大庆古龙北低阻储层测井评价方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
低电阻率油层是一类特殊油层,是老油田新增储量的重要目标之一,它不同于正常油层,其电阻率与常规油层不符,电阻率非常低,与围岩的电阻率接近,甚至与水层电阻率差不多。因此低电阻率油层的识别和开发具有一定的难度,深入研究及定量评价低阻油层十分必要。
     本文紧密结合大庆古龙北地区测井、录井、岩心及试油等基础资料,通过对本地区200多口井的详细分析与研究,阐明了该区储层的基本地质特征与测井曲线特征,分析了该区低电阻率油层的四性关系;对比了常规与低阻储层的岩性组成、物性、电性、微观孔隙结构及流体特征,从而剖析了大庆古龙北油田葡萄花油层低阻油层的微观形成机理及地质成因。
     在饱和度模型计算方面,本文先后提出4种针对葡萄花油层的原始含油饱和度模型,在有密闭取心井资料的区域,提出基于密闭取心资料的原始含油饱和度模型;针对本区有些地区多油水同层的地质特点,提出适合同层的基于孔隙度、深测向与微球型聚焦电阻率比值的相渗法饱和度模型;针对本区普遍存在泥质和灰质,提出了适合全区储层的三元导电体积物理模型。
     在流体识别方面,引入低阻成因指示曲线的概念,构建了泥质含量、粒度中值、灰质含量和物性4条可操作性强的指示曲线,并给出了定量判别标准,以诊断低阻油层与高阻水层;进一步通过对本区电阻率的灰质、泥质与薄层校正,提出了电阻率校正后的SP-RLLD电性图版;基于分区油水解释图版的规律性,利用分区数据,应用地质多元统计分析技术,采用Bayes判别方法建立经验模型,用于定性判别油水;在有新技术时,充分发挥核磁共振与阵列感应识别流体的优势,结合低阻储层的特点,建立了用常规测井与新技术测井等多种方法来综合识别低阻油水层的方法。
     文中的方法经在大庆古龙北地区的实际应用,证明方法的适用行,通过对低电阻油层的分析,给出低电阻研究的思路和方法,提供了解释流程,使解释符合率明显提高,达到了预期的目的,为今后其他油田开展低电阻油层的测井解释研究提供了思路和方法。
The low-resistivity reservoirs is a special kind of oil reservoir, it is an one of the important goals in new reserves of old oil field, it is different from the conventional oil layer, Its resistivity does not match with conventional oil layer, the resistivity is very low, and is close to the shoulderbed’s resistivity, even is almost similar with the water layer’s resistivity. Therefore the identification and the development of low-resistivity reservoir have certain difficulty, in depth study and quantitative evaluation of low- resistivity reservoir is very necessary.
     The paper closely combined well logging, drilling core, well testing and otherwise data of northern Gulong area of Daqing Oilfield, through detailedly analysised and researched more than 200 wells in this region, had illuminated reservoir the basic geological features and logging curves features, analysised four character relations of low resistivity reservoir in this area; Compared lithology composition, physical property, electric property, microcosmic pore structure and fluid feature of conventional reservoir and low-resistivity reservoir, which analyzed the microcosmic mechanism and geologic origin of low-resistivity layers in Putaohua Group of Gulongbei Oilfield.
     In the respect of saturation model calculation, this paper had proposed four kinds of original oil saturation model for the Putaohua low-resistivity reservoir, In some regional which have data of sealing core drill, proposed to use the original oil saturation model which based on sealing core drill data; In view of the geological features which some areas of this regional have many oil/water in same layer, proposed to use relative permeability saturation model which based on porosity and RLLD/MSFL; In view of this regional widespread muddy and gray matter, proposed to use three elements conductive saturation model which was fit for all the region.
     In the respect of the fluid identification, introducted the concept of the instructions curves of the low resistivity genesis, constructed four feasible instructions curves which was shale content, median grain diameter, gray matter content, physical property etc, and had gave some quantitative discriminant criterions, in order to differentiate between low-resistivity oil layer and high-resistivity water layer; Further through gray correction, shaly correction and thin-layer correction of the resistivity in this field, proposed the SP-RLLD Electrical Plate which the resistivity was corrected; Based on the regularity of sectional oil-water interpretive chart, use sectional datas, geological multivariate statistical analysis technique, Bayes method to establish empirical model for oil and water qualitative discrimination; When had the new technology, gave full play to the advantage of fluid identification which used the nuclear magnetic resonance logging(NMR) and the array induction logging, according to the characteristics of low-resistivity reservoir.Use conventional logging and new technologies logging to establish comprehensive method to identify low-resistivity oil layer.
     The new methods was practical applied in northern Gulong area of Daqing Oilfield, which was testified practically and effedtively. the paper may also provide some important clues and methods to study low-resistivity reservoirs and provides the interpretation flow chart, the interpretation coincidence rate was significantly improved, and achieved the desired purpose. It may fully enhance the other oil field to further study in low-resisitivity reservoirs.
引文
[1]曾文冲.油气藏储集层测井评价技术[M].北京:石油工业出版社,1991:1-16.
    [2]王秀娟,王雪峰,殷树军等.古龙油田古66区块新增石油探明储量报告.大庆油田有限责任公司.2007.
    [3]中国石油天然气集团公司油气勘探部编.渤海湾地区低电阻率油气层测井技术与解释方法[M].北京:石油工业出版社,2000:1-83.
    [4]曾文冲.低电阻率油气层的类型,成因及评价方法的分析(上)[J].地球物理测井,1991,15(1):6-12.
    [5]曾文冲.低电阻率油气层的类型,成因及评价方法的分析(下)[J].地球物理测井,1991,15(3):149-152.
    [6]杜旭东,顾伟康,周开凤等.低阻油气层成因分类和评价及识别[J].世界地质,2004,23(3):255-259.
    [7]孙建盂,陈钢花,杨玉征等.低阻油气层评价方法[J].石油学报,1998.19(3):83-88.
    [8] Hill H J,Winsauer J D.Effect of clay and water salinity on elect rochemical behaviour of reservoir rock [ J ].AIME,1956,207:65-72.
    [9] Waxman M H,Smits L J M.Ionic double-layer conductivity in oil-bearing shaly sands[A].SPE 1683,1968.
    [10] Waxman M H.Elect rical conductivities in shaly sands:( I )The relation between hydrocarbon saturation and resistivity index;( II ):The temperature coefficient of elect rical conductivity [J].Journal of Pet roleum Technology,1974,26 (3):213-225.
    [11] Clavier C,Coates G,Dumanoir J.Theory and experimental basis for t he dual2water model for interpretation of shaly sands [A].SPE 6859,1977.
    [12] Silva P L,Bassiouni Z.Statistical evaluation of t he S2B conductivity model for water2bearing shaly formation [J].The Log Analyst,1986,27 (3):9-19.
    [13] Berg C R.Effective-medium resistivity models for calculation water saturation in porous rock [J].The Log Analyst,1996,37(3):16-28.
    [14]曾文冲,金秀珍,李本超.应用可动水分析法评价油气层的地质效果.胜利油田测井总站.1979.
    [15]莫修文.低阻储层导电模型的建立和测井方法研究[D].长春:长春科技大学,1998.
    [16]潘和平,樊政军.新疆塔北地区低电阻油气层测井评价技术[M].北京:中国地质大学出版社,2000:56-89.
    [17]孙建孟,程芳,王景花等.渤海岐口油田低阻油气层饱和度解释模型研究[J].测井技术,1996,20 (4):239-243.
    [18]刘丽琼,文环明,彭国力等.低阻油层识别方法研究[J].物探与测井,1998,5 (12):8-11.
    [19]杨青山,艾尚君,钟淑敏.低电阻率油气层测井解释技术研究[J].大庆石油地质与开发,2000,19 (5):33-36.
    [20]赵佐安,何绪全,唐雪萍.低电阻率油气层测井识别技术[J].天然气工业,2000,22 (4):33-37.
    [21]袁祖贵,楚泽涵,方小东.低电阻率油气层评价技术研究[J].特种油气藏,2003,10 (6):12-15.
    [22]杜旭东,顾伟康,周开凤等.低阻油气层成因分类和评价及识别[J].世界地质,2004,23 (3):255-260.
    [23]文政,徐广田,葛百成.大庆长垣以西地区复杂油水层成因及测井解释方法[J].大庆石油地质与开发,2005,24 (2):100-103.
    [24]陈东亮,王杰.低阻油层的测井识别技术及成因分析[J].内蒙古石油化工,2007,7(2):139-140.
    [25]闫伟林,殷树军,李郑辰等.古龙油田新增石油探明储量.大庆油田有限责任公司.2007.
    [26]华东石油学院岩矿教研室.沉积岩石学(上、下)[M].山东东营:石油工业出版社,2001,126-128.
    [27]李延丽.柴达木盆地游园沟油田中浅层油藏四性关系研究[J].天然气地球科学, 2006,17 (3):403-405.
    [28]周惠文,刘天佑.乌里雅斯太凹陷砂砾岩油气藏四性关系研究[J].天然气工业,2005, 25 (增刊B):128-132.
    [29]汪爱云,宋延杰,刘江等.葡西地区低阻油层的成因[J].大庆石油学院学报,2005,29(1) :18-21.
    [30]毛志强等.塔里木盆地油层低电阻成因试验研究(I)[J].测井技术,1999,23(4) :243-248.
    [31]毛志强等.塔里木盆地油层低电阻成因试验研究(II)[J].测井技术,1999,23(6) :404-410.
    [32]谭庭栋等.测井学[M] .北京:石油工业出版社,1998:34-56.
    [33]钟大康,朱筱敏,张枝焕等.东营凹陷下第三系碎屑岩储层孔隙演化与次生孔隙成因[J].石油与天然气地质,2003;30(6) :51-53.
    [34]左银卿,郝以岭,安霞等.高束缚水饱和度低阻油层测井解释技术[J].西南石油学院学报,2002,22(2) :27-31.
    [35]朱国华.粘土矿物对陕甘宁盆地中生界砂岩储集层性质的影响及其意义[J].石油勘探与开发,1988,15(4):54-56.
    [36]王忠东.利用薄层电阻率测井识别薄油气层[J].国外测井技术.2000,15(3):54-56.
    [37]雍世和,张超谟.测井数据处理与综合解释[M].山东东营:石油大学出版社,1996:156-189.
    [38]孙建孟,王永刚.地球物理资料综合应用[M].山东东营:石油大学出版社,2001:45-67.
    [39]欧阳健.加强岩石物理研究提高油气勘探效益[J].石油勘探与开发,2001,28(2): 1-5.
    [40]李宁.电阻率-孔隙度、电阻率-含油(气)饱和度关系的一般形式及其最佳逼近函数类型的确定(II),SEG北京国际地球物理研讨会论文详细摘要,1993,239-242.
    [41]汪孝芝译.低电阻率砂岩油藏的岩石物理评价[J].国外油气地质信息,2001,25(1):49-52.
    [42]刘彬等.密闭取心工艺在深井中的应用.钻采工艺,2008,31(3):124-125.
    [43]文政,赖强,魏国章.应用密闭取心分析资料求取饱和度参数[J].大庆石油学院学报,2006,30(5):17-19.
    [44]高楚桥等.用油水相对渗透率确定出低电阻油层产液性质[J].石油勘探与开发,2003,30(5):28-32.
    [45]林景晔,黎文,周宏敏.油、水同层产水率计算方法[J].大庆石油地质与开发,1998,17(1):34-39.
    [46]李舟波.利用测井方法识别复杂油气储层的流体性质[J].石油与天然气地质,2004,25(4):356-362.
    [47]李艳丽,楚泽涵,岳兴举.葡西地区葡萄花油层定量识别与评价方法[J].测井技术,2002,26(5):379-382.
    [48]李厚义.对油层水电阻率的思考[J].测井技术,1996,20(4):303-307.
    [49]李厚义.对低电阻油藏的一个误解及修正[J].测井技术,2002,26(2):148-149.
    [50]祝勇,贾孟强.应用核磁共振测井资料评价疑难储集层[J].测井技术,2005,29(4):353-355.
    [51]胡向阳,付琛,吴洪深等.测井新技术在低电阻率油气层识别与评价中的综合应用[J].石油天然气学报,2007,29(3):403-405.
    [52]肖立志.核磁共振成像测井与岩石核磁共振及其应用[M].北京:科学出版社,1987:46-64.
    [53] Hamada G.M.determining petrophysical properties of low resistivity reservorirs hsing nuclear magnetic resonance logs.SPE56789,1999.
    [54]田子立,孙以睿,刘桂兰.感应测井理论及其应用[M].北京:石油工业出版社,1984.103- 117.
    [55]邱辉丽.阵列感应测井在低电阻率油层的应用[J].国外测井技术,2006,21(2):31-34.
    [56]杨双玲,张士奇,魏庆芝.应用阵列感应资料识别油水层[J].大庆石油地质与开发,2007,26(3):122-124.
    [57]王苏斌,郑海涛,邵谦谦等.SPSS统计分析[M].北京:机械工业出版社,2003:380-393.
    [58]阮桂海,菜建平等.SAS统计分析实用大全[M].北京:清华大学出版社,2003:513-528.
    [59]齐宝权.用Bayes判别法确定单井的气水界面[J].测井技术,1995,19(6):435-438.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700