液中放电等离子体技术降解TNT废水的装置和试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
TNT(2,4,6-三硝基甲苯)是重要的军事战略物资。TNT废水主要来源于TNT生产加工和废旧弹药处置过程,排放量大,而且难以生物降解,目前传统处理方法对TNT废水的降解尚未达到满意的效果。液中放电等离子体技术是近年来新兴的一种高级氧化技术,集高温热解、光化学氧化、液电空化降解、超临界水氧化等多种效应于一体,具有常温常压、高效、无选择性、无二次污染、能耗低等优点,在难降解废水的处理中具有明显的优势。本研究中自行研制了液中放电水处理试验装置,以TNT废水为研究对象,对液中放电降解TNT废水的影响因素、降解机理、联用工艺和降解产物分析等方面进行研究,得出以下主要结论。
     ①系统研制了液中放电试验装置,比较了不同试验装置对TNT的降解效果。设计的高压脉冲系统可使普通低压电(220/380V)最高升至100kV。试验装置的接地电阻为0.86Ω,满足试验安全要求。设计并加工不锈钢圆柱体反应器(水平放电和垂直放电),45~#碳钢圆柱体反应器;设计并加工四种形式电极,尖-尖式、尖-板式、多尖-板式、中空电极;设计并加工三种不同材质的尖-尖式电极,不锈钢、铜、碳钢。试验结果表明:45~#碳钢反应器对TNT的降解效果优于不锈钢反应器;研究的三种电极材料对TNT的降解效果依次为:铜>碳钢>不锈钢。多尖-板式电极对TNT的降解率最好,尖-尖式和尖-板式电极次之,中空电极最差。增长电极绝缘,减小电极裸露面积可提高降解效果。垂直放电反应器对TNT的降解效果优于水平放电。
     ②采用45~#碳钢反应器、水平放电、尖-尖式45~#碳钢电极,进行液中放电等离子体对TNT模拟废水的降解试验,研究TNT降解的影响因素,并进行了动力学和能量效率分析。结果表明:在TNT初始浓度50.00mg/L、废水体积7L的条件下,300次放电后,液中放电对TNT降解率达到87.00%,TNT浓度降为6.50mg/L;放电500次后TNT降解率为91.20%,TNT浓度降为4.40mg/L,满足国家排放标准。液中放电等离子体降解TNT的反应符合表观一级反应动力学特征,活化能为14.5kJ/mol。本试验装置的能量效率G值为6.56×10~(-2)~ 9.33×10~(-2)molecule/heV,具有较高的能量效率。
     ③较深入地探讨了液中放电对水中污染物的降解机理。分析液中放电的原理和过程,概括了液中放电的降解模式,论证了液中放电中的高能电子轰击、高温热解、H_2O_2和O_3等物质的氧化、超临界水和超声空化效应的降解、冲击波、紫外光解、活性粒子氧化对有机物的降解作用,并测试了液中放电的流光光谱和活性物质的发射光谱。
     ④进行了液中放电/纳米TiO_2、液中放电/通气对TNT废水的降解研究。利用溶胶-凝胶法制备纳米TiO_2粉体,对粉体进行表征,进行了液中放电/纳米TiO_2降解TNT的试验,研究TNT降解的影响因素。结果表明:在液中放电过程中投加纳米TiO_2可以提高降解效果。同样试验条件下,单独液中放电对TNT的降解率仅为63.00%;投加纳米TiO_2 0.035g/L后,TNT降解率提高至90.47%。在液中放电试验装置的基础上设计了通气装置,采用通气电极(中空电极),进行了液中放电/空气或臭氧对TNT的降解试验,并研究了TNT降解的影响因素。结果表明:在液中放电过程中通入空气或臭氧均可以提高降解效果。同样试验条件下,单独液中放电对TNT的降解率为59.80%;通入空气后TNT降解率为63.12%;通入臭氧后TNT降解率为82.95%。
     ⑤在研究液中放电/Fenton试剂降解TNT废水的基础上,提出液中放电与铁屑内电解法协同降解TNT的方法。进行液中放电/Fenton试剂对TNT的降解试验,研究TNT降解的影响因素,结果表明:放电中单独添加H_2O_2或Fe2+均不能大幅度地提高TNT的降解效果,但同时添加H_2O_2、Fe2+(Fenton试剂)能大幅度地提高TNT降解效果。同样试验条件下,单独液中放电对TNT时降解率仅为63.00%,添加FeSO4 25.00mg/L,H_2O_2(30%V/V)0.50ml/L,TNT降解率为79.38%。进行液中放电/铁屑降解TNT的试验,研究TNT降解的影响因素,结果表明:同样试验条件下,单独液中放电对TNT的降解率仅为63.00%;投加铁屑40.00g/L,液中放电/铁屑协同处理TNT的降解率为92.16%,TNT浓度降为3.92mg/L,满足国家排放标准。液中放电/铁屑联用对TNT降解率高、可以减少放电次数、而且铁屑具有良好的重复使用性,具有应用于实际的可能。鉴于此,本论文推荐铁屑内电解法为液中放电降解TNT废水的最佳联用工艺。
     ⑥研究液中放电降解TNT过程中CODcr、BOD5的变化,对TNT降解产物进行GC/MS联机分析,并探讨了TNT降解产物可能的生成途径。结果表明:放电300次后水样的TNT降解率为97.36%; CODcr去除率为34.29%。这说明在液中放电过程中TNT分子没有完全矿化,其中一部分仍以有机物的形式留在水中。放电前TNT模拟废水中的BOD5为“未检出”,放电50次以后的水样都检测出了BOD5,说明放电后水样中出现了可生化的有机物。GC/MS联机分析结果表明:TNT分子在液中放电中得到降解,有芳香族化合物(1,4-二甲苯、苯乙烯)和脂肪烃类结构有机产物(正十四烷、正十七烷)产生。
TNT(2,4,6-trinitrotoluene) is an important material in military area. TNT wastewater from manufacturing process and disposing process is hardly biodegradable. The technique of electro-hydraulic discharge (EHD)developed in recent years including many effects such as high temperature pyrogenation, photochemistry oxidation, cavitation degradation, super-critical water oxidation, has advantages of normal temperature and press, high efficiency, no-selectivity, no-second pollution, low energy, and is efficient in disposing dis-biodegradable wastewater. The experiment installation of electro-hydraulic discharge was designed and established, and the influence factors, degradation mechanism, joins techniques, product analyse of TNT wastewater treatment by EHD was investigated. The results are as following:
     ①The experiment installation of electro-hydraulic discharge was designed and established detailedly, and TNT degradation rate of different installation was compared. Power supply can generate pulse high voltage which ranged from 0 to 100kV. The grounding net was designed and laid, and grounding resistance was 0.86Ω, which can guarantee safe during the course of discharging. Stainless steel reactor (level and uprightness discharge) and 45# carbon steel reactor were designed and machined. Four type of electrode, such as point-point, point-plane, points-plane, hollow electrode, and three electrode material such as stainless steel, copper, 45# carbon steel were designed and machined. The results are as following: TNT degradation rate of 45# carbon steel reactor was better than stainless steel one’s; TNT degradation rate of three kinds of electrode materials which were investigated was copper >45# carbon steel > stainless steel. TNT degradation rate of points-plane electrode was highest, and the point-point electrode’s and point-plane electrode’s take second place, and hollow electrode’s was lowest. With the improvement of electrode inslution length, the bare area of electrode decreased, TNT degradation rate increased. TNT degradation rate of uprightness discharge was better than level discharge’s.
     ②The EHD wastewater treatment apparatus was used to degrade TNT wastewater by using 45# carbon steel, level discharge, point-point electrode, and influence factors of TNT degaradion , kinetics and energy efficiency were investigated. The results showed: When TNT concentration was 50.00mg/L volume of wastewater was 7L, after 300 discharges TNT degradation rate was 87.00%, TNT concertration decreased to 6.50mg/L. after 500 discharges TNT degradation rate was 91.20%, TNT concertration decreased to 4.40mg/L, reached national discharge standard. TNT degradation reaction by EHD followed appearance first order kinetics, and the energy of activation was 14.5kJ/mol. The energy efficiency is high, G value reached to 6.56×10~(-2)~9.33×10~(-2) molecule/heV.
     ③Mechanism of EHD degrading aqueous organics was investigated. With the analysis of EHD principle and course, TNT degradation mode of EHD was summarized. The effects of EHD, such as high-energy electron, high temperature pyrogenation, oxidation of H_2O_2 and O_3, supercritical water and ultrasonic cavitation, shock waves, UV photolysis, oxidation of active particle. In addition, the spectrum of EHD streamer and spectrum of active particles during the experiment was tested.
     ④Degrading TNT wastewater by EHD/Nanosized TiO_2,and EHD/aerate was investigated. Nanosized TiO_2 powder prepared by sol-gel method was characterized. TNT wastewater was degraded by EHD/Nanosized TiO_2 Photocatalysis and influence factors were investigated. Results showed that adding Nanosized TiO_2 to EHD can improve TNT degradation rate. When TNT concentration was 90.00mg/L,volume of wastewater was 7L, discharge times was 300, TNT degradation rate by EHD was 63.00%, adding 0.035g/L nanosized TiO_2 to EHD, TNT degradation rate reached 90.47%. According to the EHD experiment apparatus, aerate apparatus which can supply air or O3 was designed and machined. TNT wastewater was degraded by EHD/ air or O3, and influence factors were investigated. When TNT concentration was 50.00mg/L, volume of wastewater was 7L, discharge times was 300, ventilation electrode (medium-hollow electrode), TNT degradation rate by EHD was 59.80%, TNT degradation rate by EHD/air was 63.12%, TNT degradation rate by EHD/ O3 reached 82.95%.
     ⑤Degrading TNT wastewater by EHD/Fenton reagent was investigated, and the EHD/ Iron scraps degrading TNT wastewater was put forword. TNT wastewater by EHD/Fenton reagent was reaseached, and influence factors were investigated. Results showed that adding Fe2+ or H_2O_2 lonely to EHD cann’t improve TNT degradation rate, but adding Fe2+ or H_2O_2 together ( Fenton reagent ) to EHD increase TNT degradation rate greatly. Under the same experiment condition, TNT degradation rate by EHD was 63.00%, while adding FeSO4 25.00mg/L,H_2O_2(30%V/V)0.50ml/L to EHD, the degradation rate by EHD/ Fenton reagent was 79.38%. TNT wastewater by EHD/ Iron scraps was reaseached, and influence factors were investigated. Results showed that adding Iron scraps to EHD can improve TNT degradation rate greatly. Under the same experiment condition, the degradation rate by EHD was 63.00%, While adding iron scraps 40.00g/L, the degradation rate by EHD/Iron scraps was 92.16% , TNT concerntration was 3.92mg/L, reached national discharge standard. Because of the high degradation rate of EHD/Iron scraps , the less discharge times, and the more use times of iron scraps, the EHD/Iron scraps has more protential to be used in practice. Therefore, in this paper, the Iron scraps internal eletrolys was recommended to be the best join techics of EHD.
     ⑥The change of CODcr, BOD5 during the course of EHD was investigated, and the degradation products were analyzed by GC/MS, and the possible degrading route of TNT was discussed. Results showed that after 300 discharges EHD reached 97.36% in TNT degradation and 34.29% in CODcr removal. That is to say, during the course of EHD, TNT haven’t been mineralized tollaly, many arganics still existed in the wastewater. The BOD5 of TNT wastewater before discharge was“not examined”, the BOD5 after 50 discharge increased. This showed the biograble argaices appeared after discharge. The GC/MS spectum showed that TNT was degraded by EHD, the degradation products includeed organic substance containing benzene(Benzene, 1,4-dimethyl, Styrene) and aliphatic hydrocarbons (Tetradecane, Heptadecane).
引文
[1]郭新超,周军,黄永勤,金奇庭.物化法处理炸药废水研究进展.工业给排水,2001,27(7):45-48.
    [2]国防工程器材专业教材(内部)中国人民解放军工程兵后勤部, 1975年:147-148.
    [3]杨光,华京.梯恩梯[M], 1974, 7-16, 77, 79, 126, 169-172.
    [4]孙荣康,魏运洋.硝基化合物炸药化学与工艺学,兵器工业出版社, 1992, 285, 303, 298-299, 292, 293, 300-301.
    [5]孙荣康,任特生,高怀琳.猛炸药的化学与工艺学(上册),国防工业出版社, 1981, 1-4, 325, 329-335.
    [6]郭新超.水解酸化+好氧膜生物工艺处理弹药销毁废水的试验研究.西安建筑科技大学[硕士学位论文].2001:10.
    [7]兵器工业水污染物排放标准-火炸药.中华人民共和国国家标准,GB 14470.1-2002.
    [8] Roth Milton, LargeCarbiber Werpon Syst Lab contion monitoring of pink water from carbon adsorption process, Report1928, ARLCD-TR-78025.
    [9]陈建林,等,树脂吸附法回收染料废水中的酚,南京大学学报, Vol.37, NO.4, 592-597.
    [10] Pennigton, Judith C., et al., Adsorption and desorption of 2,4,6-trinitrotoluene by soils, J. Envirnn. Qual., Vol.19, NO.3, 559-567, 1990.
    [11]万官掌,等,含酚废水中酚类回收现状与研究进展,煤炭转化, Vol.19, NO.1, 62-67, 1996.
    [12] Rosenstock, Friecdrich et al., Dittmann Horst selective floatalion process for the decontamination of contaminated soils, Ger.offen. DE, 4, 039. 109(CLA 62D3100) 11 Jun, 1992, Appl. 01. Dec. 1990, 7.
    [13] Addt, Hartmut.Treatment of an industrial wastewater by ozonation, Z,Wasser Abwasser Forsch, 142-143, 1975.
    [14]薛寿岐,等,臭氧-紫外法处理含TXT、RDX和HMX废水的研究,四川环境, 2-3, 4, 1982.
    [15]周大石,等, TNT废水氧化塘微生物类群和降解能力的初步研究,环境科学, Vol.8, NO.4, 49-53, 1987.
    [16] Nanmcjyh jeremi et al., Treatment of wastewater fromace flotation containing aliphatic aminea and hydrofluoricacid, Toxical Environ. Chem., Vol.34, NO.2-4, 113-121, 1992.
    [17] Major, M.A. et al., Incinerotion of explosive contaminated soil as a means of site remediation, Report 1992 USABRDL-TR-9214, Vol.93, NO.8, 22, 1993.
    [18] Montemagno, C. D. et al., Feasiblity of biodegrading TNT contaminated soil in a slurry reactor finalre-port, Report 1990 CETHATE-CR-90062, Order No.DE91008036, 61.
    [19] Lebzon Carmen A., Biodegradation of 2.4.6-trinitro-toluene by whiter of fungi.U.S. US 5,085,998(CL.435-262; C12P102) 04 Feb 1992 Appl. 700,854,07 May 1991, 7.
    [20]尤特金,液电效应,科学出版社, 1962.
    [21]苏建龙,黄卫东,液电脉冲等离子降解高浓度有机废液的机理研究,环境科学动态, 2, 13-16, 1997.
    [22] Bing Sun, Masayuki Sato, J S Clements, Use of a pulsed high voltage discharge for removal of organic compounds in aqueous solution, J Phys D: Appl. Phys., 32, 1908-1915,1999.
    [23] A. A. Joshi, B. R. Locke, P. Arce, et al., Formation of hydroxyl radicals, hydrogen peroxide and aqueous electrons by pulsed streamer corona discharge in aqueous solution, Journal of Hazardous Materials, 41, 3-30, 1995.
    [24]秦曾衍,左公宁,王永荣,等,高压脉冲放电及其应用,北京工业出版社, 2000.
    [25] Anto Tri Sugiarto, Masayuki Sato,Pulsed plasma processing of organic compounds in aqueous Solution[J]. Thin Solid Films,2001,386:295-299.
    [26] Anto Tri Sugiarto, Shunsuke Ito, Takayuki Ohshima. Oxidative decoloration of dyes by a streamer corona dischaharge in water[J]. Journal of Electrostatics,2003,58:135-145
    [27] Masuda, S. et al. Control of NOx by Positive and Negative Pulsed Corona Discharge[J]. IEEE/ IAS Annu. Conf, 1986: 1173-1182
    [28] Mizuno A, et al. A method for the removal of sulfur dioxide from exhaust gas utilizing pulsed streamer corona for electron energization[J]. IEEE trans. On Ind. Appl, 1986,22(3):516-522.
    [29] Llie Suarasan, Letitia Ghizdavu. Experimental characterization of multi-point corona discharge devices for direct ozonization of liquids.Journal of Electro-statics, 2002,54:207-214.
    [30]周志刚.高压脉冲放电/TiO2协同处理染料废水的试验研究.大连理工大学[硕士学位论文], 2005.3.
    [31] Skvortsov Y V, Komelkov V S, Kuznetsov v m. The expansion of spark channel in liquid. Sov. Phys.-Tech.Phys,1960,4(10):1166-1177.
    [32]卢新培,潘坦,刘克富,刘明海.水中放电等离子体辐射特性研究.华中科技大学学报,2000, 28:85-87.
    [33]卢新培,潘坦.水中放电等离子体特性的理论研究.应用基础与工程学科学报,2000,8: 310-316.
    [34]卢新培,张寒虹,潘坦等.水中脉冲放电的压力特性研究.爆炸与冲击,2001,21:282-286.
    [35]刘晓春,冯长根,朱祖良,徐宜志,许正.水中高压脉冲放电的光辐射研究.北京理工大学学报, 1999,19:8-12.
    [36]钱易,汤鸿霄,文湘华.水体颗粒物和难降解有机物的特性与控制技术原理(下卷)难降解有机物[B]第一版.北京中国环境科学出版社,2000.6.
    [37]张纪昌,谢敏,刘云涛.10kw脉冲电晕烟气脱硫电源.爆炸与冲击波, 1999(3):117-121.
    [38]李国锋,吴彦,王宁会.脉冲电晕放电特性研究.大连理工大学学报, 1999, 39(6):736-740.
    [39]国家环保局,大气污染防治技术研究.北京:科学出版社, 1992.
    [40]李德.脉冲电晕放电特性及能量有效的利用.第二届国际应用静电会议论文集.北京, 1993, 1-11.
    [41] Li J, Wu Y, Wang N H. Industrial scale experiments of desulfuration of coal flue gas using a pulsed corona discharge plasma. IEEE Transactions on Plasma Science,2003,31(3):333-337.
    [42]李胜利,向浩,李劲.实验用ns级脉冲高压电源的研制.高电压技术, 2000, 26(1):14-15.
    [43]赵君科,夏连胜,任先文,等.陡沿纳秒脉冲电源的研制.高电压技术, 1999, 25(2):44-46.
    [44] Masuda S. Pulse energization system of electrostatic precipitator for retrofitting application. IEEE Trans on Ind Appl, 1988,24(4):708-716.
    [45] Lawless P A, Yamamoto T, Shofran S, et al, Characteristics of a fast rise time power supply for a pulsed plasma reactor for chemical vapor destruction. IEEE Trans on Ind Appl, 1996, 32(6):1257-1265.
    [46] Yan K,Heesch, Nair S A,et al. A triggered spark-gap switch for high-repetition rate high- voltage pulse generation.Journal of Electriostation, 2003,57: 29-33.
    [47] Mok Y S. Efficient energy delivery condition from generation circuit to corona discharge reactor . Plasma Chemistry and Plasma Processing,2000, 20(3):353-364.
    [48]卞文娟,杨彬,雷乐成.液电等离子体处理有机废水.环境污染治理技术与设备, 2003, 4(5): 80~84.
    [49]文岳中,姜玄珍,吴墨.高压脉冲放电降解苯乙酮的研究.中国环境科学, 1999, 19(5): 406- 409.
    [50] M. Vrta cnik, K. Voda. HQSAR and CoMFA approaches in predicting reactivity of halogenated compounds with hydroxyl radicals[J]. Chemosphere, 2003, 52:1689~1699.
    [51] Abou-Ghazala, A.; Katsuki, S.; Schoenbach, K.H.; Dobbs, F.C.; Moreira, K.R. Bacterial decontamination of water by means of pulsed-corona discharges. Plasma Science, IEEE Transactions on, 2002, 30(4):1449-1453.
    [52]敖漉.电液压脉冲降解装置与TNT废水降解影响因素的研究.后勤工程学院.[硕士学位论文]. 2006, 5.
    [53]靳承铀.介质阻挡放电反应器在水处理中的试验研究.大连理工大学[硕士学位论文], 2003.3.
    [54]卞文娟.高压脉冲液相放电技术处理水中难降解有机污染物的研究.浙江大学[博士论文], 2005.
    [55] Naugolnykh K. A., Roi N. A., Electrical and hydrodynamic characteristics of an impulsive corona in water, Soviet Physics-Acoustics, Vol.13, NO.3, 352-359, 1968.
    [56] Naugolnykh K. A., Roi N. A., Relation between the hydrodynamic and electrical characteristics of discharges in liquids, Soviet Physics-Doklady, Vol.11, NO.5, 443-455, 1966.
    [57] Okun I. Z., Electrical characteristics of a pulsed discharge in a liquid, Sov. Phys.-Tech. Phys. Vol.14, NO. 5, 627-644, 1969.
    [58] Alkhimov A. P., Vorobev V. V., Klimkin V. F., Ponomarenko A. G., Soloukhin R. I., The development of electrical discharge in water, Soviet Physics-Doklady, Vol.15, NO.10, 959-961, 1971.
    [59] Sinkevich O. A., Shevchenko A. L., Numerical investigation of electric dicharge in water, Fluid Dynamics, Vol.18, NO.3, 422-426, 1983.
    [60]邵长金,沈本善,严炽培,用连续超声与液电效应提高多孔介质渗透率的研究.石油勘探开发, Vol.20, NO.3, 75-83, 1993.
    [61]严炽培,高压电火花在采油工程中的应用,石油大学学报, Vol.16, NO.1, 119-122, 1992.
    [62] Chaussy C., Schmiedt E., Jocham D., et al., First clinical experience with extracorporeally induced destruction of kidney stones by shock waves, The journal of Urology, 127, 417-419, 1982.
    [63] M. Sato, K. Tokita, M. Sadakata et al., Sterilization of microorganisms by a high-voltage pulsed discharge under water, International Chemical Engineering, Vol.30, NO.4, 695-698, 1990.
    [64]赵武奇,高压脉冲中电场杀菌系统设计与试验,农业机械学报, 2002, 33(3).
    [65]李树杰,张毅,液电效应处理污水的实验研究,中国微生态学杂志, 8, 63-64, 1996.
    [66]廖振芳,唐川林,刘美生,等,等离子体活化水对混凝土力学性能的影响,重庆大学学报(自然科学版), Vol.23, NO.6, 1-3, 7, 2000.
    [67]张仕进,廖振芳,电液压脉冲活化水提高砂浆力学性能实验,重庆大学学报(自然科学版), Vol.24, NO.6, 21-23, 2001.
    [68] Masuda S. Pulse energization system of electrostatic precipitator for retrofitting application. IEEE Trans on Ind Appl, 1988,24(4):708-716.
    [69] Masuda S., et al., Proceeding of the Institute of Electrostatics Japan, Vol.12, NO.4, 277-283, 1988.
    [70]张轶,脉冲放电脱硫反应器电参数测量及结构优化,大连理工大学硕士学位论文, 2003.
    [71]张彦彬,王宁会,吴彦, 3000Nm3/h烟气脱硫试验系统的设计与运行,大连理工大学学报, Vol.37, NO.5, 551-554, 1997.
    [72]聂勇,李伟,施耀,等,脉冲放电等离子体治理甲苯废气放大试验研究,环境科学, Vol.25, NO.3, 30-34, 2004.
    [73]周勇平,高翔,吴祖良,等,直流电晕自由基簇射治理甲苯的实验研究,环境科学, Vol.24,NO.4, 136-139, 2003.
    [74]黄立维,谭天恩,脉冲电晕法治理甲苯废气实验研究,中国环境科学, Vol.17, NO.5, 449-453, 1997.
    [75]郑雷,姜玄珍,脉冲电晕放电降解CH2Cl2的初步研究,环境科学, Vol.18, NO.5, 62-64, 1997.
    [76]王银生、季学李,羌宁,脉冲电晕等离子体净化正己烷的实验研究,上海环境科学, Vol.19, NO.6, 276-277, 284, 2000.
    [77] Clements J. S., Sato M., Davis R. H., Preliminary investigation of prebreakdown phenomena and chemical reactions using a pulsed high-voltage discharge in water, IEEE Trans. Indust. Appl., IA-23, 224-235, 1987.
    [78] D. M. Willberg, P. S. Lang, R.H.Hochemer, et al., Degradation of 4-Chlorophenol, [3,4- Dichloroaniline, and 2,4,6-trinitrotoluene in an Electrohydraulic Discharge Reactor, Environmental Sciece and Technology, Vol.30, No.8, 2526-2534, 1996.
    [79] Sun B., Sato M., Clements J.S., Optical study of active species produced by a pulsed streamer corona discharge in water, J. Electrostatics, 39, 189-202, 1997.
    [80] Sun B., Sato M., Clements J.S., Oxidative processes occurring when pulsed high voltage discharges degrade phenol in aqueous solution, Environ. Sci. Technol., 34, 509-513, 2000.
    [81] Meguru Tezuka, Masakazu Iwasaki, Plasma induced degradation of chlorophenols in anaqueous solution, Thin Solid Films, 316,123-127, 1998.
    [82] F.Abdelmalek, S. Gharbi, B. Benstaali, et al. Plasmachemical degradation of azo dyes by humid air plasma: Yellow Supranol 4 GL, Scarlet Red Nylosan F3 GL and industrial waste, Water Research, 38, 2338-2346, 2004.
    [83]许正,夏连胜,赵君科.液中放电应用于TNT废水的降解.环境污染与防治,1999,21(6): 20-22.
    [84]文岳中,姜玄珍,刘维屏,高压脉冲放电与臭氧氧化联用降解水中对氯苯酚,环境科学, 23, 73-76, 2002.
    [85]陈银生,张新胜,袁渭康,高压脉冲放电低温等离子体法降解废水中4-氯酚,华东理工大学学报(自然科学版), 28, 232-234, 244, 2002.
    [86]陈银生,张新胜,戴迎春,等,脉冲电晕放电等离子体降解4-氯酚废水的研究,高校化学工程学报, 17, 71-75, 2003.
    [87]卞文娟,周明华,雷乐成,高压脉冲液相放电降解水中邻氯苯酚,化工学报, Vol.56, NO.1, 152-156, 2005.
    [88]卞文娟,张轶,雷乐成.高压脉冲气-液同步放电降解甲基红,浙江大学学报(工学版), Vol.38, NO.11, 1520-1525, 2004.
    [89]杨彬,高压脉冲放电降解染料废水的研究,浙江大学硕士学位论文, 2004.
    [90]朱承驻,张仁熙,徐莺,等,外加气体对等离子体降解水相中有机污染物的影响研究,环境污染治理技术与设备, Vol.6, NO.3, 37-41, 52, 2005.
    [91]朱承驻,董文博,潘循皙,等,等离子体降解水相中有机污染物的机理研究,环境科学学报, Vol.22, NO.4, 428-433, 2002.
    [92]李胜利,李劲,王泽文,等.用高压脉冲放电等离子体处理印染废水的研究,中国环境科学, Vol.16, NO.1, 73-76, 1996.
    [93]李胜利,李劲,王泽文,等.脉冲电晕放电对印染废水脱色效果的实验研究,环境科学, Vol.17, NO.1, 13-15, 1996.
    [94]朱承驻,等离子技术降解水相中有机污染物的机理研究,复旦大学硕士学位论文, 2002.5.
    [95]郑光明,朱承驻,张仁熙等.平行板双介质阻挡放电处理水相中氯酚的脱氯研究.环境科学学报,2004,24(6):962-968.
    [96] Masayuki, sato. Formation of Chemical Species and Their Effects on Microorganisms Using a Pulsed High-Voltage.
    [97] Masato Kurahashi, Shinji Katsurs, Akira Mizuno, Radical formation due to discharge inside bubble in liquid[J].Journal of Electrostatics,1997, 42:93~105.
    [98] Andrei A. Kulikovsky. Production of chemically active species in the air by a single positive streamer in a nonuniform Field[J] IEEE Trans on Plasma Sci,1997,25(3):397~409.
    [99]李凌云,水中脉冲放电活性粒子的研究,华中科技大学硕士学位论文, 2005年.
    [100]国家环境保护局,水质—梯恩梯的测定—亚硫酸钠分光光度法,中华人民共和国国家标准, GB/T13905-92, 1992.
    [101]廖振方,陈德淑,赵建新,等,电液压脉冲水处理装置中电极材料对处理效果的影响,医疗卫生设备, 2, 2004.
    [102]唐婉莹,周申范,王连军,等.TNT废水治理技术研究新进展[J].江苏环境科技, 1997, (4):9-12.
    [103]陈银生,张新胜,袁渭康.高压脉冲电晕放电等离子体降解废水中苯酚.环境科学学报, 2002, 22: 566-569.
    [104]金心宇,张昱,姜玄珍,等.电极材料对脉冲等离子体降解有机废气的影响分析.中国环境科学, 1998, 18(3):213~217.
    [105] Mazuno A J.Hori Y J. Destruction of living cells by pulsed high-voltage application.IEEE. Trans. Ind Appl, 1998, 24:384-394.
    [106]胡祺昊,王黎明,等.高压脉冲放电降解燃料费税的实验研究.清华大学学报(自然科学版), 2002, 42(9):1148-1150.
    [107]陈银生.高压脉冲放电等离子体降解酚类废水的研究.华东理工大学[博士学位论文], 2003.
    [108] Anto Tri Sugiarto, Shunsuke Ito, Takayuki Ohshima. Oxidative decoloration of dyes by a streamer corona dischaharge in water[J]. Journal of Electrostatics,2003,58:135-145.
    [109]何玉萼,袁永明,童冬梅,等.物理化学(下册)[M]北京:化学工业出版社, 2006.
    [110]刘晓春.液中放电及其应用于TNT废水的降解研究[D],北京理工大学, 1998.
    [111]叶齐政,万辉,雷燕等.放电等离子体水处理技术中的若干问题[J].高压电技术, 2003, 29(4):32-33.
    [112]章飞芳,YedilerAyfer,张青,梁鑫森.臭氧氧化活性染料及其降解产物毒性研究.精细化工, 2003, 20(11): 682-684, 694.
    [113]吴耀国,赵大为,赵晨辉,惠林,王秋华. O3、O3/H2O2降解TNT的实验研究.西北工业大学学报,2005,23(1):129-133.
    [114]王艳芳.类Fenton法处理难生物降解有机度水的试验研究.西安建筑科技大学[硕士学位论文], 2005.5.
    [115]靳承铀.介质阻挡放电反应器在水处理中的试验研究.大连理工大学[硕士学位论文], 2003.3.
    [116]徐献文.超声波强化臭氧降解水中对硝基苯酚的研究.浙江大学[博士学位论文], 2005: 35-37.
    [117] Sato, M.; Ohgiyama, Clements, J.S. Formation of Chemical Species and Their Effects on Microorganisms Using a Pulsed High-Voltage Discharge in Water, IEEE Transaction on Industry Applications,1996,32(1):106-112.
    [118]王素,脉冲电晕放电等离子体OH自由基发射光谱研究,大连理工大学硕士学位论文, 2005年12月.
    [119] T.Miichi,S.Ihara,S.Satoh.Spectroscopic measurements of discharges inside bubbles in Water. Vacuum, 2000, 59:236-243.
    [120] H. M. Jones, E. E. Kunhardt. Submircosecond breakdown and prebreakdown phenomena in Water: Influence of pressure, conductivity, and gap separation.Conference record of the 1994 International Symposium on Electrical Insulation,Pittsburgh, PA USA, 1994, 442-445
    [121] R Ono, T Oda. OH radical measurement in a pulsed a discharge plasma observed by a lif method IEEE Trans on Ind Appl, 2001,37(3): 709-714.
    [122]孙明,吴彦,张家良等.空气电晕放电中的OH自由基发射光谱.光谱学与光谱分析, 2005, 25(1): 108-112.
    [123]文岳中,姜玄珍,刘维屏.高压脉冲放电与臭氧氧化联用降解水中对氯苯酚.环境科学, 2002, 23(2):73-76.
    [124] Fujishima.A,Honda.K.Photolysis decomposition of water at the surface of an irradiated semiconductor. Nature 37(238), 1972.
    [125] Carey J. H., Lawrence J. and Tosine H. M. Photo-dechlorination of PCBs in the presence of titaniumdioxide in aqueous suspensions. Bull. Environ. Contam Toxicol. 6( 697-701), 1976.
    [126]薛向东,废水光催化处理特性及高效光催化反应器研究,西安建筑科技大学[博士学位论文], 178, 2002年10月.
    [127] Gratzel C. K.,et al., Decomposition of organophosphorus compounds on photoactivated TiO2 surfaces. J Mol. Catal. 60( 375-387),1990.
    [128] Kormann C., et al., Photocatalytic production of H2O2 and organic peroxides in aqueous suspensions of TiO2, ZnO and desert sand. Environ. Sci. Technol. 22( 798-806),1988.
    [129] Y Mao, C.Schoncich, K.D.Asmus. Identification of organic acids and other intermediates oxidative degradation of chlorinated ethanes on TiO2 surfaces an route to mineralization, combined photocatalytic and radiation chemical study.J.Phys.Chem.1991, 95: 100080- 10090.
    [130] Moza P. N., Fytianos K., Samanidou V. and Korte FPhotodecomposition of chlorophenols in aqueous medium in the presence of hydrogen peroxide. Bull.Environ. Contam. Toxicol. 5(678-682), 1988.
    [131] Cermenati L., Pichat P., Guillard C. and Albini A. Probing the Ti02 photocatalytic mechanisms in waterpurification by use of quinoline, photo-fenton generated OH. radicals and superoxide dismutase. J. Phys Chem. B 101-14(2650-2658), 1997.
    [132] Harbour J. R. and Hair M. L. Radical intermediates in the photosynthetic generation of hydrogen peroxide with aqueous zinc oxide dispersions. J. Phys.Chem. 6(652-656),1979
    [133] K. Ishibashi, H.Kenichi, A. Fujishima,etal.Quantum yields of active oxidative species formed on TiO2 photocatalyst. J. Photochem. Photobiol. A. Chem.2000,134(12): 139-142
    [134] Tsukasa Torimoto et al. Effects of Absorbents Used as Supports for Titanium Dioxide loading on Photocatalytic Degradation of Propyzamide. Environ. Sci. Technol, Vo1:30, Iss:4, 1996: 1275-1281.
    [135]周志刚.高压脉冲放电/TiO2协同处理染料废水的试验研究.大连理工大学[硕士学位论文], 2005.3.
    [136]朱承驻,朱莉莉,董文博.催化剂对等离子体降解水相中有机污染物质的影响初探.化学世界, 2003,增刊:85-87.
    [137]刘志刚.负载型TiO2光催化剂在脉冲放电水处理技术中的应用.大连理工大学[硕士学位论文], 2005.6.
    [138] Bickley R,Gonzalea Carreno T,Lees J.A structural investigation of titanium dioxidephotocatalysts.J Solid State Chem,92(178),1991
    [139] Tsai Shi Jane,Cheng Soonfin.Effect of TiO2 crystalline Structure in photolytic degradation of contaminants, Catalysis Today,33(327),1997
    [140]高伟,吴凤清,罗臻等.TiO2晶形与光催化活性关系的研究.高等学校化学学报,2001,22(4): 660~662.
    [141]郭一飞,朱新锋.制备条件对二氧化钛光催化活性的影响.天津化工, 2005, 19(3):18-20.
    [142] Lang, P.S.; Willberg, D.M. Oxidative Degradation of 2,4,6-Trinitrotoluene by Ozone in an Electrohydraulic Discharge Reactor. Environ.Sci.Technol.,1998,32:3142-3148.
    [143] Lang, P.S.; Willberg, D.M. Oxidative Degradation of 2,4,6-Trinitrotoluene by Ozone in an Electrohydraulic Discharge Reactor. Environ.Sci.Technol.,1998,32:3142-3148.
    [144]陈银生,张新胜,戴迎春,袁渭康.脉冲电晕放电等离子体降解含4-氯酚废水.化工学报, 2003,54: 1269-1273.
    [145] Eisenhaner H R, Oxidation of phenolic wastes[J]. Journal W P C F, 1964, 36: 1116-1128.
    [146] Eisenhaner H R, Chemical removal of ABS from wastewater effluents[J]. Journal W P C F,1965, 37: 1567-1577.
    [147]梁志荣, Photo-Fenton法处理偶氮染料废水的研究.重庆大学[硕士学位论文], 2003年11月.
    [148] Ruppert G, Bauer R. The photo-Fenton reaction-an effective photochem ical wastewater treatment process[J]. J. Photochem.Photobiol. A: Chem.,1993, 73: 75-78.
    [149] San Y,Pignatello J.Photochemical reactions involved in the total mineralization of 2,4-D by Fe3+/H2O2/UV. Environ Sci Technol,1993,27(2):304-310.
    [150]孙晓霞,王建新. Fenton氧化技术处理迫击炮炸药废水研究.兰州大学学报(自然科学版), 2005, 41(6):30-32.
    [151]赵朝成,陆晓华,张英等.超声—双氧水和亚铁离子体系处理含酚废水研究.四川环境, 2004, 23(1):69-71.
    [152]杨少伟.微波协助下的常压湿式催化氧化技术及其应用.中山大学[硕士学位论文], 2003.5.
    [153]胡文勇,郑正,郑寿荣等.超声波/零价铁降解对硝基苯胺的试验研究.环境污染治理技术与设备, 2005, 3(6):28-36.
    [154]潘洁,沈聪,李琴等.微波协同铁屑内电解处理亚甲基蓝染料废水.应用化工, 2006, 9(35): 656-658.
    [155]庄玉贵.水处理中含铁废料综合利用的研究进展.环境污染与防治.1997.19 (6): 27-29.
    [156]周培国.微电解土艺研究进展.环境污染治理技术与设备.2001.2(4):18-24.
    [157]陈郁.零价铁处理污水的机理及应用.环境科学研究.2000, 13(5):24-26.
    [158]杨良玉.微波等离子体强化内电解处理活性染料废水.华中科技大学[硕士学位论文], 2004.4.
    [159]邓兰萍,金孟.零价铁还原降解2, 4-二氯苯酚的试验研究.甘肃科学,2005,21(4):90-91.
    [160]谭明,邹东雷,赵晓波.铁屑粉煤灰微电解法预处理印染废水的研究.吉林大学学报, 2004, 10:121-125.
    [161]龙炳清,杨代军等.铁还原中和沉淀法处理TNT酸性废水的研究.重庆环境科学, 2003, 25(5): 43-46.
    [162]李黎,曾庆福,阮新潮,李海燕.微波等离子体强化内电解降解活性艳蓝KN—R染料溶液,《武汉科技学院学报》2005, 18( 5).
    [163]杨辉,卢文庆,应用电化学.科学出版社, 2002, 62-65.
    [164]王连生.有机污染物化学.北京:科学出版社, 1974.
    [165]唐有祺.化学动力学和反应器原理.北京:科学出版社, 1987.
    [166]许正,夏连胜,刘晓春.脉冲等离子技术降解TNT初步研究.火炸药学报,1999,4:54-56.
    [167]周坤嶙,等离子体化学.化学通报, 1988(1):51-53.
    [168] Shen M and Bell A T. A review of recent advances in plasma polymerization. In: Shen M and Bell A T, ed, plasma polymerization. ACS Symposium Series 108, 1979.1-33.
    [169] Yasuda H K. Compatitive ablation and ploymerization (CAP) mechanisms of glow discharge polymerization. In: Shen M and Bell A T,ed, Plasma polymerization. ACS Symposium Series 108, 1979.37-52.
    [170] Osada Y and Bell A T, Shen M. Plasma-initiated polymerization and copolymerization of liquid Vinyl Monomers. In: Shen M and Bell A T, ed, Plasma polymerization. ACS Symposium Series 108, 1979.253-261.
    [171] Gaylod N G. Participation of ezcited species in propagation step in photopolymerization. In: Labana S S, ed, Ultraviolet light induced reation in polymers. ACS Symposium Series 25, 1976.1-11.
    [172] Tibbitt J M. Jensen R, Bell A T and Shen M. A model for the kinetics of plasma polymerization. Macromolecules, 1977 .10(3): 647-657.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700