陶瓷基复合材料结构失效机理及模型研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
陶瓷基复合材料是未来高推重比航空发动机的重要候选材料之一。为促进陶瓷基复合材料在航空发动机上的工程应用,必须对陶瓷基复合材料的失效机理和失效模型进行研究,以发展适合于陶瓷基复合材料力学行为和损伤分析的研究方法。
     本文基于能量释放率的裂纹偏转准则,采用虚裂纹闭合技术计算了基体裂纹在界面处不同传播路径的能量释放率,考察了弹性错配参数、基体裂纹扩展长度、基体裂纹相对扩展长度及热膨胀系数等对裂纹偏转的影响。结果表明:当不考虑温度、热匹配、界面等因素的影响时,双向基体裂纹偏转比单向基体裂纹偏转更容易发生;高温下陶瓷基复合材料基体裂纹扩展的失效模式是由外载荷和温度引起的闭合力共同决定的,只有外载荷大于温度引起的闭合力,裂纹才能进一步扩展。
     从细观层面解释陶瓷基复合材料在拉伸载荷下的宏观力学行为与基体开裂、界面脱粘和纤维断裂三种基本失效模式之间的关系。在陶瓷基复合材料应力应变曲线离散化方法的基础上提出陶瓷基复合材料失效过程结构离散化方法,将正交层合陶瓷基复合材料的失效过程离散为单向纤维增强陶瓷基复合材料的失效过程,单向纤维增强陶瓷基复合材料的失效过程离散为基体裂纹、界面脱粘、纤维断裂占主导地位细观失效模式控制的阶段。
     开展了单向纤维增强C/SiC复合材料在常温和高温环境下的单向拉伸试验研究。设计了常温和高温拉伸试件及相应试验夹具,成功实施了单向纤维增强C/SiC陶瓷基复合材料的常温和高温单向拉伸试验,得到材料的弹性模量、拉伸强度以及应力应变曲线。观察试件断口形貌和界面形貌,分析材料的失效模式和损伤演化过程。
     将基体裂纹、界面脱粘、纤维断裂等单一失效模式的失效准则和损伤演化规律融入宏细观统一本构模型中,建立耦合损伤的陶瓷基复合材料宏细观统一本构模型,用于预测陶瓷基复合材料的拉伸应力应变响应和损伤演化过程。
Ceramic matrix composites are potential candidate materials for future aero engine of a high thrust to weight ratio.Comprehensive research of failure mechanisms and failure models must be conducted to promote engineering application of ceramic matrix composites,and to develop performance prediction methods and damage research technology of ceramic matrix composites.
     An energy criterion based the energy release rates is used to study matrix crack deflection at interface in ceramic matrix composites.The energy release rates of possible crack paths are estimated by applying the virtual crack closure technique, and the effects of elastic mismatch parameters, the crack growth length, the relative crack growth length, and thermal expanding coefficient are analyzed on crack deflection of the matrix. The results show that double matrix crack are more likely to expand than single matrix crack if not consider the effects of temperature, thermal expansion match and interface performance.Failure models of matrix crack at the interface depends on closing forces caused by load and temperature at high temperature,and matrix cracks at the interface can be able to expand only the closing force caused by load is greater than that caused by temperature.
     Analyzed failure mechanism of ceramic matrix composites under uniaxial tensile loading and studied the mechanical relation between common characteristic of the stress-strain response and three dominant damage modes: matrix cracking, interface debonding and fiber breakage through analyzing the damage microstructure. Based on discrete regions method of stress-strain curve, discrete structure method is set up to divide laminated ceramic matrix composites into unidirectional ceramic matrix composites, and to divide stress-strain curve of unidirectional ceramic matrix composites into different regions which characterize three dominant damage modes.
     Unidirectional tension testing methods and testing systems for unidirectional C/SiC composite are studied. Specimen geometries and gripping fixture are designed, and the tensile test of unidirectional C/SiC is conducted successfully. Elastic modulus, strength and stress-strain curves of test are obtained. In-situ of damage evolution and fracture are researched by analyzing the fracture surfaces of damaged specimens.
     Assembled unified macro- and micro-mechanic constitutive model with failure criterias and damage evolutions of three dominant damage modes, a unified macro- and micro-mechanic constitutive model coupled with damage is improved to predict macro-mechanical properties of unidirectional and Laminates ceramic matrix composites.
引文
[1]张立同,成来飞,徐永东.新型碳化硅陶瓷基复合材料的研究进展.航空制造技术,2003(1),24-32.
    [2] U.Papenburg, S.Beyer, H.Laube, S.Walter, G.Langel, M.Selzer. Advanced ceramic matrix composites (CMC's) for space propulsion systems.American Institute of Aeronautics and Astronautics,Inc.1997:1-9.
    [3] Hisaichi Ohnabe,Shoju Masaki,Masakazu Onozuka,Kaoru Miyahara,Tadashi Sasa. Potential application of ceramic matrix composites to aero-engine components. Composites:Part A,1999,30:489-496.
    [4] Hatton k,Hemstad S,Hemstad S. SiC fiber reinforced ceramic matrix composites for turbine engine applications. ASME 2000-GT-72.
    [5]邹世钦,张长瑞,周新贵,曹英斌.连续纤维增强陶瓷基复合材料在航空发动机上的应用.航空发动机,2005,31(3):55-58.
    [6] HRISTIN F. Design,fabrication and application of C/C, C/SiC and SiC/SiC composites. 4th International Conference on High-Temperature Ceramic Matrix Composites,2001:731-743.
    [7] Evans A G. Perspective on the development of high toughness ceramics. J Am Ceram Soc,1990,73 (2):187-206.
    [8] Koop W. The integrated high performance turbine engine technology( IHPTET) program. ISABE, 97-7175.
    [9] Hong William S,Collopy Paul D. Technology for jet engines - A case study in science and technology development. AIAA 2004-6236.
    [10]黄春峰.国外第二代超音速民用运输机(SST)发动机的研究.航空发动机,2000,(1):55-63.
    [11] Plencner Robert M, Misra Ajay,Graber Edwin J, Shaw Robert J,Seng Gary T. Engine technology challenges for the high-Speed civil transport plane. NASA/TM-1998-208405.
    [12] Karnitz M A, Craig D F, Richlen S L. Continuous fiber ceramic composite program. Ceram.Bull,1991,70(3):430-435.
    [13] Gummere Robert J. The technology challenge of the advanced tactical fighter: A Study of the technology transition process.ADA216109.
    [14]匡加才,张长瑞.高温热机用陶瓷部件的研究与进展.高科技纤维与应用,2002,27(5):6-10.
    [15] Ginty Carol A,Gray Hugh R. Overview of NASA's advanced high temperature engine materials technology program. NASA-19930069456.
    [16] Stephens,Joseph R. NASA's HITEMP program for UHBR engines. AIAA PAPER 90-2395.
    [17] Gray Hugh R. Advanced high temperature engine materials technology program. NASA-19910010797
    [18]王增强.航空发动机先进制造技术—高性能航空发动机制造技术及其发展趋势.航空制造技,2007,(1):50-55.
    [19]梁春华.IHPTET计划的最新进展.国际航空,2004,(2):58-60.
    [20]吴大观.关于新版综合高性能涡轮发动机技术计划.航空发动机,2003,29(2):1-4.
    [21]方昌德.航空发动机的发展前景.航空发动机,2003,30(1):1-5.
    [22] AIAA Air Breathing Propulsion Technical Committee. The versatilr affordable advanced turbine engines(VAATE) initiative. American Institute of Aeronautics & Astronautics,January, 2006
    [23] Friend, R. Turbine engine research in the United States Air Force[J].Aerospace Conference, 2001, 7:3178.
    [24] SCHULZ R B,RAYJ D. Transportation, energy and ceramics. Ceram Eng Sci Proc,1991,12 (7): 947.
    [25]张和善.复合材料与未来航空发动机.航空制造工程,1995,(9):6-8.
    [26]孙庆华.斯奈克玛公司M88发动机研制状况.航空发动机, 1991,2:35-43.
    [27]陈博,张立同,成来飞,栾新刚. 3D C/SiC复合材料喷管在小型固体火箭发动机中的烧蚀规律研究.无机材料学报,2008,23(5):938-944.
    [28]潘育松,徐永东,陈照峰,成来飞,张立同,熊党生.碳/碳化硅燃气舵的烧蚀及抗热震性.中国有色金属学报,2006,6:54-59.
    [29]邹武,张康助,张立同.陶瓷基复合材料在火箭发动机上的应用.固体火箭技术,2000,23(2): 60-64.
    [30]陈炳贻.有陶瓷基复合材料火焰筒的航空发动机燃烧室的设计和试验.航空科学技术, 2003,(6):30-33.
    [31]李功,高云峰,李长林.陶瓷基复合材料浮动壁燃烧室直用进展及结构方案探讨.航空维修与工程.2006,(2):36-38.
    [32]杜善义,王彪,复合材料细观力学,北京,科学出版社,1998
    [33]雷友锋,宋迎东,高德平,程卫华.纤维增强复合材料结构的宏细观一体化分析方法.机械科学与技术,2002,21(4):617-632.
    [34]孙志刚.复合材料高精度宏一细观统一本构模型及其应用研究.南京航空航天大学,2005.
    [35] G.J.Dvorak,Y.A.Bahei-El-Din. Plasticity analysis of fibrous composites, Journal of Applied Mechanics, 1982, Vol.49,327-335.
    [36] J.F.Wu, M.S.Shephard, G.J.Dvorak,Y.A.Bahei-El-Din. A material model for the finite element analysis of metal matrix composites, Composites Science and Technology, 1989,35:347-366.
    [37] Murthy.P.L.N, Chamis.C.C. Towards the development of micromechanics equations forceramic matrix composites via fiber substructuring. NASA-TM-105246.
    [38] Dale.A. Hopkins, Christos.C.Chamis, A unique set of micromechanics equations for high temperature metal matrix composites,NASA-TM-87154,1985.
    [39] M.Paley,J.Aboudi.Micromechanical analysis of composites by the generalized cells model.Mechanics of Materials. 1992,114: P127-139.
    [40] C.C.Chamis,P.L.N.Murthy,P.K.Gotsis,S.K.Mital.Telescoping composite mechanics for composite behaviorSimulation. Comput.Methods Appl.Mech.Engrg,2000,185: 399-411.
    [41] J.Aboudi,Elsevier,Amsterdam. Mechanics of composite materials-a unified micromechanical approach. Computer Methods in Applied Mechanics and Engineering. 1994,117(1-2):231-232.
    [42] Kim R Y,Pagano N J.Crack initiation in unidirectional brittle-matrix composites.Journal of the Ceramic Society of America,1991,74:1082-1090.
    [43] Garret K W, Bailey J E. Multiple transverse fracture in 900 cross-ply laminates of a glass fiber-reinforced polyester.J.Mater.Sci,1977,12:157-168.
    [44]潘文革,矫桂琼,王波,管国阳.声发射技术在三维编织C/SiC复合材料拉伸损伤分析中的应用.无机材料学报,2004,19(4):871-875.
    [45] Barsoum M W,Kangutkar P,Wang A S D.Matrix crack initiation in ceramic matrix composites part I: Experiments and tests results.Composites Science and Technology,1992,44:257-269.
    [46] R.J.Kerans. The role of the fiber-matrix interface in ceramic composites. Am.Ceram.Soc.Bull,1989,68(2):429-442.
    [47] Kagawa Y,Goto K.Early stage matrix cracking phenomena in fiber-reinforced brittle matrix composites. High-Temperature Ceramic Matrix Composites I: Design, durability and performance. The American Ceramic Society,Westerville,Ohio:247-251.
    [48] Aveston J, Cooper G, Kelly A. Single and multiple fracture.Properties of fiber composites. In: Conference on proceedings,National Physical Laboratory.UK:IPC,1971:15-26.
    [49] Budiansky.B,Hutchinson.J,Evans.A. Matrix fracture in fiber reinforced ceramics.J Mech Phys Solids,1986,34(2):167-89.
    [50] Marshall D,Cox B,Evans A. The mechanics of matrix cracking in brittle matrix composites. Acta Metall,1985:33(11):2013-2021.
    [51] McCartney L. Mechanics of matrix cracking in brittle-matrix fiber-reinforced composites. Proc R Soc,1987,A409:329-50.
    [52] Luen-Yuan Chao, Dinesh, K Shetty.A Computational Model For Progressive Damage and Failure of Fiber-Reinforced Ceramic Composites. WL-TR-95-3044.
    [53] Tianle Cheng, Rui Qiao,Yuanming Xia. A Monte Carlo Simulation of Damage and Failure Process with Crack Saturation For Unidirectional Fiber Reinforced Ceramic Composites.Composites Science and Technology, 2004, 64: 2251-2260.
    [54] YONGJIAN SUN, RAJ N. SINGH. The generation of multiple matrix cracking and fiber–matrix interfacial debonding in a glass composite. Acta mate,1998,46(5):1657-1667.
    [55] T. OKABE, N. TAKEDA, J. KOMOTORI, M. SHIMIZU,W. A. CURTIN. A new fracture mechanics model for multiple matrix cracks of SiC fiber reinforced brittle-matrix composites. Acta mate,1998,42(17):4299-4309.
    [56] H.C.Cao. O.Shaizero. M.Ruhle .A .G.Evans. Effect of interfaces on the properties of fiber reinforced ceramic. J.Am.cerami.soc, 1990,73(6):1691-1699.
    [57] Raddatz O, Schneider G A, Mackens W. Bridging stresses and R-curves in ceramic/metal composites. Journal of the European Ceramic Society, 2000, 20 (13): 2261- 2273.
    [58] Budiansky B, Cui Y L. Toughening of ceramics by short aligned fibers. Mechanics of Materia1s,1995, 21 (2): 139-146.
    [59] Evans A G, Marshal D B. The mechanical performance of fiber reinforced ceramic matrix composites. High Temperature/High Performance Composites, Materials Reserch Society,Pittsburgh,Pennsylvania,1988:213-246.
    [60]尹洪峰,徐永.纤维增韧陶瓷基复合材料界面相的作用及其设计.硅酸盐通报,1999,(3):23-28.
    [61] Cook J, Gordon J E. A mechanism for the control of crack propagation in all-brittle systems. Proc. Royaf Society,1964,282:508-520.
    [62] Lacroix C,Leguillon D,Martin E.The influence of an interphase on the deflection of a matrix crack in a ceramic-matrix composite.Composites Science and Technology,2002,62(4):519-523.
    [63] Gupta, V., Argon, A.S., Suo, Z. Crack deflection at an interface between two orthotropic media.J.Appl.Mech,1992,59:79–87.
    [64] He.MY, Hutchinson JW. Crack deflection at an interface between dissimilar elastic materials. Int J Solids Structures,1989,25:1053–67.
    [65] Tullock DL, Reimanis IE, Graham AL, Petrovic JJ. Deflection and penetration of cracks at an interface between two dissimilar materials. Acta Metall Mater, 1994,42:3245–52.
    [66] M.Sakaia,R.Matsuyamaa,T.Miyajimab. The pull-out and failure of a fiber bundle in a carbon fiber reinforced carbon matrix composite.Carbon,2000,38:2123-2131.
    [67]张双寅.纤维/基体界面裂纹扩展能.力学与实践,1996,18(2):49-51.
    [68] W.Becker-t,B.Lauke.Finite element calculation of energy release rate for single-fibre pull-out test.Computational Materials Science,1996,5:1-11.
    [69] Shao-Yun Fu,Chee-Yoon Yue,Xiao Hu,Yiu-Wing Mai.Analyses of the micromechanics of stress transfer in single- and multi-fiber pull-out tests.Composites Science and Technology,2000,60:569-579.
    [70]彭细荣,杨庆生.纤维拔出实验的样本尺寸效应.复合材料学报,2002,19(5):84-89.
    [71] DiCarlo, James.Current. Computational Challenges for CMC Processes, Properties, and Structures. NASA -20080033118.
    [72] Yun, H. M.; DiCarlo, J. A.; Bhatt, R. T. Advanced Constituents and Processes for Ceramic Composite Engine Components. NASA-20050204020.
    [73]刘荣军,周新贵,张长瑞.碳纤维增强陶瓷基复合材料(CFRCMCs)防氧化研究进展.材料导报,2001,15(8):39-41.
    [74]李汉堂.高性能纤维开发及其发展趋势.科技资讯,2005,22(15):36-40.
    [75]冯春祥,王应德.连续SiC纤维应用概况.材料导报,1997,11(6):64-66
    [76]李世波,徐永东,张立同.碳化硅增强陶瓷基复合材料的研究进展.材料导报,2001,15(1),45-19.
    [77]齐志军,林树波,于振环.影响碳纤维强度的因素分析.高科技纤维与应用, 2003,28(4):30-35.
    [78]沃西源.国内外几种碳纤维性能比较及初步分析.高科技纤维与应用,2004,25(2):30-36.
    [79] Murthy, Pappu L N, Gyekenyesi, John P, Mital, Subodh K. Scatter in Carbon/Silicon Carbide (C/SiC) Composites Quantified. NASA-20050215248.
    [80] Gross, D. Miller, D. R. Soland, R. M. Statistical aspects of carbon fiber risk assessment modeling. NASA-CR-159318.
    [81] Slattery, Kerry T. A statistical model of carbon/carbon composite failure. NASA- 19920006677.
    [82]张妃,郝同壬,袁鸿,陈学科.复合材料纤维内裂纹分析的随机边界元法.广东工业大学学,1997,14(1):98-103.
    [83] Hiroshi J T. Fracture process of silicon carbide fiber-reinforced glasses. J Am Ceram Soc,1996,79(9):2293-2299.
    [84]汪洋,江大志,夏源明.单向碳纤维增强碳化硅基复合材料的拉伸试验.材料科学与工艺,2001,(1):32-36.
    [85] Lynch C S,Evans A G. Effect of off-axis loading on the tensile behavior of a ceramic-matrix composites.Journal of the American ceramic society,1996,79:3113-3123.
    [86] D.L.ERDMAN, Y WEITSMAN. THE MULTI-FRACTURE RESPONSE OF CROSSPLY CERAMIC COMPOSITES.Int. J.Solid Structures,1998,35(36):5051-5083.
    [87] A.W.PRYCE,P.A.SMITH.Behaviour of unidirectional and crossply ceramic matrix composites under quasi-static tensile loading.JOURNAL OF MATERIALS SCIENCE,1992(27):2695-2704.
    [88] Davies C M A,Harris B,Cook R G. Characterization of damage onset in glasse-ceramic matrix composites angle-ply laminates.Composites,1993,24:141-149.
    [89] Bhatt.Ramakrishna.T,Phillips.Ronald.E. Laminate behavior for SiC fiber-reinforcedreaction-bonded silicon nitride matrix composites. NASA-TM-101350.
    [90] Kriz.R.D. Influence of Ply Cracks on Fracture Strength of Graphite/Epoxy Laminates at 76K,Effects of Defects in Composite Materials, ASTM STP 836, American Society for Testing and Materials,1984,:250-265.
    [91] Desiderio Kovar,M.D.Thouless,John W.Halloran.Crack Deflection and Propagation in Layered Silicon Nitride/Boron Nitride Ceramics.J. Am. Ceram. Soc.,1998,81(4): 1004–12.
    [92] Zvi Hashin.Finite thermoelastic fracture criterion with application to laminate cracking analysis.J.Mech.Phys.Solids,1996,44(1):1129-l 145.
    [93]潘文革,矫桂琼,管国阳,王波.三维编织Cf/SiC复合材料的拉伸破坏行为.硅酸盐学报,2005,33(2):160-163.
    [94]潘文革,矫桂琼,王波,管国阳.声发射技术在三维编织C/SiC复合材料拉伸损伤分析中的应用.无机材料学报,2004,19(4):871-875.
    [95]王波,矫桂琼,潘文革,陶亮.三维编织Cf/SiC复合材料的拉压实验研究.复合材料学报,2004,21(3):110-114.
    [96]潘文革,矫桂琼,管国阳,王波.三维编织C/SiC复合材料拉伸损伤演化.机械科学与技术,2005,24(3):343-345.
    [97]陶亮,矫桂琼.各向异性编织CMC弯曲断裂失效模型.固体力学学报,2003,(4):441-445.
    [98]陶亮,矫桂琼.三维编织CMC断裂韧性表征形式的试验研究.应用力学报,2002,19(3):149-152.
    [99]乔生儒,杜双明.3D-C/SiC复合材料的损伤机理.机械强度,2004 6(3):307-312.
    [100]沃丁柱.复合材料大全.北京:化学工业出版社,2000.
    [101] Stowell E Z, Liu T S.On the mechanical behavior of fiber-reinforced crystalline materials. Journal of Mechanics and Physics of Solids,1961,9(4):242-260.
    [102] Kelly A, Davies G J. The principles of the fiber reinforcement of metals. Metallurgical Reviews, 1965,10(37):1-77.
    [103] Praqer W. Plastic failure of fiber-reinforced materials.Journal of Applied Mechanics,1969,36(3):542-544.
    [104] Maddoups M E, Eisenmann J R,Kaminski B E. Macroscopie Fracture Mechanics of Advanced Composite Materials.Journal of Composite Materials,1971,5(4):446-454.
    [105] Whitney J M, Nuismer R J. Stress fracture criteria for laminated composites containing stress concentrations.Journal of Composite Materials,1974,8(3):253-265.
    [106] Pipes R B,Wetherhold R C, Gillespie J W. Macroscopic fracture of fibrous composites.Materials Science and Engineering,1980,45(3):247-253.
    [107] Zhen S. The D Criterion Theory in Notched Composite Materials.Journal of ReinforcedPlastics and Composites,1983,2(2):98-110.
    [108] Cox H L. The elasticity and strength of paper and other fibrous materials. British J.Appl.Plys,1952,3(1):72-74.
    [109] Hedgepeth J M. Stress concentrations in filamentary structures. NASA TND-882,1961.
    [110] Ochiai S,Schulte K, Peter P W M. Strain concentration factor for fiber and matrix in unidirectional composites.Comp Sci Technol,1991,41:237-256.
    [111]曾庆敦,王志力.计及基体刚度的单向复合材料应力集中分析.华南理工大学学报(自然科学版),1996,24(9):39-45.
    [112]蔡乾煌,邹毓强.考虑界面层效应的纤维增强陶瓷材料的力学模型.清华大学学报(自然科学版),1996,36:111-116.
    [113] Aveston.J, Kelly,A. Theory of multiple fracture of fibrous composites. Journal of Materials Science,1973,8:352-362.
    [114] Curtin William A.Theory of Mechanical Properties of Ceramic-Matrix Composites. Journal of American Ceram.Soc, 1991,74(11):2837-2845.
    [115] B K Ahn, W A Curtin.Strain and hysteresis by stochastic matrix cracking in ceramic matrix composites. Journal of Mechanics Physical Solids, 1997, 45:177-209.
    [116] W A Curtin, B K Ahn, N Takend. Behavior in Unidirectional Ceramic Matrix Compo- sites. Acta Mater, 1998, 46:3409-3420.
    [117] Curtin W. A. Exact theory of fibre fragmentation in a single-filament composite.Journal of Materials science, 1991,26:5239-5253.
    [118] Shashwat Kumaria,raj n.dingth. Effect of Interfacial Shear Strength on Crack-fiber Interaction Behavior in Ceramic Matrix.J.Am.cerami.soc, 1996,79:199-208.
    [119] He MY,Evans AG,Hutchinson JW. Crack Deflection at an Interface between Dissimilar Elastic Materials:Role of Residual Stresses[J].International Journal of Solids and Structures,1994,31:3443-3455
    [120] Dundurs J. Edge-bonded Dissimilar Orthogonal Elastic Wedges.J Appl Mech (Trans ASME), 1969,36(5):650-652.
    [121] Woong Lee,Yo-Han Yoo,Hyunho Shin. Reconsideration of Crack Deflection at Planar Interfaces in Layered Systems.Composites Science and Technology, 2004,64:2415-2423.
    [122] E.Martin,P.W.M.Peters,D.Leguillon,J.M.Quenisset. Conditions for Matrix Crack Deflection at an Interface in Ceramic Matrix Composites. Materials Science and Engineering A250, 1998:291-302.
    [123] A.A.MAMMOL,A.L.GRAHAM,A.A.Mammoli. The Effect of Flaws on the propagation of cracks at bi-materials interfaces. Acta Metallurgica et Materialia, 1995,43(3):1149-1156.
    [124] Y.F.LIU,Y.TANAKA,C.MASUDA. Debonding Mechanisms in the Presence of an Interphase in Composites.Acta mater, 1998,46(15):5237-5247.
    [125] Alberto Romeo,Roberto Ballarini. A Cohesive Zone Model for Cracks Terminating at a Biomaterial Interface. International Journal of Solids and Structures, 1997,11(34):1307-1326.
    [126] J.P.Parmigiania,M.D.Thoulessa. The Roles of Toughness and Cohesive Strength on Crack Deflection at Interfaces. Journal of the Mechanics and Physics of Solids, 2006,54:266-287.
    [127] Ahn BK,Curtin WA,Parthasarathy TA,Dutton RE. Criteria for Crack Deflection/penetration for Fiber-reinforced Ceramic Matrix Composites. Compos Sci Technol, 1998,58(11):1775-84.
    [128] Byung Ki Ahn. Interfacial Mechanics in Fiber-Reinforced Composites:Mechanics of Single and Multiple Cracks in CMCs.the Faculty of the Virginia Polytechnic Institute and State University,1997.
    [129] E.F.RYBICKI,M.F.KANNINEN. A Finite Element Calculation of Stress Intensity Factors by a Modified Crack Closure Integral.Eng.Fracture Mech,1977,9: 931-938.
    [130] Krueger,Ronald. The Virtual Crack Closure Technique: History, approach and applications.NASA/CR-2002-211628.
    [131] W.LEE,S.J.Howard,W.J.CLEGG. Growth of Interface Defects and its Defect on Crack Deflection and Toughening.Acta mater, 1996,44(10):3905-3922.
    [132]杨卫.宏微观断裂力学.北京:国防工业出版社,1995.
    [133] Martin E,Leguillon D,Lacroix C. A Revisited Criterion for Crack Deflection at an Interface in a Brittle Material.Compos Sci Technol,2001:61(12):1671-1679.
    [134] N. Carre`re,E. Martin,J. Lamon, The influence of the interphase and associated interfaces on the deflection of matrix cracks in ceramic matrix composites, Composites: Part A 31 (2000):1179–1190.
    [135] James P.Solti. Modeling of Progressive Damage in Fiber-Reinforced Ceramic Matrix Composites.AD 96-2.
    [136] Gao Y-C,Mai Y-W,Cottrell B. Fracture of bre-reinforced materials. ZAMP, 1988,39:550-572.
    [137] J.-M. Berthelot, P. Leblond, A. El Mahi and J.-F. Le Corre.Transverse cracking of cross-ply laminates:Part 1. Analysis.Composites Purr A 27A (1996) 989-1001.
    [138] Kuo W.S.,“Damage of Multi-Directionally Reinforced Ceramic Matrix Composites,”PhD dissertation, Department of Mechanical Engineering, University of Delaware, August 1992
    [139] Yih-Cherng Chiang. On crack-wake debonding in fiber reinforced ceramics. Engineering Fracture Mechanics, 2000, 65:15~28.
    [140] Weitsman Y. and Zhu H. Multi-Fracture of Ceramic Composites. J.Mech.Phys.Solids, 1993,41(2):351-388
    [141] He M, Hutchinson J. Kinking of a crack out of an interface. J Appl Mech 1989;56:270–8.
    [142] Yih-Cherng Chiang. On fiber debonding and matrix cracking in fiber-reinforced ceramics. Composites Science and Technology ,2001,(61):1743–1756.
    [143] Carl McElhinney Cady.Experimental study of damage in ceramic fiber-reinforced ceramic matrix composites.UNIVERSITY OF CALIFORNIA.1994
    [144] A. W. PRYCE, P. A. SMITW Behaviour of unidirectional and crossply ceramic matrix composites under quasi-static tensile loading .JOURNAL OF MATERIALS SCIENCE 27 (1992): 2695-2704
    [145] Zawada L.P., Butkus L.M. and Hartman G.A. Room Temperature Tensile and Fatigue Properties of Silicon Carbide Fiber Reinforced Aluminosili-cate Glass," Ceramic Engineering and Science Proceedings, 1 (9-10):1592-1606
    [146] Abhisak Chulya,John P. Gyekenyesi,Ramakrishna T. Bhatt.Mechanical behavior of fiber reinforced SiC RBSN ceramic matrix composites Theory and experiment.NASA 91-C-004
    [147] Holmes J.W. and Cho C, Frictional Heating in a Unidirectional Fibre Reinforced Ceramic Composite, J. Matr. Sci. Lett., vol. 11 :41-44 (1991)
    [148] John Z.Gyekenyesi. High Temperature Mechanical Characterization of Ceramic Matrix Composites.NASA / CRm1998-206611
    [149] Wang S.W. and Parvizi-Majidi A. Mechanical Behavior of NicalonTM Fiber Reinforced Calcium Aluminosilicate Matrix Composites," Ceramic Engineering and Science Proceedings, 1990,11 (9-10):1607-1616.
    [150]赵祖虎.复合材料机械加工技术简介.航天返回与遥感,1997,18(1):57-63.
    [151]胡宝刚,赵建设.碳纤维复合材料的切削加工工艺.导弹与航天运载技术,1994,(5):48-52.
    [152]宫平,王炤亮.超高压力磨料水射流切割机的应用研究.高科技纤维与应用,2002,27(6):34-36.
    [153]张卫山.单向石墨/环氧复合材料的纯水射流切割及磨料水射流切割.宇航材斟工艺,1995,(5):52-56.
    [154]洪蕾,李力钧.CO2调Q脉冲激光切割陶瓷材料的试验研究.应用激光,1999,19(4):170-173.
    [155]张珊,康少英.激光加工陶瓷的实验研究.应用激光,1994,14(6):253-256.
    [156]王瑾.线切割加工SiC_pLY12复合材料的试验研究.陕西工学院学报,2000,16(3):1-5.
    [157]朱曾.工程陶瓷AI2O3—TiC电火花线切割加工的试验研究.电加工, 1995,(3):33-37.
    [158]徐文骥,蒋希时.工程陶瓷的等离子弧切割实验研究.电加工与模具,2002,(1):29-30.
    [159]徐文骥,蒋希时,周锦进,马腾才.工程陶瓷等离子切割基础研究.制造技术与机床, 2002,(1):7-8.
    [160]崔巍,高军.超声切割技术在复合材料加工领域的应用.航空制造技术, 2006,(6):108-109.
    [161]郭钟宁,汪学.声线切割复合加工技术的研究实验.械加工与自动化, 2001,(7):30-31.
    [162]霍奇金森.先进纤维增强复合材料性能测试.化学工业出版社,2005.
    [163]王波.三维编织复合材料力学行为研究.西北工业大学,2003.
    [164] Hashin Z.,Analysis of composite materials:A survey,J.Appl.Mech.1983,50:481-505.
    [165] Murthy Pappu L N,Chamis Christos C, Mital Subodh K. Computational Simulation of Continuous Fiber-Reinforced Ceramic Matrix Composites Behavior. NASA-TP-3602
    [166]雷友锋.纤维增强金属基复合材料宏一细观统一本构模型及应用研究.南京航空航天大学,2002.
    [167]孙志刚.复合材料高精度宏_细观统一本构模型及其应用研究.南京航空航天大学,2005.
    [168]雷友锋,魏德明,高德平.细观力学有限元法预测复合材料宏观有效弹性模量.燃气涡轮试验与研究.2003,8(16):11-15
    [169] Moulson,A.J. Review Reaction-Bonded Silicon Nitride: Its Formation and Properties.Journal of Materials Science,1979,14:1017-1051
    [170] Subodh K.Mital,Pappu L.N.Murthy,Christos.C.Chamis. Simulation of ceramic matrix composites behavior including progressive fracture and load redistribution.AIAA-95-1215-CP.
    [171] David Y. Xue and Michael F. Card. Prediction of laminate damage processes using combined micro-mechanics, fracture mechanics and statistics approach.AIAA-97-1188.
    [172]陶亮,矫桂琼.影响三维编织CMC断裂性能的孔洞问题.应用力学学报.2003,4(20):37-40.
    [173]刘鹏飞,陶伟明,郭乙木.纤维拔出时界面分离能释放率的应力函数分析.中国有色金属学报,2006,16(2):253-259.
    [174] Hon da K, Kagawa Y. Debonding criterion in the pushout process of fiber-reinforced ceramics.Acta Materialia,1996,44(8):3267-3277

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700