不同生长阶段沙地彰武松与樟子松抗逆生理特性比较研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为客观评价彰武松(Pinus densiflora var.zhangwuensis)的抗逆性及更好的理解其抗性机理,本次研究以4a生彰武松和樟子松(P. sylvestris var.mongolica)为试材开展了抗逆性试验。通过盆栽控水试验,对彰武松、樟子松苗木在不同水分梯度下形态指标和叶片内丙二醛(MDA)、过氧化氢酶(CAT)、叶绿素(Chl)、脯氨酸(Pro)和叶片含水率(LWC)5项抗旱生理指标进行了测定。结果表明:彰武松总干重、根干重、茎干重和根茎比等四个指标都显著高于樟子松,而单片针叶面积显著小于樟子松,针叶厚度略大。在不同水分梯度下,彰武松的MDA含量都小于樟子松,CAT活性、Pro含量都高于樟子松。轻度干旱区(40%FMC, SWP=-4.82bar)樟子松叶片中MDA、CAT和Pro较对照区(100%FMC, SWP=-2.81bar)均呈现上升趋势,在中度干旱区(30%FMC,
     SWP=-10.35bar)这三个指标继续明显升高,在重度干旱区(20%FMC, SWP=-20.41bar)它们达到了最大值;而轻度干旱区中彰武松叶片的这三个生理指标反而低于对照区,在中度干旱区它们才开始增大,尤其是CAT活性较对照区显著增加,这些指标也在重度干旱区中达到了最大值。这表明彰武松幼苗在更低的土壤含水率下才表现出胁迫伤害,并且在开始受到胁迫伤害时就迅速提高了保护酶(CAT)活性,增加了渗透调节物质含量(Pro),实现了对干旱胁迫较强的忍耐性和较好的适应性。在不同水分梯度下,彰武松Chl含量和LWC均大于樟子松,这两个指标在同一树种中的变化趋势也相同,大小排序均为:对照区>轻度干旱区>中度干旱区>重度干旱区。
     本次研究通过采用盆栽试验法研究NaCl、Na2CO3、NaHCO33种单盐胁迫及NaOH碱胁迫对苗木生长和叶片生理生化指标的影响。栽培基质为章古台当地细沙,在设置盐胁迫处理时,使基质总盐量为4g?kg-1;设置NaOH胁迫,使基质pH值达9.0。结果表明:彰武松苗木在盐碱胁迫下受害级别较小,根系忍耐指数(RTI)较大。盐碱胁迫下彰武松叶片丙二醛(MDA)含量没有显著提高,而在胁迫诱导下,过氧化氢酶(CAT)活性显著提高,最大增幅是对照的22.6倍。盐碱胁迫下彰武松叶片叶绿素(Chl)含量降幅较小,叶片含水率(LWC)有所提高。樟子松与彰武松表现出了不同规律,盐碱胁迫下其MDA含量均提高(NaCl处理)和显著提高(其他三个处理),但其CAT活性没有显著提高。盐碱胁迫下樟子松叶片Chl含量显著降低,Na2CO3、NaHCO3及NaCl处理下樟子松Chl含量分别是对照的36.2%、21.7%和62.3%。另外,胁迫下樟子松LWC有所下降。初步结论:彰武松通过提高CAT活性和维持较高Chl和LWC含量保证了其较高的耐盐碱性,其耐盐碱性高于樟子松。彰武松针叶内Fe元素含量较高是其保持较高CAT活性和Chl含量的一个原因,而Zn、Cu元素含量较高也与其抗性强有关。对于彰武松来说,盐碱胁迫并未造成干旱胁迫,因此其生长受到的抑制并不是干旱胁迫造成的,而是由盐碱胁迫引发的离子毒害和养分不平衡等原因造成的。
     本次研究通过采用冰箱冷冻方法,对两个树种开展了不同温度梯度的抗寒胁迫试验。将电导法和生理生化法相结合,通过对胁迫前后苗木叶片相对电导率和生理生化指标(MDA、CAT、Pro、可溶性糖SS)进行测定,试图鉴定两个树种的抗寒性并明确它们的抗寒机理。结果表明:经抗寒性锻炼后,彰武松和樟子松的半致死温度分别为-54.23℃和-50.34℃,表明二者均是抗寒性较强的树种,低温适应后彰武松抗寒性略高于樟子松。伴随胁迫程度的加深,两个树种的Pro和SS变化模式基本相同,而CAT活性变化模式有所不同。在低于-20℃之后,彰武松CAT活性逐渐升高,而樟子松则保持恒定。在各温度梯度下,彰武松Pro和SS含量低于樟子松,而CAT活性高于樟子松。彰武松和樟子松抗寒机理略有不同:从各指标数量上看,彰武松侧重于启动抗氧化酶活性而抵御胁迫伤害,而樟子松侧重于利用渗透调节能力来增强抗寒性。从各指标变化随胁迫程度的变化趋势看,在轻度低温胁迫下,两个树种均通过提高渗透调节物质(Pro和SS)含量来增加抗寒性;在能造成胁迫伤害的重度低温胁迫下(-40℃~-60℃),彰武松提高了CAT活性,并且维持了SS增量,使其MDA含量增幅较小,而樟子松没有这样的机制。
     本次研究还采用Li-6400光合测定系统对性成熟(18a)阶段彰武松和樟子松光合及蒸腾指标不同季节日变化进行了测定,并采用切枝蒸腾法对两个树种叶片气孔蒸腾和角质层蒸腾进行对比测定,评价了气孔开闭敏感性,探讨了两个树种光合生产与蒸腾耗水特性。结果表明:在同样生境条件下,彰武松比樟子松有较大的光合速率(Pn)和较小的蒸腾速率(Tr)。在5月和7月,彰武松的Pn和Tr日变化呈现明显双峰型,其Pn和Tr“午休”现象均主要受气孔限制;在10月呈单峰型。樟子松的Pn和Tr日变化在整个生长季均呈单峰型,而且,彰武松日光合量(DAP)均高于樟子松,是樟子松的163.4%(5月)、211.1%(7月)和183.6%(10月)。光响应曲线参数表明:在不同月份,彰武松最大光合速率(Pmax)均大于樟子松,且光饱和点(LSP)较高,光补偿点(LCP)较低。在任意被测时刻,彰武松气孔导度(Gs)和Tr都小于樟子松。彰武松具有较小气孔和角质层蒸腾速度,并且在同样干旱条件下,彰武松气孔下陷,其气孔的开闭反应更加敏感。彰武松水分利用效率(WUE)较高,约是樟子松的2.29倍。彰武松单位面积叶氮含量(Narea)和光合氮素利用效率(PNUE)较高,且叶肉胞间气相导度(gias)较大。彰武松气孔直径和密度均较小也是其能保持较小Gs、Tr,从而保持较大WUE的一个原因。这些结果暗示,彰武松以其高的光合速率和低的蒸腾耗水特性,提高水分利用效率,以其敏感的气孔开闭机制和旱生叶片结构进而实现在干旱半干旱地区的速生特性。
For an objective evaluation of stress resistance and a better understanding of its mechanisms in Pinus densiflora var. zhangwuensis, four-year-old P. densiflora var. zhangwuensis and P. sylvestris var. mongolica was adopted as test materials, and experimental researches on adversity resistance were carried out. With a potting experiment, morphological parameters and five physiological indicators including malondialdehyde(MDA), catalase(CAT), chlorophyll(Chl), proline(Pro), and leaf water content(LWC) of P. densiflora var. zhangwuensis and P. sylvestris var. mongolica were measured in different soil moisture gradients. The results showed that: P. densiflora var. zhangwuensis had significantly heavier total dry weight, dry weight of root, dry weight of stem and greater ratio of root and stem, had significantly smaller single needle area, and had slightly more thick needle than P. sylvestris var. mongolica. In different water gradients, P. densiflora var. zhangwuensis had lower MDA contents, and higher CAT and Pro contents than P. sylvestris var. mongolica. In mild drought area(40%FMC, SWP=-4.82bar), MDA, CAT and Pro contents of P. sylvestris var. mongolica had a ascending trend in comparison with those in control area(100%FMC, SWP=-2.81bar), and the three physiological indicators had a further increase in moderate drought area(30%FMC, SWP=-10.35bar) and reached to the maximum in serious drought area(20%FMC, SWP=-20.14bar). By contrast in mild drought area these three physiological indicators in leaves of P. densiflora var. zhangwuensis were lower than those in control area, and began to increase in moderate drought area, especially the CAT content was significantly higher than that in control area, and they also reached to the maximum in serious drought area. The above results determinated that P. densiflora var. zhangwuensis showed stress symptoms at a lower soil moisture, and it could endure and adapt to drought stress by improving protective enzyme activity(CAT) and increasing osmotic substance(Pro). At different moisture gradients, both Chl and LWC of P. densiflora var. zhangwuensis were more than those of P. sylvestris var. mongolica, and these two indicators in the same species had the same changing trend,which was : CK > mild drought area > moderate drought area > serious drought area.
     For an objective evaluation of salinity-alkalinity tolerance and a better understanding of its mechanisms in Pinus densiflora var. zhangwuensis, 4-year-old P. densiflora var. zhangwuensis and P. sylvestris var. mongolica were studied. Pot experiments were used to examine the effects of three types of salt (NaCl, Na2CO3, and NaHCO3) and alkali stress (NaOH) on seedling growth and physiological and biochemical indices. The substrate was fine sand taken from Zhanggutai sandy land, Liaoning Province, China. In the salt stress treatments, the matrix salt content was 4 g salt kg-1, and in NaOH stress treatments, the matrix pH value was 9.0. In P. densiflora var. zhangwuensis, the injury level was smaller, and the root tolerance index was bigger under salt-alkali stress. Malondialdehyde (MDA) content did not significantly increase under salt-alkali stress, while catalase (CAT) activity was significantly induced by stress, by as much as 22.6 times that of the control. Finally, chlorophyll (Chl) content did not significantly decline, and leaf water content (LWC) increased slightly. Pinus sylvestris var. mongolica responded differently to salt-alkali stress; its MDA content increased (NaCl treatment) or significantly increased (remaining three treatments), but its CAT activity did not increase significantly. Leaf Chl content declined significantly under salt-alkali stress, with Chl contents in the Na2CO3, NaHCO3, NaCl treatments 36.2%, 21.7%, and 62.3% lower than in the control. In addition, LWC decreased in leaves under stress. The results suggest that P. densiflora var. zhangwuensis has greater salt-alkali tolerance than P. sylvestris var. mongolica and that it ensures this tolerance by increasing CAT activity and maintaining high contents of Chl and leaf water. Higher levels of iron in needles of P. densiflora var. zhangwuensis enhanced CAT activity and Chl content, while higher levels of elemental zinc and copper were also associated with stronger resistance. In P. densiflora var. zhangwuensis, salinity stress did not cause drought stress, so growth was not inhibited by drought stress, but by ion toxicity and nutrient imbalance due to salinity stress.
     Freezer method was used to carry out cold-stress test at different temperature gradients. With the combination between conductivity method and physiological method, relative conductivity as well as physiological and biochemical indicators such as MDA, CAT, Pro and SS in leaves of seedlings before and after stress were measured in order to identify cold resistance of the two species and to clarify their mechanism of cold hardiness. The results showed that: After cold resistance exercise, half-lethal temperature of P. densiflora var. zhangwuensis and P. sylvestris var. mongolica was -54.23℃and -50.34℃, respectively, which indicated that both species were strong cold hardiness, but a little cold hardiness in P. densiflora var. zhangwuensis higher than P. sylvestris var. mongolica due to cold acclimation. With the deepening of stress, Pro and SS changes model of two species was basically the same, while CAT activity in different patterns. In lower than -20℃, the CAT activity in leaves of P. densiflora var. zhangwuensis seedlings gradually increased, while that of P. sylvestris var. mongolica remained constant. In every temperature gradient, Pro and SS content was lower in leaves of P. densiflora var. zhangwuensis than P. sylvestris var. mongolica, while CAT activity of the former higher than the latter. The two species had slightly different cold-resistance mechanisms: From the point of view of content of indicators, P. densiflora var. zhangwuensis focused on using higher antioxidant enzyme activities to resist stress injury, and P. sylvestris var. mongolica focused on using higher ability of osmotic adjustment to enhance cold tolerance. From the point of view of variation trend in the indicators with the stress deepening, in mild cold stress, the two species could increase cold hardiness by increasing osmolyte (Pro and SS) content. But in severe cold stress (-40℃~-60℃) that caused stress injuries, P. densiflora var. zhangwuensis had a smaller increase of MDA by increasing CAT activity and maintaining the SS increments, while P. sylvestris var. mongolica had no such mechanism.
     In order to photosynthesize, land plants must open their stomata to exchange small amounts of CO2 at the cost of losing a lot of water vapor through transpiration. This gas exchange is unequal in that more water is lost than CO2 is taken in. In general, fast growing species are characterized by their high photosynthetic capacity, most of which is achieved at the expense of consuming large amounts of water. This trade-off poses a serious challenge to forestry in the selection of fast-growing tree species in arid and semiarid areas. The ideal forestry species for drier climates should maintain a high photosynthetic capacity as well as low water consumption for transpiration, but such species are very rare. In this study, the LI-6400 (LICOR, Inc. Lincoln, NE, USA) portable photosynthesis system was employed to measure diurnal changes in photosynthetic and transpiration indices in sexually mature P. densiflora var. zhangwuensis and P. sylvestris var. mongolica (18 years old). In addition, the cut-branch transpiration method was used to compare stomatal and cuticular transpiration in order to evaluate the sensitivity of stomatal opening and closing and to characterize the photosynthetic productivity and water consumption for transpiration in these two species in different growing seasons. P. densiflora var. zhangwuensis had a higher photosynthesis rate (Pn) and a lower transpiration rate (Tr) than P. sylvestris var. mongolica under the same conditions. In May and July, the diurnal changes of Pn and Tr in P. densiflora var. zhangwuensis formed double-peaked curve as a result of mid-day stomatal limitation, while it formed single-peaked curve in October. The daily variation of Pn and Tr in P. sylvestris var. mongolica exhibited a monopeak curve throughout the growing season. The net photosynthesis per day in P. densiflora var. zhangwuensis was higher than in P. sylvestris var. mongolica; values for the former were 163.4 (May), 211.1 (July), and 183.6 (October) percent of the latter. The photoresponse parameter measurements showed that, in different months, the maximum rate of photosynthesis of P. densiflora var. zhangwuensis was greater than that of P. sylvestris var. mongolica, and the former also had a higher light saturation point and a lower light compensation point. The stomatal conductivity (Gs) and Tr of P. densiflora var. zhangwuensis were lower than those of P. sylvestris var. mongolica when measured at random times. The stomatal and cuticular Tr of P. densiflora var. zhangwuensis were lower, and in the same drought conditions, its stomata were deeper and had a higher sensitivity for opening and closing. Water use efficiency (WUE) of P. densiflora var. zhangwuensis was 2.29 times that of P. sylvestris var. mongolica. Analysis of the correlation between Gs and WUE showed that P. densiflora var. zhangwuensis could maintain high WUE when Gs levels were high. In May and July, when P. densiflora var. zhangwuensis exhibited midday photosynthetic depression, its Gs level was low, usually in the 90~200 mmol ? m-2 ? s-1 range. At the same time, its WUE was higher than that of P. sylvestris var. mongolica, indicating that P. densiflora var. zhangwuensis could effectively conserve water by closing its stomata rapidly at midday, so as to maintain its high WUE. Nitrogen content per unit leaf area(Narea) and photosynthetic nitrogen use efficiency (PNUE) was higher, and gaseous conductance through intercellular air space(gias) was also larger in P. densiflora var. zhangwuensis. The stomata diameter and density was small, which was also able to maintain a smaller Gs and Tr, and thus a reason to maintain a larger WUE in P. densiflora var. zhangwuensis. These results implied that P. densiflora var. zhangwuensis can improve its WUE, yielding its higher Pn and lower Tr, and achieves its fast growth in arid and semiarid regions through its sensitive stomatal response and leaf xeromorphism.
引文
[1]Huey R B, Carlson M, Crozier L, et al. Plants versus animals: Do they deal with stress in different ways?[J]. Integ. and Comp. Biol., 2002, 42: 415-423.
    [2]Seki M, Kamei A, Yamaguchi-Shinozaki K, et al. (2003). Molecular responses to drought, salinity and frost: common and different paths for plant protection[J]. Current Opinion in Biotechnology, 2003, 14: 194-199.
    [3]Madhavarao K V, Raghavendra A S, Reddy K J. Physiology and molecular biology of stress tolerance in plants[M]. Dordrecht: Springer, 2006. 1-14.
    [4]Chaves M M, Pereira J S, Maroco J, et al. How plants cope with water stress in the field? photosynthesis and growth[J]. Annals of Botany, 2002, 89: 907-916.
    [5]Asada K. Production and scavenging of reactive oxygen species in chloroplasts and their functions[J]. Plant Physiology, 2006, 141: 391-396.
    [6]Murphy M P. How mitochondria produce reactive oxygen species[J]. Biochem J., 2009, 417: 1-13.
    [7]Mittler R, Vanderauwera S, Gollery M, et al. Reactive oxygen gene network of plants[J]. Trends in Plant Science, 2004, 9(10): 490-498.
    [8]Halliwell B. Reactive species and antioxidants. Redox biology is a fundamental theme of aerobic life[J]. Plant Physiol., 2006, 141: 312-322.
    [9]Mohammadian R, Moghaddam M, Rahimian H, et al. Effect of early season drought stress on growth characteristics of sugar beet genotypes[J]. Turk J Agric For, 2005, 29: 357-368.
    [10]Navarro A, Vicente M J, Martínez-Sánchez J J, et al. Influence of deficit irrigation and paclobutrazol on plant growth and water status in Lonicera implexa seedlings[J]. Acta Horticulturae, 2008, 782: 299-304.
    [11]Blum A. Drought resistance, water-use efficiency, and yield potential—are theycompatible, dissonant, or mutually exclusive?[J]. Australian Journal of Agricultural Research, 2005, 56: 1159-1168.
    [12]Morgan J M. Osmoregulation and water in higher plants[J]. Ann. Rev. Plant Physiol. 1984, 35: 299-319.
    [13]Xiong L, Zhu J K. Molecular and genetic aspects of plant responses to osmotic stress[J]. Plant, Cell and Environment, 2002, 25: 131-139.
    [14]崔震海,王艳芳,樊金娟,等.植物渗透调节的研究进展[J].玉米科学, 2007, 15(6): 140-143.
    [15]Zhang J X, Nguyen H T, Blum A. Genetic analysis of osmotic adjustment in crop plants[J]. Journal of Experimental Botany, 1999, 50(332): 291-302.
    [16]Sanchez F J, Manzanares M, de Andres E F, et al. Turgor maintenance, osmotic adjustment and soluble sugar and proline accumulation in 49 pea cultivars in response to water stress[J]. Field Crops Res, 1998, 59: 225-235.
    [17]Gebre G M, Kuhns M R. Effects of water stress preconditioning on gas exchange and waterrelations of Populus deltoides clones[J]. Can. J. For. Res., 1993, 23: 129 l-1297.
    [18]罗建平,顾月华,王圣兵,等.抗坏血酸对沙打旺原生质体分离和培养中膜损伤及相关酶活性的影响[J].植物生理学报, 1999, 25(4): 343-349.
    [19]宫长荣,陈江华,汪耀富.烘烤中的膜脂过氧化作用及其对烟叶内在质量的影响[J].中国烟草学报, 1999, 3: 11-15.
    [20]孔繁翔,桑伟莲.小麦铝抗性和敏感品系对铝胁迫的生理生化反应[J].应用与环境生物学报, 2004, 10(5): 559-562.
    [21]陈少裕.膜脂过氧化对植物细胞的伤害[J].植物生理学通讯, 1991, 27(2): 84-89.
    [22]Noctor G, Veljovic-Jovanovic S, Driscoll S, et al. Drought and oxidative load in the leaves of C3 plants: a predominant role for photorespiration? [J]. Annals of Botany, 2002, 89: 841-850.
    [23]卫星,王政权,张国珍,等.水曲柳苗木不同根序对干旱胁迫的生理生化反应[J].林业科学, 2009, 45(6): 16-21.
    [24]赵银河,祝钰,孙明高,等.干旱和盐分交互胁迫对紫荆、皂角幼苗保护酶活性的影响[J].山东农业大学学报(自然科学版), 2007, 38(2): 173-177.
    [25]Roy R, Mazumder P B, Sharma G D. Proline, catalase and root traits as indices of drought resistance in bold grained rice (Oryza sativa) genotypes[J]. African Journal of Biotechnology, 2009, 8 (23): 6521-6528.
    [26]Yoshiba Y, Kiyosue T, Nakashima K, et al. Regulation of levels of proline as an osmolyte in plants under water stress[J]. Plant Cell Physiol, 1997, 38(10): 1095-1102.
    [27]Silva-Ortega C O, Ochoa-Alfaro A E, Reyes-Agüero J A, et al. Salt stress increases the expression of p5cs gene and induces proline accumulation in cactus pear[J]. Plant Physiol Biochem, 2008, 46(1): 82-92.
    [28]Prado F E, Boero C, Gallarodo M, et al. Effect of NaCl on germination, growth and soluble sugar content in Chenopodium quinoa wild seeds[J]. Bot. Bull. Acad. Sin., 2000, 41: 27-34.
    [29]Eagles CF, Williams J, Louis D V. Recovery after freezing effect of sugar concentration on cold acclimation in Avena sativa L. Lolium perenne L. and L. multiorum Lam[J]. New Phytol.,1993, 123: 477-483.
    [30]Smeekens S, Sugar-induced signal transduction in plants[J]. Ann. Rev. Plant Biol., 2000, 51: 49-81.
    [31]Pospí?ilováJ. Participation of phytohormones in the stomatal regulation of gas exchange during water stress[J]. Biologia Plantarum, 2003, 46 (4): 491-506.
    [32]Shimazaki K, Doi M, Assmann S M, et al. Light regulation of stomatal movement[J]. Annual Review of Plant Biology, 2007, 58: 219-247.
    [33]Griffiths H, Parry M A J. Plant responses to water stress. Ann. Bot., 2002, 89: 801-802.
    [34]Lawlor D W. Limitation to photosynthesis in water stressed leaves: stomata vs. metabolism and the role of ATP[J]. Ann. Bot., 2002, 89: 1-15.
    [35]Moran J F, Becana M, Iturbe-Ormaetxe I, et al. Drought induces oxidative stress in pea plants[J]. Planta, 1994, 194(3): 346-352.
    [36]Cregg B M. Carbon allocation, gas exchange, and needle morphology of Pinus ponderosa genotypes known to differ in growth and survival under imposed drought[J]. Tree Physiol, 1994, 14: 883-898.
    [37]王珲,夏玉芳,陆飞,等.马尾松针叶解剖构造及其抗旱适应性初步研究[J].贵州林业科技, 2005, 33(4): 17-20.
    [38]Marshall J G, Rutledge R G, Blumwald E, et al. Reduction in turgid water volume in jack pine, white spruce and black spruce in response to d rought and paclobutrazol[J]. Tree Physiol, 2000, 20: 701-707.
    [39]刘正刚,罗承德,郭黎,等.辐射松、油松幼苗抗旱性能比较[J].四川林业科技, 2007, 28(6):52-54.
    [40]SlugeňováK, DitmarováL, Kurjak D, et al. Drought and aluminium as stress factors in Norway spruce(Picea abies [L.]Karst) seedlings. Journal of Forest Science, 2011, 57(12): 547-554.
    [41]吴春芳,贾小明,许晓英.磷营养对侧柏、樟子松、油松抗旱性的影响[J].西北林学院学报, 2005, 20(1): 53-56.
    [42]Carter D L. Problems of salinity in agriculture. In A. Poljakoff-Mayber and J. Gale (Eds.), Plants in Saline Environment[M]. Berlin: Springer-Verlag, 1975. 25-35.
    [43]Flowers T J, Yeo A R. Breeding for salinity resistance in crop plants: where next? [J]. Aust.J. Plant Physiol., 1995, 22: 875-884.
    [44]Davenport S B, Gallego S M, Benavides M P, et al. Behaviour of antioxidant defense system in the adaptive response to salt stress in Helianthus annuus L. cells[J]. Plant Growth Regulation, 2003, 40(1): 81-88.
    [45]Munns R. Physiological processes limiting plant growth in saline soils: some dogmas and hypotheses[J]. Plant, Cell and Environment, 1993, 16: 15-24.
    [46]Yasar F, Ellialtioglu S, Yildiz K. Effect of salt stress on antioxidant defense systems, lipid peroxidation, and chlorophyll content in green bean[J]. Russian Journal of Plant Physiology, 2008, 55(6): 782-786.
    [47]教忠意,王保松,施士争,等.林木抗盐性研究进展[J].西北林学院学报, 2008 , 23(5) : 60-64.
    [48]Krauss K W, Chambers J L , Allen J A. Root and shoot responses of Taxodium distichum seedlings subjected to saline flooding[ J] . Environ mental and Experimental Botany, 1999, 41(1) : 15-23.
    [49]Pezeshki S R, DeLaune R D, Patrick W H.. Effect of salinity on leaf ionic content and photosynthesis of Taxodium distichum L[ J ]. American Midland Naturalist , 1988, 119(1) : 185-192.
    [50]马焕成,蒋东明.木本植物抗盐性研究进展[J].西北林学院学报, 1998, 18(1): 52-59.
    [51]Sands R, Clarke A R P. Response of radiata pine to salt stress. I. Water relations, osmotic adjustment and salt uptake[J]. Australian Journal of Plant Physiology, 1977, 4(4) : 637– 646.
    [52]Kayama M, Quoreshi A M, Kitaoka S, et al. Effects of deicing salt on the vitality and health of two spruce species, Picea abies Karst., and Picea glehnii Masters planted along roadsides in northern Japan[J]. Environmental Pollution, 2003, 124(1):127-137.
    [53]Hernández J A, Olmos E, Corpas F J, et al. Salt-induced oxidative stress in chloroplasts of pea plants[J]. Plant Science, 1995, 105: 151-167.
    [54]Thomashow M F. Plant cold acclimation: freezing tolerance genes and regulatory mechanisms[J]. Annu. Rev. Plant Physiol. Plant Mol. Biol., 1999, 50: 571-599.
    [55]Yons J M. Chilling injury in plants[J]. Annu . Rev . Plant Physiol ., 1973 , 24: 445-466.
    [56]Wolfe J, Bryant G. Freezing, drying and/or vitrification of membrane-solute-water systems[J]. Cryobiology, 1999, 39: 103-129.
    [57]Steponkus P L. Advances in low-temperature biology[M]. London: JAI Press, 1993. 211-312.
    [58]Guy C L. Cold acclimation and freezing stress: role of protein metabolism. Annu.Rev. Plant Physiol. Plant Mol. Biol., 1990, 41: 187-223.
    [59]Lindgren K, Hallgren J E. Cold acclimation of Pinus contorta and Pinus sylvestris assessed by chlorophyll fluorescence[J]. Tree Physiology, 1993, 13: 97-106.
    [60]Beck EH, Heim R, Hansen J. Plant resistance to cold stress: mechanisms and environmental signals triggering frost hardening and dehardening[J]. J Biosci., 2004, 29(4): 449-59.
    [61]李晶,阎秀峰,祖元刚.低温胁迫下红松幼苗活性氧的产生及保护酶的变化[J].植物学报, 2000, 42 (2): 148-152.
    [62]龚月桦,樊军锋,周永学,等.奥地利黑松和花旗松的抗寒性研究[J].西北农林科技大学学报, 2006, 34(12): 105-109.
    [63]许绍惠,边立琪,郭泳,等.白皮松抗寒性及抗寒育苗技术的研究[J].林业科学, 1994, 30(6): 497-505.
    [64]龚月桦,周永学,樊军锋,等.美国黄松、班克松和油松的抗寒性比较[J].应用生态学报, 2006, 17(8): 1389-1392.
    [65]Maronek D M, Flint H L. Cold hardiness of needles of Pinus strobus L. as a function of geographic source[J]. Forest Science, 1974, 20(2): 135-141(7).
    [66]李文华,吴万兴,鲁周民,等.4种落叶松的引种效果与光合日进程[J].西南林学院学报, 2006, 26(4): 1-4.
    [67]何文兴,易津,李洪梅.根茎禾草乳熟期净光合速率日变化的比较研究[J].应用生态学报, 2004, 15(2): 205-209.
    [68]林保花,刘金祥,肖生鸿,等.粤西乡土香根草光合生理生态特征日动态分析[J].应用生态学报, 2006, 17(11): 2041-2045.
    [69]姜小文,易干军,霍合强,等.毛叶枣光合特性研究[J].果树学报, 2003, 20(6): 479-482.
    [70]王焘,郑国生,邹琦.干旱与正常供水条件下小麦光合午休及其机理的研究[J].华北农学报, 1997, 12(4): 48-51.
    [71]Ding Y J, Min L Z. Study on field-grown maize introduced into Tibetan Plateau: Some characteristics of diurnal variation of photosynthesis[J]. Acta Agronomica Sinica, 2002, 28(4): 475-479.
    [72]Cornish K, Radin J W, Turcotte E L, et al. Enhanced photosynthesis and stomatal conductance of Pima Cotton(Gossypium barbadense L.)Bred for increased yield[J]. Plant Physiology, 1991, 97:484-489.
    [73]翁晓燕,陆庆,蒋德安.水稻Rubisco活化酶在调节Rubisco活性和光合日变化中的作用[J].中国水稻科学, 2001, 15(1): 35-40.
    [74]Jiang D A, Lu Q, Weng X Y, et al. Role of key enzymes for photosynthesis in the diurnal changes of photosynthetic rate in rice[J]. Acta Agronomica Sinica, 2001, 27(3): 301-307.
    [75]Cayón Salinas D G. The evolution of photosynthesis, transpiration and chlorophyll during the development of leaves of plantain (Musa AAB Simmonds). Infomusa, 2001, 10(1): 12-15.
    [76]Gower ST, Reich PB, Son Y. Canopy dynamics and aboveground production of five tree species with different leaf longevities. Tree Physiology, 1993, 12: 327–345.
    [77]Sharp R E, Matthews M A, Boyer J S. Kok effect and the quantum yield of photosynthesis-Light partially inhibits dark respiration[J]. Plant Physiol, 1984, 75: 95-101.
    [78]Heschel M S, Stinchcombe J R, Holsinger K E, et al. Natural selection on light response curve parameters in the herbaceous annual, Impatiens capensis[J]. Oecologia, 2004, 139: 487-494.
    [79]Campostrini E, Maestri M. Photosynthetic potential of five genotypes of Coffea canephora pierre[J]. Revista Brasileira de Fisiologia Vegetal, 1998, 10(1):13-18.
    [80]苏文华,张光飞.二回原始观音座莲蕨光合作用的生理生态学研究[J].广西植物, 2002, 22(5): 449-452.
    [81]宋清海,张一平,郑征,等.热带季节雨林冠层树种绒毛番龙眼的光合生理生态特性[J].应用生态学报, 2006, 17(6): 961-966.
    [82]Ribeiro R V, Machado E C, de Oliveira R F. Temperature response of photosynthesis and its interaction with light intensity in sweet orange leaf discs under non-photorespiratory condition[J]. Ciênc. Agrotec., 2006, 30(4): 670-678.
    [83]胡新生,刘建伟,王世绩.四个杨树无性系在不同温度和相对湿度条件下净光合速率的比较研究[J].林业科学, 1997, 33(2): 107-116.
    [84]Boussingault J B. Agronomie, chimie agricole et physiologie[M],2nd edn. Paris: Mallet Bachelier. 1868. 236-312.
    [85]武维华,张蜀秋,袁明,等.植物生理学[M].北京:科学出版社, 2003. 155-156.
    [86]Paul M J, Foyer C H. Sink regulation of photosynthesis[J]. Journal of Experimental Botany, 2001, 50(360): 1383-1400.
    [87]王文杰,祖元刚,杨逢建,等.边缘效应带促进红松生长的光合生理生态学研究[J].生态学报, 2003, 23(11): 2318-2326.
    [88]袁凤辉,关德新,吴家兵,等.长白山红松针阔叶混交林林下光合有效辐射的基本特征[J].应用生态学报, 2008, 19(2): 231-237.
    [89]吴家兵,关德新,孙晓敏,等.长白山阔叶红松林主要树种及群落冠层光合特征[J].中国科学D辑地球科学, 2006, 36(增刊I): 83-90.
    [90]孔祥文,刘贵峰,赵月田,等.红松在不同光环境下的生长及结构的变化[J].吉林林业科学, 2005, 34(4): 29-33.
    [91]洪淑媛,吴泽民,刘西军.黄山松生理生态特性研究[J].安徽农业大学学报, 2006, 33(4):462-467.
    [92]郑淑霞,上官周平.黄土高原油松和刺槐叶片光合生理适应性比较[J].应用生态学报, 2007,18(1): 16-22.
    [93]汪杰,张纯明.两种针叶树种光合特性研究[J].水土保持学报, 2004, 18(5): 159-162.
    [94]龚伟,宫渊波,胡庭兴,等.湿地松幼树冠层光合作用日变化及其影响因素[J].浙江林学院学报, 2006, 23(1): 29-34.
    [95]刘国刚,肖杰,颜丽君,等.异砧嫁接红松生理指标与生长规律[J].东北林业大学学报, 2004, 32(4): 12-13.
    [96]Vanderklein D, Martínez-Vilalta J, Lee S, et al. Plant size, not age, regulates growth and gas exchange in grafted Scots pine trees. Tree Physiology, 2007( 27): 71–79.
    [97]谢会成,姜志林,尹建道.杉木的光合特性及其对CO2倍增的响应[J].西北林学院学报, 2002, 17(2): 1-3.
    [98]肖文发,徐德应,刘世荣,等.杉木人工林针叶光合与蒸腾作用的时空特征[J].林业科学, 2002, 38(5): 38-46.
    [99]张小全,徐德应.杉木中龄林不同部位和叶龄针叶光合特性的日变化和季节变化[J].林业科学, 2000, 36(3): 19-26.
    [100]张小全,徐德应.温度对杉木中龄林针叶光合生理生态的影响[J].林业科学, 2002, 38(3): 27-33.
    [101]Sandford A P, Jarvis P G. Stomata1 responses to humidity in selected conifers[J]. Tree Physiology, 1986, 2: 89-103.
    [102]黎丞湘,张学历.彰武松生长量及其生理指标分析[J].辽宁林业科技, 1997, 1: 58-59.
    [103]张树杰,黎丞湘,袁晓颖.赤松-新变种[J].植物研究, 1995, 15(3): 338-341.
    [104]邢兆凯,焦树仁,吴祥云,等.辽西北沙漠化土地恢复治理技术研究[M].沈阳:辽宁大学出版社, 2000. 173-181.
    [105]雷泽勇,周凤燕,王曼,等.彰武松起源的研究[J].北华大学学报, 2004, 5(2): 169-175.
    [106]刘亚平,黎丞湘,张学历,等.彰武松抗性试验[J].防护林科技, 1999, 3: 19-21.
    [107]夏新莉,郑彩霞,尹伟伦.土壤干旱胁迫对樟子松针叶膜脂过氧化、膜脂成分和乙烯释放的影响[J].林业科学, 2000, 36(3): 8-12.
    [108]邓斌,曾德慧.添加氮肥对沙地樟子松幼苗生物量分配与叶片生理特性的影响[J].生态学杂志, 2006, 25(11): 1312-1317.
    [109]黎承湘,张学利,刘淑玲,等.彰武松生长及适应性初步研究[J].中国生态农业学报, 2003, 11(1): 122-123.
    [110]雷泽勇,孟鹏,周凤艳.彰武松主要特性的研究[J].沈阳农业大学学报, 2003, 34(4): 267-271.
    [111]满多清,孙坤,刘世增,等.干旱荒漠区樟子松幼苗的抗逆性分析[J].甘肃农业大学学报, 2004, 39(5): 543-547.
    [112]白鸥,黎承湘.樟子松抗盐碱试验报告[J].辽宁林业科技, 1992(1): 6-9.
    [113]李铭枢.樟子松耐热抗寒特性研究初报[J].辽宁林业科技, 1985, 4: 26-28.
    [114]王爱芳,张钢,魏士春,等.不同发育时期樟子松(Pinus sylvestris var.mongolica)的电阻抗参数与抗寒性的关系[J].生态学报, 2008, 28(11): 5741-5749.
    [115]郭连生,田有亮. 4种针叶幼树的光合生理特性与大气湿度关系的研究[J].生态学报, 1994, 14(2): 136-141.
    [116]朱教君,康宏樟,李智辉,等.水分胁迫对不同年龄沙地樟子松幼苗存活与光合特性影响[J].生态学报, 2005, 25(10): 2527-2533.
    [117]Berninger F, M?kel? A, Hari P. Optimal control of gas exchange during drought: empirical evidence[J]. Annals of Botany, 1996(77): 469-476.
    [118]吴春荣,金红喜,严子柱,等.樟子松在西北干旱沙区的光合日变化特征[J].干旱区资源与环境, 2003, 17(6): 144-146.
    [119]魏雅芬,方杰,赵学勇,等.科尔沁沙地樟子松人工林不同年龄针叶生理生态性状[J].植物生态学报, 2011, 35 (12): 1271–1280.
    [120]金明仕(Kimmins,J.P.)著;曹福亮编译.森林生态学[M].北京:中国林业出版社, 2005. 306-312.
    [121]苏芳莉,刘明国,韩辉.樟子松不同林型沙地土壤肥力的差异[J].东北林业大学学报, 2006, 34(6): 26-28.
    [122]宋晓东.樟子松人工林枯死的起因与防治初探[J].防护林科技, 1993, 3(增刊): 5-9.
    [123]吴锈钢,刘桂荣,李淑华,等.辽宁省樟子松衰弱枯死原因及防治对策[J].内蒙古林业科技, 2003(3): 16-20.
    [124]韩辉,王国晨,袁春良,等.科尔沁沙地东南部地区林业现状及问题探讨[J].防护林科技, 2007(2): 80-81.
    [125]孙晶波,满东斌,李双池.加强森林抚育、低效林改造是提高森林质量的有效途径[J].防护林科技, 2005(3): 48-50.
    [126]哈申格日乐,宋云民,李吉跃,等.水分胁迫对毛乌素地区4树种幼苗生理特性的影响[J].林业科学研究, 2006, 19(3): 358-363
    [127]孙一荣,朱教君,康宏樟.水分处理对沙地樟子松幼苗膜脂过氧化作用及保护酶活性影响[J].生态学杂志, 2008, 27(5): 729-734.
    [128]McKersie B D, Bowley S R., Harjanto E, et al. Water-deficit tolerance and field performance of transgenic alfalfa overexpressing superoxide dismutase[J]. Plant Physiol.,1996, 111: 1177-1181.
    [129]刘学师,任小林,苗卫东,等.游离脯氨酸与植物抗旱性[J].河南职业技术师范学院学报, 2002, 30(3):35-37.
    [130]董朝霞,沈益新.苇状羊茅控水处理后的补偿性生长.南京农业大学学报, 2002, 25(1):15-18.
    [131]朱教君,康宏樟,李智辉.不同水分胁迫方式对沙地樟子松幼苗光合特性的影响[J].北京林业大学学报, 2006, 28(2): 57-63.
    [132]单长卷,徐新娟,王光远,等.冬小麦幼苗根系适应土壤干旱的生理学变化.植物研究, 2007, 27(1): 55-58.
    [133]Yan J Q, Wang J, Tissue D, et al. 2003. Photosynthesis and seed production under water-deficit conditions in transgenic tobacco plants that overexpress an arabidopsis ascorbate peroxidase gene[J].Crop Sci.,2003, 43: 1477-1483.
    [134]赵世杰,许长成.植物组织中丙二醛测定方法的改进[J].植物生理学通讯, 1994, 30(3): 207-210.
    [135]张宪政,陈凤玉,王荣富,等.植物生理学实验技术[M].沈阳:辽宁科学技术出版社, 1994. 100-101.
    [136]李合生,孙群,赵世杰,等.植物生理生化实验原理和技术[M].北京:高等教育出版社, 2000. 134-200.
    [137]汤章城.现代植物生理学实验指南[M].北京:科学出版社, 1999. 302-306.
    [138]胡新生,王世绩.树木水分胁迫生理与耐旱性研究进展及展望[J].林业科学, 1998, 34(2): 77-89.
    [139]Smirnoff N. The role of active oxygen in the response of plants to water deficit and desiccation[J]. New Phytologist, 1993, 125:27-58.
    [140]刘宁,高玉葆,贾彩霞,等.渗透胁迫下多花黑麦草叶内过氧化物酶活性和脯氨酸含量以及质膜相对透性的变化[J].植物生理学通讯, 2000, 36(1): 11-14.
    [141]喻晓丽,邸雪梅,宋丽萍. 2007.水分胁迫对火炬树幼苗生长和生理特性的影响[J].林业科学, 2007, 43(11): 57-61.
    [142]姜英淑,陈书明,王秋玉,等.干旱胁迫对2个欧李种源生理特征的影响[J].林业科学, 2009, 45(6): 6-10.
    [143]李雪华,蒋德明,骆永明,等.不同施水量处理下樟子松幼苗叶片水分生理生态特性的研究[J].生态学杂志, 2003, 22(6):17-20.
    [144]Appleman D. Catalase-chlorophyll relationship in barley seedlings[J]. Plant Physiol, 1952, 27(3): 613-621.
    [145]Misra A, Tyler G (1999) Influence of soil moisture on soil solution chemistry and concentrations of minerals in the calcicoles Phleum phleoides and Veronica spicata grown on a limestone soil[J]. Annals of Botany, 1999, 84: 401-410.
    [146]李三相,周向睿,王锁民. Na+在植物中的有益作用[J].中国沙漠, 2008, 28(3): 485-490.
    [147]Hasegawa P M, Bressan R A. Plant cellular and molecular responses to high salinity[J]. Annual Review of Plant Physiology and Plant Molecular Biology, 2000, 51: 463-99.
    [148]Guardia MDDl, Alcántara. E. Bicarbonate and low iron level increase root to total plant weight ratio in olive and peach rootstock[J]. Journal of Plant Nutrition, 2000, 25: 1021-1032.
    [149]Xu X W, Xu H L, Wang Y, et al.(2008) The effect of salt stress on the chlorophyll level of the main sand-binding plants in the shelterbelt along the Tarim Desert Highway[J]. Chinese Science Bulletin, 2008, 53(supplement 2): 109-111.
    [150]孙晶,王庆成,刘强,等. NaHCO3胁迫下朝鲜接骨木和茶条槭苗木的生长及生理响应[J].林业科学, 2010, 46(8): 71-77.
    [151]武德,曹帮华,刘欣玲,等.盐碱胁迫对刺槐和绒毛白蜡叶片叶绿素含量的影响[J].西北林学院学报, 2007, 22(3): 51-54.
    [152]徐大勇,康宏樟,裘秀群,等.章古台沙地樟子松人工林土壤盐分动态变化研究[J].江西农业大学学报, 2006, 28(4): 539-543.
    [153]Streb P, Feierabend J. Oxidative stress responses accompanying photoinactivation of catalase in NaCl-treated rye leaves[J]. Botanica Acta, 1996, 109: 125-132.
    [154]Bandeoglu E, Eyidogan F, Yucel M, et al. Antioxidant responses of shoots and roots of lentil to NaCl-salinity stress. Plant Growth Regulation, 2004, 42: 69-77.
    [155]Bingham IJ, Stevenson E A (1993) Control of root growth: effects of carbohydrates on the extension, branching, and rate of respiration of different fractions of wheat roots. Physiologia Plantarum, 1993, 88: 149-158.
    [156]Yang X, R?mheld V, Marschner H. Effect of bicarbonate on root growth and accumulation of organic acids in Zn-inefficient and Zn-efficient rice cultivars (Oryza sativa L.) [J]. Plant and Soil, 1994,164: 1-7.
    [157]Driessche V D. Response of conifer seedlings to nitrate and ammonium sources of nitrogen[J]. Plant and Soil, 1971, 34(2): 421-439.
    [158]刘爽,王庆成,刘亚丽,等.土壤pH值对脂松苗木膜脂过氧化及内源保护系统的影响[J].林业科学, 2010, 46(2): 152-156.
    [159]MacRae E A, Ferguson I B. Changes in catalase activity and hydrogen peroxide concentration in plants in response to low temperature[J]. Physiologia Plantarum, 1985, 65(1): 51-56.
    [160]Esfandiari E, Shekari F, Shekari F, et al. The effect of salt stress on antioxidant enzymes’activity and lipid peroxidation on the wheat seedling[J]. Not. Bot. Hort. Agrobot. Cluj, 2007, 35(1): 48-56.
    [161]Carter D R, Cheeseman J M. The effect of external NACL on thyla-koid stacking in lettuce plants[J]. Plant cell Environ, 1993, 16: 215-222.
    [162]颜宏,尹尚军,石德成,等.中性盐(NaCl)与碱性盐(Na2CO3)对小麦胁迫作用的比较[J].通化师院学报(自然科学), 1996, 2: 37-40.
    [163]Millera G W, Denneya A, Pushnika J, et al. The formation of delta-Aminolevulinate a precursor of chlorophyll, in barley and the role of iron[J]. Journal of Plant Nutrition, 1982, 5(4-7): 289-300.
    [164]孙金月,赵玉田.小麦细胞壁糖蛋白的耐盐性保护作用与机制研究[J].中国农业科学, 1997, 30(4): 9-12.
    [165]Ashraf M. The effect of NaCl on water relations, chlorophyll and protein and proline contents of two cultivars of blackgram (Vigna mungo L.)[J]. Plant and Soil, 1989, 119: 205-210.
    [166]Lee T M, Liu C H. Correlation of decreased calcium contents with proline accumulation in the marine green macroalga Ulva fasciata exposed to elevated NaCl contents in seawater[J]. Journal of Experimental Botany, 1999, 50(341): 1855-1862.
    [167]Zhao K F, Fan H, Jiang X Y, et al. Critical day-length and photoinductive cycles for the induction of flowering in halophyte Suaeda salsa[J]. Plant Science, 2002, 162: 27-31.
    [168]Cavalcanti F, Lima JP, Silva S, et al. Roots and leaves display contrasting oxidative response during salt stress and recovery in cowpea. Journal of Plant Physiology, 2007, 164: 591-600.
    [169]杨云龙,姚延梼,李俊英.铜锌对华北落叶松多酚氧化酶活性的影响[J].林业科学, 2006, 42 (02): 21-26.
    [170]Scebba F, Sebastiani L, Vitagliana C. Changes in activity of antioxidative enzymes in wheat(Triticum aestivum) seedlings under cold acclimation[J]. Physiologia plantarum, 1998, 104: 747-752.
    [171]Apostolova P, Yordanova R, Popova L. Response of antioxidative defence system to low temperature stress in two wheat cultivars[J]. Gen. Appl. Plant Physiology, 2008, 34(3-4): 281-294.
    [172]Kuroda H, Sagisaka S, Asada M, et al. Peroxide-scavenging systems during cold acclimation of apple callus in culture[J]. Plant and Cell Physiology, 1991, 32(5): 635-641.
    [173]赵凤云,王晓云,赵彦修,等.转入盐地碱蓬谷胱甘肽转移酶和过氧化氢酶基因增强水稻幼苗对低温胁迫的抗性[J].植物生理与分子生物学学报, 2006, 32(2): 231-238.
    [174]Matsumura T, Tabayashi N, Kamagata Y, et al. Wheat catalase expressed in transgenic rice can improve tolerance against low temperature stress[J]. Physiologia Plantarum, 2002, 116(3): 317–327.
    [175]Kerdnaimongkol K, Woodson W R. Inhibition of catalase by antisense rna increases susceptibility to oxidative stress and chilling injury in transgenic tomato plants[J]. J. AMER. SOC. HORT. SCI., 1999, 124(4): 330-336.
    [176]代红军,曾洪学.植物抗冻性研究进展[J].农业科学研究, 2006, 27(3): 71-74.
    [177]张志良.植物生理学实验指导[M].北京:高等教育出版社, 1990.
    [178]Alberdi M., Corcuera L J, Maldonado C, et al. Cold acclimation in cultivars of Avena sativa[J]. Phytochemistry, 1993, 33: 57-60.
    [179]Ma Y Y, Zhang Y L, Lu J, et al. Roles of plant soluble sugars and their responses to plant cold stress[J]. African Journal of Biotechnology, 2009, 8 (10): 2004-2010.
    [180]Yano R, Nakamura M, Yoneyama T, et al. Starch-relatedα-glucan/water dikinase is involved in the cold-induced development of freezing tolerance in Arabidopsis[J]. Plant Physiol., 2005, 138(2): 837-846.
    [181]Koster KL, Lynch DV. Solute accumulation and compartmentation during the cold acclimation of puma rye. Plant Physiology. 1992, 98: 108-113.
    [182]Foryer C H, Descourvieres P, Kunert K J. Protection against oxygen radicals: An important defence mechanism studied in transgenic plants[J]. Plant Cell Environ., 1994, 17: 507-523.
    [183]Bowler C., Van Montagu M., Inze D. Superoxide dismutase and stress tolerance[J]. Annu. Rev. Plant Physiol. Plant Mol. Biol., 1992, 43: 83-116.
    [184]刘汉梅,张怀渝,谭振波,等.玉米catalase-3基因克隆及低温表达研究[J].四川农业大学学报, 2006, 24(3): 272-275.
    [185]陈伏生,曾德慧,范志平,等.章古台沙地樟子松人工林土壤有效氮的研究[J].北京林业大学学报, 2005, 27(3): 6-11.
    [186]王晓春,宋来萍,张远东.大兴安岭北部樟子松树木生长与气候因子的关系[J].植物生态学报, 2011, 35(3): 294-302.
    [187]Johnson J D. A rapid technique for estimating total surface area of pine needles[J]. Forest Science,1984, 30(4): 913-921.
    [188]李玉灵,朱帆,王俊刚,等.水分胁迫下臭柏(Sabina vulgaris Ant.)光合特性和色素组成的季节变化[J].生态学报, 2009, 29(8): 4346-4352.
    [189]Bassman J, Zwier J C. Gas exchange characteristics of Populus trichocarpa, Populus deltoids and Populus trichocarpa×P. deltoids clone[J]. Tree Physiology, 1991, 8(2): 145-159.
    [190]李玉灵,尚国亮,殷晓洁.从切枝蒸腾失水比较几种园林植物的节水特性[J].河北林业科技, 2007, 3: 6-9.
    [191]蒋志荣.沙冬青抗旱机理的探讨[J].中国沙漠, 2000, 20(1): 71-74.
    [192]Chartzoulakis K, Patakas A, Bosabalidis A M. Changes in water relations, photosynthesis and leaf anatomy induced by intermittent drought in two olive cultivars[J]. Environmental and Experimental Botany, 1992, 42: 113-120.
    [193]Rajendrudu G, Rama prasad J S, Rama das V S. Correlation between the rates of foliar dark respiration and net photosynthesis in some tropical dicot weeds[J]. Weed Science,1987,35(2): 141-144.
    [194]Nagata N, Tanaka R, Satoh S, et al. Identification of a vinyl reductase gene for chlorophyll synthesis in Arobidopsis thaliana and implications for the evolution of Prochlorococcus species[J]. The Plant Cell, 2005, 17(1): 233-240.
    [195]Vogg G., Heim R., Hansen J., et al. Frost hardening and photosynthetic performance of Scots pine ( Pinus sylvestris L.) needles. I. Seasonal changes in the photosynthetic apparatus and its function[J], 1998, 204(2):193-200.
    [196]Sandford A P, Jarvis P G. Stomatal responses to humidity in selected conifers[J]. Tree Physiology, 1986, 2: 89-103.
    [197]Hikosaka K. Interspecific difference in the photosynthesis-nitrogen relationship: patterns, physiological causes, and ecological importance[J]. Journal of Plant Research, 2004, 117: 481-494.
    [198]周小玲,徐清乾,董春英,等.模拟光条件下4个四川桤木品系光合特性的研究[J].中国农学通报, 2008, 24(9): 237-242.
    [199]Lin B H, Liu J X, Xiao S H, et al. Diurnal change of photosynthetic characteristics of native Vetiveria zizanioides in Western Guangdong[J]. Chinese Journal of Applied Ecology, 2006, 17(11): 2041-2045.
    [200]赵文智,常学礼.樟子松针叶气孔运动与蒸腾强度关系研究[J].中国沙漠, 1995, 15(3): 241-243.
    [201]祖元刚,王文杰,杨逢建,等.紫茎泽兰叶片气体交换的气孔调节特性:对其入侵能力的意义[J].林业科学, 2005, 41(3): 25-35.
    [202]Liu F L, Jensen C R, Shahanzari A, et al. ABA regulated stomatal control and photosynthetic water use efficiency of potato (Solanum tuberosum L.) during progressive soil drying[J]. Plant Science, 2005, 168(3): 831-836.
    [203]Tenhunen J D, Lange O L, Gebel J, et al. Changes in photosynthetic capacity, carboxylation efficiency, and CO2 compensation point associated with midday stomatal closure and middaydepression of net CO_2 exchange of leaves of Quercus suber[J]. Planta, 1984, 162(3): 193-203.
    [204]Frazer J M, Davis S D. Differential survival of chaparral seedlings during the first summer drought after wildfire[J]. Oecologia, 1988, 76(2): 215-221.
    [205]Tobiessen P. Dark opening of stomata in successional trees[J]. Oecologia, 1982, 52(3): 356-359.
    [206]Lv C G, Ma L, Shi Y. Study on the diurnal changes of net photosynthetic rate and the impact factors of Stevia rebaudiana Bertoni in autumn[J]. American Journal of Plant Physiology, 2009, 4(1): 18-23.
    [207]Schulze E D, Lange O L, Evenari M, et al. The role of air humidity and temperature in controlling stomatal resistance of Prunus armeniaca L. under desert conditions. III. The effect on water use efficiency[J]. Oecologia, 1975, 19(4): 303-314.
    [208]álvareza S G, Juaristia C M, Gutiérrez J S, et al. Taxonomic differences between Pinus sylvestris and P. uncinata revealed in the stomata and cuticle characters for use in the study of fossil material[J]. Review of Palaeobotany and Palynology, 2009, 155(1-2): 61-68.
    [209]王生军,韩丽华,李春红,等.樟子松、赤松、油松在形态结构及生态生物学特性的比较研究[J].干旱区资源与环境, 2008, 22(10): 179-182.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700