三维编织复合材料几何建模及界面损伤力学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
三维编织复合材料性能优良其最大优势是具有高的可设计性,在航空航天、国防、医疗、民用设施等高科技领域被广泛应用。因此,对这种高性能材料的力学性能及损伤情况的研究就变得尤为重要。目前,对三维编织复合材料力学行为的研究取得了一定的成果,但仍然有许多问题需要进一步研究分析。本文针对三维编织复合材料,从弹性常数预测、纤维及纤维基体界面受力、纤维损伤三个方面进行了研究。
     第一章介绍了三维编织复合材料的产生和发展过程,综述了从几何建模、力学性能数值仿真、界面力学分析等方面对三维编织复合材料取得的成果和研究现状,并说明了本文的选题目的和研究意义。
     第二章通过采用内部单胞纤维弯曲模型、表面单胞和角单胞折线模型的三单胞模型来预报三维编织复合材料的有效弹性模量。首先,建立周期性的三单胞模型,根据纤维在模型中的几何分布,分别计算出各个模型中纤维和基体的体积百分比。然后,通过刚度平均得到各单胞模型的刚度矩阵。最后,通过体积平均法得出了三维编织复合材料预制件的有效弹性模量。
     第三章研究了单根直纤维及界面的受力分析。首先,弯曲的纤维可以表示为一系列直纤维微元通过坐标变换组合而成,通过对纤维拔出模型理论方面的分析得到纤维轴向应力和剪切应力。然后,通过有限元软件对纤维拔出模型进行模拟,得到纤维和基体的应力云图和数据。最后,对结果进行了分析,并对材料可能发生损坏进行了阐述。
     第四章探讨了带有缺陷的编织复合材料界面的应力场分布。首先,通过轴对称界面端奇异应力场的特征值法、界面力学和断裂力学的理论对三维编织复合材料在两种缺陷下的应力场分布和断裂准则进行了理论分析。然后,通过有限元软件对两种缺陷进行了数值模拟,得到了奇异点处的应力场和应力强度因子。最后还模拟分析了裂纹尺度对材料应力场的影响。
3-D braided composites is widely used in aerospace, defense, medical, civilian facilities and other high-tech areas by its excellent performance and outstanding designability. The research of 3-D braided composites mechanical property and damage is a very important problem. At present, though the research of mechanics behavior of 3-D braided composites has some progress, there are many problems need to be further investigated. This paper studies 3-D braided composites by predicting elastic constants, analysing stress and damage of fiber and fiber matrix interface using theory and numerical analysis.
     In the first chapter, the development of 3-D braided composites is introduced, the recent research progress of 3-D braided composites on geometry modeling, process, numerical simulation of mechanical property, analysis of interfacial mechanics are reviewed, and the writer expounds the purpose of this topic and significance of research.
     In the second chapter, effective modulus of the 3-D braided composites is predicted by using internal cell curved fiber model, surface cell and angle cell polyline flber model. First, according to the geometric distribution of fiber in model, periodic three cell models is established, and fiber and matrix volume percentage of each model is separately calculated. Then, the stiffness matrix of each single cell model is get through averaging stiffness. Finally, the effective elastic modulus of 3D braided composites preform are obtained by the method of averaging volume.
     In the third chapter, the writer researches a single straight fiber and analyses stress of interface. First, curved fibre can be expressed as a combination of a series of infinitesimal straight fiber through coordinate transformation, fiber axial stress and the shear stress are get by the theoretical analysis of fiber drawing model. Then, the stress nephogram and data of fiber and matrix are obtained through simulating fiber drawing model using the finite element software. Finally, the numerical results are analysed.
     In the fourth chapter, the writer discusses the stress distribution of defective braided composites. First, through using the eigenvalue method of axisymmetric interface singular stress field, interface mechanics and fracture mechanics theory, the stress distribution and fracture criterion of defective 3-D braided composites are analysed. Then, through the numerical simulation for two defect of 3-D braided composites by the finite element software, the singular point of the stress distribution and the stress intensity factor are obtained. Finally, the crack scale effect for material stress distribution is simulated and analysed.
引文
[1]吴德隆,沈怀荣.纺织结构复合材料的力学性能[M].湖南长沙:国防科技大学出版社,1998.
    [2]裘镜蓉.编制复合材料在宇航上的应用[J].宇航材料工艺,1991(4):36- 41.
    [3] Mouritz A.P. Review of applications for advanced three-dimensional fiber textile composites[J]. Composites Part A: Applied Science and Manufacturing, 1999, 30(12): 1445-l461.
    [4] Ko F K. Braiding. Engineering materials handbook. Vol 1, Composites [M]. Metal Park, OH: ASM Intemational, 1987:519-528.
    [5] Brown R.T., Crow E.Jr. Automatic through the thickness braiding [C].Proceedings of the 37th International SAMPE Symposium,l992:832-842.
    [6] Ko F K. Pastore C.M. Structure and properties of integrated 3D fabric for structural composites[A]. In: Vinson J R, Taya M. Recent advances in composites in the United States and Japan[C]. Philadelphia: American Society for Testing Material,1985,428-439.
    [7] Ma C.L., Yang J.M., Chou T.W. Elastic stiffness of three-dimensional braided textile structural composites[A].In: Whitney J M. Composite Materials: Testing and Design[C].Philadelphia: American Society for Testing Material, 1986, 404-421.
    [8] Yang J.M., Ma C.L., Chou T.W. Fiber inclination model of three dimensional textile structural composites[J]. Journal of Composite Materials, 1986, 20(5): 472-484.
    [9] Du G.W., Ko F.K. Unit Cell Geometry of 3-d Braided Structures [J].Journal of Reinforced Plastics and Composites, l993, 12(7): 752-768.
    [10]吴德隆,郝兆平.五向编织复合材料的分析模型[J].宇航学报,1993,14(3):40-51.
    [11] Wang Y.Q., Wang A.S.D. Microstructure/ property relationships in three-dimensionally braided fiber composites [J].Composites Science and Technology. 1995, 53(2): 213-222.
    [12] Wang Y.Q., Wang A.S.D. Geometric mapping of yarn structures due to shape change in 3-D braided composites [J].Composites Science and Technology.1995, 54(4): 359-370.
    [13] Byun J.H., Chou T.W. Processing-microstructure relationships of 2-step and 4-stepbraided composites[J]. Composites Science and Technology.l996,56(3):235-251.
    [14] Pandey R., Hahn H.T. Visualization of representative volume elements for three-dimensional four-step braided composites[J].Composites Science and Technology,1996,56(2):161-170.
    [15]韩其睿,李嘉禄,李学明.复合材料三维编织结构的单元体模型[J].复合材料学报,1996,13(3):76-80.
    [16] Chen L., Tao X.M., Choy C.L. Mechanical analysis of 3-D braided composites by the finite multiphase element method[J].Composites Science and Technology, 1999. 59(16): 2383-2391.
    [17] Chen L., Tao X.M., Choy C.L. On the microstructure of three-dimensional braided preforms[J].Composites Science and Technology,1999,59(3):391-404.
    [18]庞宝君,杜善义,韩杰才.三维四向编织复合材料细观组织及分析模型[J].复合材料学报,1999,16(3):135-139.
    [19]徐孝诚,孙德海,黄小平.三维编织复合材料细观结构的几何学分析[J].强度与环境,1999,(2):3743.
    [20]黄小平,孙良新,徐孝诚.复合材料三维四向矩形编织物角柱结构研究[J].复合材料学报,2001,18(4):11-15.
    [21]黄小平,孙良新,徐孝诚.四向矩形编织复合材料单胞的新划分方法[J].纤维复合材料,2001,15(3):15-17.
    [22] Makiko Tada, Tadashi Uozumi, Asami Nakai, et al. Structure and machine braiding procedure of coupled square braids with various cross sections[J]. Composites Part A: Applied Science and Manufacturing, 2001, 32(10): 1485-1489.
    [23] Wang Y.Q., Wang A.S.D. On the topological yarn structure of 3-D rectangular and tubular braided preforms[J].Composites Science and Technology, 1994, 51(4): 575-586.
    [24] Wang Y.O., Wang A.S.D. Yarn Structures in 3-D Braided Composites Due to Complex Shape Change [J].American Society of Mechanical Engineers, 1995, 65: 151-166.
    [25] Wang Y.Q., Wang A.S.D. Spatial Distribution of Yarns and Mechanical Properties in 3-D Braided Tubular Composites [J].Applied Composite Materials. 1997, 4(2): 121-l32.
    [26]陈利,李嘉禄,李学明.三维四步法圆形编织结构分析[J].复合材料学报,2003,20 (2):76-80.
    [27]马文锁,冯伟.三维管状编织复合材料及其构件可变微单元几何分析模型[J].复合材料学报,2005,22(5):162-171
    [28]卢子兴,杨振宇,李仲平.三维编织复合材料力学行为研究进展[J].复合材料学报, 2004,21(2):17.
    [29] Lei C., Cai Y.J., Ko F.K. Finite element analysis of 3-D braided composites[J].Advances in Engineering Software,1992,14(3):187-194.
    [30] Li W, Hammad M, El-Shiekh A. Structural Analysis of 3-D Braided Preforms for Composites Part I: The Four-step Preforms[J]. The Journal of the Textile Institute, 1990, 81(4):491-514.
    [31] Wang Y. , Sun X. Determining the Geometry of Textile Preforms Using Finite Element Analysis [C] . In:Proceedings of the American Society for Composites 15th Annual Technical Conference,2000:485-492.
    [32] Surya R. Kalidindi, Eric Franco. Numerical evaluation of isostrain and weighted-average models for elastic moduli of three-dimensional composites [J].Composites Science and Technology, 1997, 57(3): 293-305.
    [33] Chen L., Tao X.M., Choy C.L. Mechanical analysis of 3-D braided composites by the finite multiphase element method[J].Composites Science and Technology, 1999, 59(16): 2383-2391.
    [34] Zeng Tao, Wu Linzhi, Guo Licheng. Mechanical analysis of 3D braided composites: a finite element model[J]. Composite Structures, 2004, 64(3/4): 399-404.
    [35]刘振国,陆萌,麦汉超,等.三维四向编织复合材料弹性模量数值预报[J].北京航空航天大学学报,2000, 26 (2):182-l85.
    [36]刘振国,卢子兴,陆萌.三维四向编织复合材料剪切性能的数值预报[J].复合材料学报,2000,17(2):66-69.
    [37] Tang Z.X., Posfle R. Mechanics of three-dimensional braided structures for composite materials part I: fabric structure and fibre volume fraction[J].Composite Structures, 2000, 49(4):45l-459.
    [38] Tang Z.X., Posfle R. Mechanics of three-dimensional braided structures for composite materials part II:prediction of the elastic moduli[J].Composite Structures, 200l, 5l(4): 45l-457.
    [39] Tang Z.X., Posfle R. Mechanics of three-dimensional braided structures for composite materials part III: nonlinear finite elemnet deformation analysis[J]. Composite Structures, 2002, 55(3): 307-3l7.
    [40]冯淼林,吴长春,孙慧玉.三维均匀化方法预测编织复合材料等效弹性模量[J].材料科学与工程,2001,19(3):34-37.
    [41] Sun Huiyu, Di Shenglin, Zhang Nong, et al. Micromechanics of braided composites via multivariable FEM[J].Computers and Structures, 2003, 81(20): 2021-2027.
    [42] Sun W, Lin F, Hu X. Computer-aided design and modeling of composite unit cells[J].Composites Science and Technology, 2001, 61(2): 289-299.
    [43]李嘉禄,刘谦.三维编织复合材料中纤维束横截面形状的研究[J].复合材料学报,2001,18 (2):9-13.
    [44]杨振宇,卢子兴,刘振国,等.三维四向编织复合材料力学性能的有限元分析[J].复合材料学报,2005, 22(5):155-161.
    [45]徐焜,许希武.四步法三维矩形编织复合材料的细观结构模型[J].复合材料学报, 2006,23(5):154-160.
    [46]庞宝君,曾涛,杜善义.三维多向编织复合材料有效弹性模量的细观计算力学分析[J].计算力学学报, 2001,18 (2) :231-234.
    [47]徐焜,许希武.三维编织复合材料弹性性能数值预测及细观应力分析[J].复合材料学报, 2007 , 24 (3) : 178-185.
    [48]宛琼,李付国,梁宏,张李骊,三维四向编织复合材料基本性能的有限元模拟[J].航空材料学报,2005,25(1):30-35.
    [49]李典森,卢子兴,蔺晓明,等.三维四向编织复合材料弹性性能的有限元预报[J].北京航空航天大学学报,2006,32(7):828-832.
    [50]孙颖,李嘉禄,亢一澜.二步法三维编织复合材料弹性性能的有限元法预报[J].复合材料学报,2005,22(1):108-113.
    [51]徐焜,许希武.三维编织复合材料渐进损伤的非线性数值分析[J].力学学报,2007,39(3):398-407.
    [52] D.F. Adams, A micromechanics analysis of the influence of the interface on the performance of polymer-matrix composites[J]. Journal of Reinforced Plastics and Composites, 19876 (1):66-87.
    [53] J.D.Achenbach and H.Zhu, Effect of interfacial zone on mechanical behavior and failure of fiber-reinforced composites[J]. Journal of the Mechanics and Physics of Solids, 1989,37 (3):381-393.
    [54]叶碧泉,界旭明,靳胜勇,梁芝茹.用界面单元法分析复合材料界面力学性能[J].应用数学和力学,1996,17(4):343-348.
    [55] Hamitouche L., Tarfaoui M., Vautrin A. An interface debonding law subject to viscous regularization for avoiding instability: Application to the delamination problems[J].Engineering Fracture Mechanics,2008,75(10):3084-3100.
    [56] Moura M F, Gon?alves J P, Chousal J G, et al. Cohesive and continuummixed-mode damage models applied to the simulation of the mechanical behaviour of bonded joints[J]. International Journal of Adhesion and Adhesives, 2008, 28(8): 419-426.
    [57] Wang Yong, Chen Jun, Tang Bingtao. Finite element analysis for delamination of laminated vibration damping steel sheet [J]. Transactions of Nonferrous Metals Society of China,2007,17(3):455-460.
    [58] Sciammarella C A. Fundamental principles governing experimental micro- mechanics[J]. SEM,1994.
    [59] Guo Y, Post D, Han B. Thick composites in compression: an experimental study of micromechanical behavior and smeared engineering properties[J]. Journal of Composite Materials,1992,26(13):1930-1944.
    [60] Robertson I.M., Lee T.C., Birnbaum H.K.. Application of the in situ TEM deformation technique to observe how“clean”and doped grain boundaries respond to local stress concentration[J]. Ultramicroscopy,1992,40(3):330-338.
    [61] Li C S,Oricky L J. Fiducial grid for measuring microdeformation ahead of fatigue crack tip near aluminum bicrystal interface[J].Experiment Mechanics, 1993, 33(4): 286-292.
    [62]贾普荣,矫桂琼,刘达,纤维增强韧性基体界面力学行为[J].固体力学学报.2001,22(1):351-355.
    [63]贾宏,张军,黄刘刚.薄板粘接结构界面力学模型和数值模拟[J].科技导报,2008, 26(16):64-67.
    [64]刘永胜.纤维混凝土增强机理的界面力学分析[J],混凝土.2008,(4):34-35.
    [65]张彦华,刘家奇,段小雪.异种材料连接中的界面力学问题[J].电焊机,2007,37(7):15-17.
    [66]魏高峰,高洪芬.编织复合材料数值模拟方法[J].玻璃钢/复合材料,2005,(6):48-51.
    [67] Ko F K. Three-dimensional fabrics for composites: an introduction to the magna weave structure Composite Material. Tokyo: Japan Soc for Composite Materials, 1982:1609.
    [68] Kostar T D, Chou T W. Design and Automated Fabrication of 3-D Braided Performs for Advanced Structural Composites[A].In: Advani S G, Blain W R, Wilde W P, et al ed. Computer Aided Design in Composite Material Technology III[C]. New York: Elsevier Applied Science Publishers,1992:63-78.
    [69]郑锡涛.三维编织复合材料细观结构与力学性能分析[D].西安:西北工业大学,2003.
    [70]徐焜,许希武,汪海.三维四向编织复合材料的几何建模及刚度预报[J].复合材料学报, 2005,22(1):133-138.
    [71]严实,吴林志等.三维四向编织复合材料有效性能的预报[J].复合材料学报,2007,24(1):158-166.
    [72]张锦,张乃恭,新型复合材料力学机理及其应用[M].北京航空航天大学出版社,1993.3.
    [73]沈怀荣,吴德隆.纺织结构复合材料的纺织几何学模型[J].中国空间科学技术,2000(2):1-8.
    [74]王红霞.纤维增强复合材料界面力学性能的细观力学有限元分析[D].太原:太原科技大学,2008.
    [75]刘鹏飞,陶伟明,郭乙木.纤维拔出时界面分离能释放率的应力函数分析[J].中国有色金属学报,2006,16(2):253-259.
    [76]翁琳.纤维增强复合材料轴对称界面端应力奇异性研究[D].杭州:浙江工业大学,2009.
    [77]许金泉.界面力学[M].北京:科学出版社,2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700