006,18(7):866-869.
    31.朱顺泉,陈金庆,王保国.电解液流动方式对全钒液流电池性能的影响[J],电池,2007,37(3):217-219.
    32.孟凡明.新型清洁化学电源钒电池[J],新能源,1997,19(8):34-37.
    33.谭宁,黄可龙,刘素琴.全钒液流电池隔膜在钒溶液中的性能[J],电源技术,2004,28(12):775-778.
    34.桑商斌,黄可龙,石瑞成,等.PVA2ZrP复合膜作为全钒液流电池隔膜的研究[J],中南大学学报(自然科学版),2005,36(6):1011-1016.
    35.崔艳华,孟凡明.全钒离子液流电池的应用研究[J],电源技术,2000,24(6):356-358.
    36.文越华,张华民,钱鹏,等.全钒液流电池高浓度下V(Ⅳ)/Ⅴ(Ⅴ)的电极过程研究[J],物理化学学报,2006,22(4):403-408.
    37.伍秋美,黄可龙,桑商斌,等.全钒液流电池用聚丙烯腈石墨毡电极研究[J],电源技术,2005,29(7):456-458.
    38.李晓刚,刘素琴,黄可龙,等.全钒氧化还原液流电池集流体的性能[J],电池,2005,2(25):93-94.
    39.刘洋,刘洪涛,夏熙.钒化合物在碳糊电极上的循环伏安行为[J],应用化学,2001,18(12):987-990.
    40.李俊杰,朱扬清,杨华铨.全钒氧化还原流体电池电极材料的研究[J],广西大学学报,2001,26(6):83-86.
    41.顾军,李光强,隋智通.钒氧化还原电池研究进展Ⅱ电池材料的发展[J],电源技术,2000,24(3):181-184.
    42.王保国,尹海涛,朱顺泉,等.一种氧化还原液流电池储能装置的电堆结构:200510086917.9[P],2006.
    43.张华民.高效大规模化学储能技术研究开发现状及展望[J],2007,31(8):587-591.
    44. Zhao Ping, Zhang Huamin, Zhou Hantao, et al. Characteristics and performance of 10 kW class all-vanadium redox-flow battery stack [J], Journal of Power Sources 2006,162,1416-1420.
    45.李华,常守文,严川伟.全钒氧化还原液流电池中电极材料的研究评述[J],电化学,2002,8(3):257-262.
    46.许茜,冯士超,乔永莲,等.导电塑料作为钒电池集流板的研究[J], 2007,31(5):406-408.
    47. Skyllas-Kazaocs M and Rychcik M. Evaluation of Electrode Materials for All-Vanadium Redox Flow Cell [J], Power Sources,1987,19:45-54.
    48.钱鹏,张华民,陈剑,等.全钒液流电池用电极及双极板研究进展[J],能源工程,2007,1:7-11.
    49. Sum E and Sykkas-Kazacos M. A study of the V(Ⅱ)/V(Ⅲ) redox couple for redox flow cell application [J], Power Sources,1985,15:179-190.
    50. Sum E and Rychcik M. Investigation of the V(Ⅴ)/V(Ⅳ)system for use in the positive half-cell of a redox battery [J], Power Sources,1985,16:85-95.
    51. Sykkas-Kazacos M, Rychcik M, Robinsrg, et al. New all-vanadium redox cell [J], Electrochem Soc, 1986,133:1057-1058.
    52. Zhua H.Q. Graphite-carbon nanotube composite electrodes for all vanadium redox flow battery [J], Journal of Power Sources, POWER-10606, No of Pages4.
    53. V.Haddadi-Asl, M.Kazacos, M.Skyllas-Kazacos. Conductive Carbon-Polypropylene Composite Electrodes for Vanadium Redox Flow Battery [J], Appl.Electrochem,1995,25:29-33.
    54. Kazacos M. and Skyllas-Kazacos M. Performance of Carbon Plastic Electrodes in Vanadium Redox Cell [J], Electrochem. Soc.,1989,136,2759-2760.
    55. Zhong S, Kazacos M, Burford R P, et al. Fabrication and activation studies of conducting plastic composite electrodes for redox cells [J], Power sources,1991,36:29-43.
    56. Haddadi-ASL V, Kazacos M, Skyllas-Kazacos M.Carbon-polymer composite electrodes for redox cells.Journal of Applied [J], Polymer Science,1995,57:1455-1463.
    57. Brungs A, Haddadi-Asl V and Skyllas-Kazacos M. Preparation and Evaluation of Electrocatalytic Oxide Coatings on Conducting Carbon-Polymer Composite Substrates for Use as Dimensionally Stable Anodes [J], J.Applied Electrochem.,1996,26:1117-1123.
    58.刘勇刚,刘素琴,李晓刚,等. PP/SEBS基导电复合材料的研制[J], 工程塑料应用,2005,33(1):15-18.
    59.黄可龙,伍秋美,刘素琴.钒氧化还原液流电池石墨-炭黑复合电极性能[J],电源技术,2004,28(2):91-93.
    60. Sun B, Skyllas-Kazacos M.Chemical modification and electrochemical behaviour of graphite fiber in acidic vanadium solution [J], Electrochim Acta,1991,36 (7):513-517.
    61.李晓刚,黄可龙,谭宁,等.钒液流电池用石墨毡电极的电化学修饰[J],无机材料学报,2006,21(5):1114-1120.
    62.毛凌波,张仁元,陈枭.全钒液流电池正极电解液的研究进展[J],电池工业,2007,12(5):353-356.
    63.袁世炬,张光彦.聚丙烯纤维表面改性研究[J],湖北工业大学学报,2006,21(5):13-15.
    64.乌云其其格.碳纤维表面处理[J],高科技纤维与应用,2001,26(5):24-28.
    65.贺福,杨永岗.碳纤维表面处理的新方法[J],高科技纤维与应用,2000,25(5):30-33.
    66.王大鹏,侯子义.碳纤维表面处理对纤维的分散性和CFRC压敏性的影响[J],材料科学与工程学报,2005,23(2):266-268.
    67.夏丽刚,李爱菊,阴强,等.碳纤维表面处理及其对碳纤维/树脂界面影响的研究[J],材料导报,2006(26)专辑:254-257.
    68.冀克俭,张银生.碳纤维表面的XPS表征[J],合成纤维工业,1994,17(1):43-47.
    69.陈厚.碳纤维表面改性的研究[J],金山油化纤,2000,3:8-10.
    70.陈广立,耿浩然,陈俊华,等.不同处理方法对碳纤维表面形态及Cf/C复合材料强度的影响[J],材料工程,2006,增刊1,160-164.
    71. Sun B and Skyllas-Kazacos M.Modification of graphite electrode materials for vanadium redox flow battery application-I.thermal treatment [J], Electrochimica Acta,1992,37(7):1253-1260.
    72. Sun B.T and Skyllas-Kazacos M. Chemical Modification of Graphite Electrode Materials for Vanadium Redox Flow Battery Application-Part Ⅱ:Acid Treatments [J], Electrochimica Acta,1992,37: 2459-2465.
    73.李晓刚,黄可龙,桑商斌,等.电化学氧化改性石墨毡电极对VO2+/VO2+电对的催化活性[J],功能材料,2006,37(7):1084-1086.
    74.刘素琴,张文昔,黄可龙.全钒液流电池用碳毡电极的改性研究[J],电源技术,2006,30(5):395- 397.
    75.刘迪,谭宁,黄可龙,等.全钒液流电池用石墨毡电极材料的电化学处理[J],电源技术,2006,30(3):224-226.
    76. DUARTE M.E. Electrooxidation of Mn (Ⅱ) to MnO2 on graphite fiber electrodes [J], Journal of applied electrochemistry,2003,33:378-392.
    77.王文红,薛方勤,王新东.Ir修饰碳毡对VO2+/VO2+电对电催化性能的影响[J],材料研究学报,2007,21(5):542-546.
    78. Wang W.H, Wang X.D. Investion of Ir-modified carbon felt as the positive electrode of an all-vanadium redox flow battry[J], Electrochimica Acta,2007,24(52):6755-6762.
    79. Peng Qian, Zhang Hua min, Jian Chen, et al. A novel electrode-bipolar plate assembly for vanadium redox flow battery applications [J], Journal of Power Sources 2008,175,613-620.
    80.乔永莲,许茜,翟玉春,等.钒液流电池复合电极腐蚀的研究[J],电源技术,2008,32(10):687-689.
    81.任学佑.金属钒的应用现状及市场前景[J],世界有色金属,2004,2,34-36.
    1.钟建华,欧阳玲玉,陈丙璇.导电胶的研究与应用[J],化学与黏合,2005,27(6):373-376.
    2.傅振晓,张其土,凌志达.新型导电胶的研究与应用[J],江苏陶瓷,2001,34(2):16-17.
    3.许佩新,陈治中.铜粉导电胶电性能的研究[J],材料科学与工程,1998,5(61):75-77.
    4.阎恒梅.环氧树脂增韧技术的发展[J],工程塑料应用,1989,(2):45.
    5.黄世强,肖汉文.特种胶粘剂[M],北京:化学工业出版社,2002.
    6.陈平.环氧树脂[M],北京:北京化学工业出版社,1999,5-116.
    7. Blythe. A.R. Electrical resistivity measurements of polymer materials [J], J.Polymer Testing,1984, 4:195-209.
    8.陈存礼.测量半导体材料电阻率的四探针公式的普遍形式[J],物理学报,1985,34(11):1509-1514.
    9.彭莉,张志平,胡春圃.不同粒径碳黑混合对复合型导电材料PTC性能的影响[J],功能高分子学报,2003,2(16):229-232.
    10.雀部博之,白川英树.导电高分子材料[M],北京:科学出版社,1989,238-2451.
    11.许晶玮,庞浩,胡美龙,等.高分子/石墨复合材料的制备与导电性能的研究进展[J],2007,8,577-581.
    12.陈勇,官建国,谢洪泉.导电塑料的研究进展[J],弹性体,2008,18(2):75-81.
    13.吴海平,吴希俊,葛明园,等.填料粒径对各项同性导电胶渗滤阈值的影响[J],中国科学E辑:技术科学,2008,38(3):448-454
    14. Sun B.T and Skyllas-kazacos M. Modification of graphate electrode materials for vanadium redox cell applications-thermal treatment [J], Electrochimica Acta,1992,37:1253-1269.
    15. Sun B.T and Skyllas-kazacos M. Chemical modification of graphate electrode materials for vanadium redox cell applications-part II acid treatments [J], Electrochimica Acta,1992,37:2459-2465.
    1. Iwasa S, Wei Y, Fang B, er al.Electrochemical behavior of the V(Ⅳ)/V(Ⅴ) couple in sulfuric acid medium[J], Bettery Bimonthly,2003,33(6):339-341.
    2.刘洋,刘洪涛,夏熙.钒化合物在硫酸中的电化学行为研究[J],电化学,2002,8(1):39-46.
    3.刘洋,刘洪涛,夏熙.钒化合物在碳糊电极上的循环伏安行为[J],应用化学,2001,18(12):987-990.
    4. Gattrell M, Park J, Macdougall B, et al. Srudy of the mechanism of the vanadium V4+/V5 redox reaction in acidic solution[J], J.Electrochemical Society,2004,152(1):al23-al30.
    5. Gaku Oriji, Yasushi Katayama, Takashi Miura. Investigation on V(Ⅳ)/V(Ⅴ) species in a vanadium redox flow battery[J], J.Electrichimica Acta,2004,29:3091-3095.
    6.毛凌波,张仁元,陈枭.全钒液流电池正极电解液的研究进展[J],电池工业,2007,12(5):353-356.
    7. Rychchi M, Skyllas-Kazacos M. Evaluation of electrode materials for vanadium redox battery [J], J Power sources,1987,19:45-54.
    8. Sun B T, Skyllas-Kazacos M. Modification of graphite electrode materials for vanadium redox flow battery application-I thermal treatment [J], Electrochemical Acta,1992,37(7):1253-1260.
    9. Sun E, Rychchik E, Skyllas-Kazacos M. Investigation of the V(Ⅴ)/V(Ⅳ) system for use in the positive half-cell of a redox battery [J], J Power sources,1985,16:85-95.
    10. Gaku Oriji, Yasushi Katayama, Takashi Miura.Investigation on V(Ⅴ)/V(Ⅳ) Species in a vanadium redox flow battery [J], Electrochimica Acta,2004,49:3091-3095.
    11.郭鹤桐,刘淑兰.理论电化学[M],天津:宇航出版社,1984,p141-148.
    12.李荻.电化学原理[M],北京:北京航空航天大学出版社,1989,193.
    13.贾铮,戴长松,陈玲.电化学测量方法[M],北京:化学工业出版社,2006,p116-136.
    14. F.ANSON.电化学与电分析化学[M],北京:北京大学出版社,1981,p16-30.
    15.罗冬梅,康晓雪,许茜.Ⅴ(Ⅳ)在石墨电极上的阳极氧化动力学[J],电源技术,2006,30(3):227-230.
    16. Rahman F. Stability and Properties of Supersaturated Vanadium Electrolytes for High Energy Density Vanadium Redox Battery [P], PhD thesis, University of New South Wales, Sydney, Australia (1998).
    17.杨绮琴,方北龙,童叶翔.应用电化学[M],广州:中山大学出版社,2002,7.
    1. Park Joung Man, Lee Sang-I, Kim Ki Won, et al. Interfa cial aspect s of elect rodeposited conductive fibers/epoxy composites using elect romicromechanical technique and nondest ructive evaluation [J], J ournal of Colloid and Inter face Science,2001,237(1):80-90.
    2.曹海琳,黄玉东,张志谦,等.阳极氧化处理对碳纤维三维织物/酚醛复合材料烧蚀率的影响[J],复合材料学报,2000,18(4):34-37.
    3.刘杰,郭云霞,梁节英.碳纤维电化学氧化表面处理效果的动态力学热分析研究[J],复合材料学报,2004,21(4):40-44.
    4.贺福,王茂章.碳纤维及其复合材料[M],北京:科学出版社,1997,150-168.
    5.贺福,杨永岗.碳纤维表面处理的新方法[J],高科技纤维与应用,2000,25(5):30-37.
    6. Sun B.T and Skyllas-Kazacos M. Modification of Graphite Electrode Materials for Vanadium Redox Flow Cell Applications-Thermal Treatment [J], Electrochimica Acta,1992,37,1253-1260.
    7. Sun B.T and Skyllas-Kazacos M. Chemical Modification of Graphite Electrode Materials for Vanadium Redox Flow Battery Application-Part Ⅱ:Acid Treatments [J], Electrochimica Acta,1992,37,2459-2465.
    8.吴烈钧编著.气相色谱检测方法[M],北京:化学工业出版社,2000,288-289.
    9.蒋先明,何伟平.简明红外光谱识谱法[M],桂林:广西师范大学出版社,1990,p.10.
    1.张招贤,赵国鹏.应用电极学[M],北京:冶金工业出版社,2005,120-155.
    2. Grzeta, B.Tkalcec, E.Goebbert, C.Takeda, M.Takahashi, M.Nomura, K.Jaksic, M.J. Structural studies of nanocrystalline SnO2 doped with antimony:XRD Mossbauer spectroscopy [J], Physics and Chemistry of Solids,2002,63:765-772.
    3. Zhao L-P, Gao L. Coating of multi-walled carbon nanotubes with thick layers of tin (Ⅳ) oxide [J], Carbon,2004,42,1858-1861.
    4. Xie J, N.Varadan, V.K.Mater. Synthesis and characterization of high surface area tin oxide/functionalized carbon nanotubes composite as anode materials [J], Materials Chemistry and Physics 2005,91,274-280.
    5.李振吴,乐园,郭奋,等.纳米二氧化锡粉体的超重力-水热法制备与表征[J],北京化工大学学报,2007,4(34):354-357.
    6. Sun B, Skyllas-Kazacos M.Chemical modification and electrochemical behaviour of graphite fiber in acidic vanadiym solution [J], Electrochim Acta,1991,7(36):513-517.
    7.贾梦秋,杨文胜.应用电化学[M],高等教育出版社,北京:2004,p113-123.
    8.高晓红,张登松,施利毅,等.碳纳米管/SnO2复合电极的制备及其电催化性能研究[J],化学学报,2007,7(65):589-594.
    9. Xu Jing, Yang Haibin, Yu Qingjiang, Chang Lianxia, Pang Xiaofen, Li Xiang, Zhu Hongyang, Li Minghui, Zou Guangtian. Synthesis and characterization of hollow glass microspheres Coated by SnO2 nanoparticles [J], MaterialsLetters,2007,6(61):1424-1428.
    1. SUM E, SKYLLAS-KAZACOS M. A study of the V (Ⅱ)/V(Ⅲ) redox couple for redox flow cell applica-tions [J], Power Sources,1985,15:179-190.
    2. SUM E, SKYLLAS-KAZACOSM. Investigation of the V (Ⅴ)/V(Ⅳ) system for use in the positive half-cell of a redox battery [J], Power Sources,1985,16:85-95.
    3. CHIENG S C, KAZACOS M, SKYLLAS-KAZACOS M. Preparation and evaluation of composite membrane for vanadium redox battery applications [J], Power Sources,1992,39:11-19.
    4. CHIENG S C, SKYLLAS-KAZACOSM. Modification of daramicmicroporous separator for redox flow battery applications [J], Membrane Science,1992,75:81-91.
    5. MOHAMMADI T, SKYLLAS-KAZACOS M. Charac-terization of novel composite membrane for redox flow battery applications [J], Membrane Science 1995,98:77-87.
    6. MOHAMMADI T, SKYLLAS-KAZACOSM. Prepara-tion of sulphonated composite membrane for vanadium redox flow battery applications [J], Membrane Science,1995,107:35-45.
    7. MOHAMMADI T, SKYLLAS-KAZACOS M. Use of polyelectrolyte for incorporation of ion-exchange groups in composite membranes for vanadium redox flow battery applications [J], Power Sources, 1995,56:91-96.
    8. SKYLLAS-KAZACOS M, PENG C, CHENG M. E valuation of precipitation inhibitors for supersaturated vanadyl electrolytes for the vanadium redox battery [J], Electrochemical and solid State Letters,1999,2(3):121-122.
    9.吴人洁.高聚物的表面与研究[M],北京:北京科学出版社,1997,55.
    10.陈平.环氧树脂[M],北京:北京化学工业出版社,1999,5-116.
    11.田波,严川伟,屈庆.钒电池电解液的电位滴定分析[J],电池,2003,33(4):261-263.
    12.王世驹,安宏艳,陈渝眉,等.碳/碳复合材料氧化行为的研究[J],兵器材料科学与工程,1999,4(22):36-40.
    13.蒋先明,何伟平.简明红外光谱识谱法[M],桂林:广西师范大学出版社,1990,p10.
    14.李荻.电化学原理[M],北京:北京航空航天大学出版社,1999,387-394.
    15.李永辉.电化学测试技术[M],北京:北京航空学院出版社,1987,488.
    16. Sun B.T and Skyllas-kazacos M. Modification of graphate electrode materials for vanadium redox cell applications-thermal treatment [J], Electrochimica Acta,1992,37:1253-1269.
    17. Sun B.T and Skyllas-kazacos M. Chemical modification of graphate electrode materials for vanadium redox cell applications-part II acid treatments [J], Electrochimica Acta,1992,37:2459-2465.
    18.曹楚南,张鉴清.电化学阻抗谱导论[M],北京:科学出版社,2002.
    19. Kausar N, Howe R and Skyllas-kazacos M. Raman Spectroscopy studies of concentrated vanadium redox battery positive electrolytes [J], Applied Electrochemistry,2001,31:1327-1332.
    1.刘仁志.非金属电镀与精饰—技术与实践[M],北京:化学工业出版社,2006,2-25,44-45,342-343.
    2.干桂香,韩家军,李宁,等.塑料表面直接电镀[J],电镀与精饰,2005,27(2):20-23.
    3.刘任志.非金属电镀与精饰—技术与实践[M],北京:化学工业出版社,2006,5:2-25,44-45,342-343.
    4.马敬翙,刘光明,曾潮流,等.镍基高温合金M17和M38G的电化学腐蚀行为研究[J],表面技术,2006,35(4):15-18.
    5.叶智书,任山雄,张砚峰.化学镀镍层起泡脱皮原因分析及解决方法[J],表面技术,2006,35(1):89-90.
    6.冯春梁,马爱莲.不同电解质溶液对Ni腐蚀行为的影响[J],辽宁师范大学学报,2006,29(2):200-203.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700