强变形多相纤维复合合金的组织与性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
通过冷拉拔应变制备了原位纤维相强化的Cu-6%Ag合金,研究了不同应变条件下合金的显微组织和电阻率变化规律,讨论了应变对Cu-6%Ag合金导电性能的影响机制。随应变程度的增加,原始组织中的Cu基体晶粒、不平衡共晶体及次生相粒子最终演变成细密的纤维结构,合金电阻率上升。次生相界面、共晶体与Cu基体界面及位错对电子散射作用程度的变化导致了合金电阻率在不同变形程度范围内有不同的变化规律。当变形超过一定程度后,电阻率升高规律与来自较高Ag含量合金中纤维相尺度进入纳米数量级的界面散射模型相符。
     考察了Cu-12%Ag合金中Ag析出相对合金性能的影响。通过引入两种不同的热处理制度在Cu-12%Ag中获得不同含量的Ag析出相。通过多种手段系统地观察了Ag析出相的微观结构。Ag析出相与Cu基体的相界面能有效地阻碍位错运动并增强电子散射,因此含有较多Ag析出相的Cu-Ag合金可达到更高的强度和更大的电阻率。
     通过铸造、预处理及冷拉拔等工艺制备了原位纤维复合Cu-12%Fe合金。观察了显微组织并测量了硬度。试验结果发现等轴铸态Cu及Fe晶粒在拉拔过程中均能演变成密集排列的纤维状.纤维组织轴向的择优取向与径向的择优取向不同。Fe纤维组织尺寸随拉拔应变程度增加呈指数形式下降。随拉拔应变程度增加到6.0,Fe晶粒应变程度呈线性增加,而当拉拔应变程度增加超过6.0后,则Fe晶粒应变程度的增加偏离线性关系。随拉拔过程中Fe纤维的长径比值增加,Cu/Fe相界面密度也呈指数增加。在硬度与纤维间距之间存在一种Hall-Petch关系。因拉拔应变造成的组织细化能够明显地提高硬度,尤其当拉拔应变程度较低时,这种组织细化提高硬度的作用更明显。
     采用熔铸法结合冷拉拔制备了Cu-6%Ag-6%Fe合金。采用SEM和TEM观察了不同拉拔变形量的合金微观组织以研究合金各相的结构演变。合金铸态组织由Cu基体、初生Fe粒子及共晶体区域等组织组成物组成。冷变形初期,共晶组织主要形态是均匀的直线状纤维束,而初生Fe枝晶演变为条带状纤维,在大变形条件下,两相均演变成细密的纤维丝形态。说明b.c.c.及f.c.c.两种晶体结构的合金相在拉拔应变的复合纤维组织中能够保持相同的应变行为或者两种相在由等轴组织变形流变成纤维组织的过程中应变过程能够保持基本同步。
     随着合金变形度的升高,位错缠结形成胞状结构,但在应变程度达到6.4以后,位错胞结构失稳逐渐转化为亚晶界,同时形变孪晶数量逐渐增加。合金中Ag相分为共晶体中的层叠状Ag相和Cu基体中的弥散次生Ag相。次生Ag相与Cu基体具有cube-on-cube位相关系,在变形过程中始终与基体保持协调一致,沿形变方向均匀变形,在应变程度达到8.6时,Cu/Ag界面部分转化为共格界面。变形过程中,有少量的Fe颗粒始终保持不变形,这些未变形的Fe颗粒容易导致位错塞积和裂纹萌生处。在界面应力推动下,部分Fe原子固溶进入Cu基体,随着变形度增加,数量增多。
     在三相纤维原位复合强化的Cu-6%Ag-6%Fe合金中,Cu基体纤维承担主要的电传导功能,Ag与Fe组元均危害电导率,尤其是Fe纤维对电导率的危害要高于Ag纤维。根据并联电路模型推导出了一个能够根据各组织组成物相对量及电导率预测这种原位复合纤维强化合金电导率的表达式。
Cu-6wt.%Ag in situ filamentary composite was prepared by cold drawing. The filamentary microstructure, electrical resistivity and strain degree were investigated. With increasing the draw ratio, the equiaxed Cu-rich dendrites, eutectic colonies and Ag precipitates in the as-cast and homogenized structure developed into the fine filamentary structure and the electrical resistivity increased. There is a change of the electronic scattering effect of the dislocation, the phase interface between Ag precipitates and Cu grains and the interface between eutectic filamentary bundles and Cu matrix in the alloy under different strain condition. The change of the electrical resistivity with strain when the filamentary structure evolves into nanoscale at heavy draw ratios is generally in accord with the interfacial scattering model proposed in the presented investigation on the composites with higher Ag contents.
     The Cu-12wt.%Ag were prepared to investigate the role of Ag precipitates on the properties of the alloy. Two processes of heat treatment were performed to produce different amount of Ag precipitates in the alloy. The microstructure of Ag precipitates was systematically observed by optical microscopy, scanning electron microscope and transmission electron microscope. The interface between Cu matrix and Ag precipitates could significantly block dislocation movement and produce electron scattering. Therefore, the alloys containing more Ag precipitates would exhibit higher strength and electrical resistivity.
     Cu-12wt.%Fe in situ filamentary composite was prepared by casting and cold drawing. The microstructure was observed and the hardness was determined. The results show that the equiaxed Cu and Fe grains can develop into the crowded filamentary structure. There is a preferred orientation on the longitudinal direction different from that on the radial direction of the wire specimens. The reduction of fiber scale shows an exponential relationship with the drawing ratio. With the drwing ratio increasing up to6.0, the strain degree of Fe grains increases linearly. However, the increase in strain degree of Fe grains with the the drwing ratio deviates from the linear relationship once the drawing ratio is over6.0. With the increase in the ratio of the longness to the diameter of the filaments, the density of Cu/Fe interface increases exponentially. There is a Hall-Patch relation between hardness and filamentary space. The microstructure refinement from drawing strain can decrease hardness obviously. In special, the hardness reduction from the microstructure refinement is more significant.
     For the investigation on the microstructure evolution of Fe and Ag phases, the Cu-6wt.%Ag-6wt.%Fe alloys were prepared by casting and heavy cold drawing. The microstructure of the alloys at different drawing strains was studied by scanning electron microscopy and transmission electron microscopy. The microstructure of as-cast Cu-6wt.%Ag-6wt.%Fe is made up of Cu matrix, Fe dendrites and eutectic colonies. The microstructure components develop into filamentary bundles during cold drawing. The Ag-rich colonies show uniform line-like distribution while Fe dendrites show ribbon-like distribution at the heavy deformation state. Fe phase with b.c.c. structure in the composite can keep the similar strain behavior as Cu and Ag phases with f.c.c. structure during drawing deformation.
     Dislocations form the dislocation cell structure in Cu-6wt.%Ag-6wt.%Fe filamentary composites during cold deformation. After drawing ratio up to6.4dislocation cells lose stability and transform into subgrain boundaries. Meantime deformation twins in deformed Cu grains increase in number. Ag fibers result from eutectic colonies and precipitates. There is a cube-on-cube orientation relationship,{111}cu//{111} Ag and<110>cu//<111>Ag between Cu matrix and Ag precipitates, which ensures the co-defoemation and similar interface behavior. As drawn ratio increasing to8.6, Cu/Ag interface evolves into coherent interface partly. There still are some Fe particles among Cu filaments, which results in dislocation multiplication and crack generation. More Fe solute in Cu matrix can be found as strain increasing.
     Both Ag and Fe constituents can impair the conductivity in the composite. Fe filaments suppress more the electrical conduction in the microcomposite than Ag filaments. A formulation deduced from a parallel-circuit model for the resistivity of a microcomposite has been given for the evaluation of the resistivity.
引文
[1]S.I. Hong, and M.A. Hill. Microstructural stability and mechanical response to Cu-Ag mcirocomposite wires Acta Materialia,1998,46(12):4111-4122.
    [2]K. Han, J.D. Embury, J.J. Petrovic, and G.C. Weatherly. Microstructure aspects of Cu-Ag produced by the taylor wire method. Acta Materialia,1998.46(13):4691-4699.
    [3]C.A. Swenson, W.S. Marshall, E.L. Miller, K.W. Pickard, A.V. Gavrilin, K. Han, and H.J. Schneider-Muntau. Pulse magnet development program at NHMFL. IEEE Transactions on Applied Superconductivity,2004,14(2):1233-1236.
    [4]H. Maeda, K. Inoue, T. Kiyoshi, T. Asano, Y. Sakai, T. Takeuchi, K. Itoh, H. Aoki, and G. Kido. Present status and future plan of the Tsukuba Magnet Laboratories. Physica,1996, B216:141-145.
    [5]J.E. Crow, D.M. Parkin, H.J.Schneider-Muntau, and N.S. Sullivan. The United States National High Magnetic Field Laboratory:Facilities, science and technology. Physica, 1996, B216:146-152.
    [6]F. Herlach. Innovations and trends in magnet laboratories and techniques. Physica,2001, B 294-295:500-504.
    [7]J. Freudenberger, W. Grunberger, E. Botcharova, A. Gaganov, and L. Schultz. Mechanical properties of Cu-based micro- and Macrocomposites. Advanced Engineering Materials,2002,4(9):677-681.
    [8]K. Han, J.R. Sims, C.A. Swanson, and H.J. Schneider-Muntau. Reinforcement materials for high field magnets. IEEE Transactions on Applied Superconductivity.2004.14(2): 1141-1144.
    [9]F. Lecouturiera, K. Spencerb, L. Thillyc, and J.D. Embury. Perspectives for Cu/SS macrocomposite and Cu/X nanofilamentary conductors used in non-destructive high-field pulsed magnets under cryogenic conditions. Physica B,2004,346-347: 582-588.
    [10]L. Thilly, F. Lecouturier, G. Coffe, and S. Askenazy. Recent progress in the development of utra high strength "continuous" Cu/Nb and Cu/Ta conductors for non-destructive pulsed fields higher than 80T. IEEE Transaction on Applied Superconductivity,2002,12:1181-1184.
    [11]S.I. Hong, and M.A. Hill. Mechanical properties of Cu-Nb microcomposites fabricated by the bundling and drawing process. Scripta Materialia,2000,42(8):737-742.
    [12]K. Han, V.J. Toplosky, R. Walsh, C. Swenson, B. Lesch, and V.I. Pantsyrnyi. Properties of high strength Cu-Nb conductor for pulsed magnet applications. IEEE transactions on Applied Superconductivity,2002,12(1):1176-1180.
    [13]L. Thilly, F. Lecouturier, G. Coffe, J.P. Pevrade, and S. Askenazy. Ultra high strength nanocomposites conductors for pulsed magnet windings. IEEE Transactions on Applied Superconductivity,2000,10(1):1269-1272
    [14]S.I. Hong. Effect of Nb content on the strength of Cu-Nb filamentary microcomposites. Journal of Materials Research,2000,15(9):1889-1893.
    [15]J.T. Wood, J.D. Embury, and M.F. Ashby. An approach to materials processing and selection for high-field magnet design. Acta Materialia,1997,45(3):1099-1104.
    [16]T.B. Massalski. Binary Alloys Phase Diagrams (2nd ed.), OH, USA, ASM International, Metals Park,1990:45-47.
    [17]A. Benghalem, and D.G. Morris. Microstructure and strength of wire-drawn Cu-Ag filamentary composites. Acta Materialia,1997,45(1):397-406.
    [18]J.B. Liu, L. Meng, and Y.W. Zeng. Microstructure evolution and properties of Cu-Ag microcomposites with different Ag content. Materials Science and Engineering,2006, A435-436(1):237-244.
    [19]F. Heringhaus. Quantitative analysis of the influence of the microstructure on strength, resistivity, and magnetoresistance of eutectic silver-copper. U.S.A.:Institut fur Metallkunde und Metallphysik, RWTH Aachen, Germany, and National High Magnetic Field Laboratory Tallahassee,1998:43-65.
    [20]张雷,孟亮.纤维相强化Cu-12%Ag合金的组织和力学性能.中国有色金属学报,2005,15(5):751-756.
    [21]G. Frommeyer, and G. Wassermann. Microstructure and anomalous mechanical properties of in situ-produced silver-copper composite wires. Acta Metallurgica,1975, 23(11):1353-1360.
    [22]宁远涛,张晓辉,张婕.大变形Cu-Ag合金原位纤维复合材料的稳定性.中国有色金属学报,2005,15(4):506-512.
    [23]L. Zhang, and L. Meng. Evolution of microstructure and electrical resistivity of Cu-12wt.%Ag filamentary microcomposites with drawing deformation. Scripta Materialia,2005,52(12):1187-1191.
    [24]张晓辉,宁远涛,李永年,戴红,杨家明.大变形Cu-10Ag原位纤维复合材料的结构和性能.中国有色金属学报,2002,12(1):115-119.
    [25]张晓辉,闫琳,宁远涛.稳定化处理对Cu-Ag-0.04Ce原位纳米纤维复合材料的组织及性能的影响.稀有金属,2005,29(4):432-435.
    [26]Y. Sakai, K. Inoue, and H. Maeda. High-strength and high-conductivity Cu-Ag alloy sheet:new promising conductor for high-field Bitter coils. IEEE Transactions on Magnetics,1994,30(4):2114-2117.
    [27]Z. Castro-Dettmer, and C. Persad. Performance of a copper-silver alloy as an electromagnetic launcher conductor material. IEEE transactions on Magnetics,2005, 41(1):176-181.
    [28]T. Asano, Y. Sakai, M. Oshikiri, K. Inoue, H. Maeda, G. Heremans, L.V. Bockstal, L. Li, and F. herlach. Cu-Ag wire pulsed magnets with and without internal reinforecements. IEEE transactions on Magnetics,1994,30(4):2106-2109.
    [29]T. Hirota, A. Imai, T. Kumano, M. Ichihara, Y. Sakai, K. Inoue, and H. Maeda. Development of Cu-Ag alloys conductor for high field magnet. IEEE Transaction on Magnetics,1994,30(4):1891-1894.
    [30]C.A. Davy, K. Han, P.N. Kalu, and S.T. Bole. Examinations of Cu-Ag composite conductors in sheet forms. IEEE Transactions on Applied Superconductivity,2008, 18(2):560-563.
    [31]S.I. Hong, and H.J. Kwon. Superplasticicity of Cu-16 at.% Ag microcomposites. Journal of Materials Research,2001,16(6):1821-1826.
    [32]Y. Sakai, and H.J. Schneider-Muntau. Ultra-high strength high conductivity Cu-Ag alloy wires. Acta Materialia,1997,45(3):1017-1023.
    [33]W. Grunberger, M. Heilmaier, and L. Schultz. Microstructure and mechanical properties of Cu-Ag microcomposites for conductor wires in pulsed high-field magnets. Zeitschrift fur Metallkunde.2002,93(1):58-65.
    [34]K. Han, A.A. Vasquez, Y. Xin, and P.N. Kalu. Microstructure and tensile properties of nanostructured Cu-25wt%Ag. Acta Materialia,2003,51(3):767-780.
    [35]J. He, V. Ji, and L. Meng. Effects of strain and annealing on the intensity and distribution of crystal texture in Cu-12 wt.% Ag. Materials Science and Engineering, 2008,A478(1-2):305-313.
    [36]贺佳,刘嘉斌,孟亮.应变对Cu-12%Ag合金织构强度及分布的影响.金属学报,2007,43(6):643-647.
    [37]K.H. Lee, and S.I. Hong. Interfacial and twin boundary structures of nanostructured Cu-Ag filamentary composites. Journal of Materials Research,2003,18(9):2194-2202.
    [38]N.J. Petch. The ductile-brittle transition in the fracture of a-iron:Ⅰ. Philosophical Magazine,1958,3(34):1089-1097.
    [39]D. Hall. Effect of grain size and temperature on slip, twinning and fracture in 3% silicon iron. Acta Metallurgica,1961,9(3):191-204.
    [40]P.D. Funkenbusch, and T.H. Courtney. On the strength of heavily cold worked in situ composites. Acta Metallurgica,1985,33(5):913-922.
    [41]W.A. Spitzig, A.R. Pelton, and F.C. Laabs. Characterization of the strength and microstructure of heavily cold worked Cu-Nb composites. Acta Metallurgica,1987, 35(9):2427-2442.
    [42]W.A. Spitzig. Strengthening in heavily deformation processed Cu-20%Nb Acta Metallurgica Materialia,1991,39(8):1085-1090.
    [43]J.D. Embury. Micromechanical descriptions of heavily deformed materials. Scripta Metallurgica et Materialia,1992,27(3):981-986.
    [44]S.I. Hong. Yield strength of a heavily drawn Cu-20% Nb filamentary microcomposite. Scripta Materialia,1998,39(12):1685-1691.
    [45]宁远涛,张晓辉,吴跃军Cu-Ag合金原位纤维复合材料的应变强化效应.中国有色金属学报,2007,17(1):68-74.
    [46]J.B. Liu, and L. Meng. Phase orientation, interface structure, and properties of aged Cu-6 wt.% Ag. Journal of Materials Science,2008,43(6):2006-2011.
    [47]I.Manna, and S.K. Pabi. A study of the nucleation characteristics of discontinuous precipitation in a pro-eutectic Cu-Ag alloy. Journal of Materials Science Letters,1990, 9(10):1226-1228.
    [48]A. Gaganov, J. Freudenberger, W. Grunberger, and L. Schultz. Microstructural evolution and its effect on the mechanical properties of Cu-Ag microcomposites. Zeitschrift fur Metallkunde,2004,95(6):425-432.
    [49]S.P. Gupta. Kinetics of discontinuous precipitation and dissolution in Cu-Ag alloys Canadian Metallurgical Quarierly.1998,37(2):141-159.
    [50]G. Rao, D.B. Zhang, and P. Wynblatt. Structure and composition of the (111) Cu/Ag interphase boundary in Cu---Ag---Au alloys. Scripta Metallurgica et Materialia,1993, 28(4):459-464.
    [51]G. Rao, J.M. Howe, and P. Wynblatt. Analysis of the interfacial structure of a twinned variant of Ag precipitate in Cu-Ag alloys. Scripta Metallurgica et Materialia,1994, 30(6):731-736.
    [52]R. Monzen, K. Murase, H. Nagayoshi, and C. Watanabe. Discontinuous precipitation in {100} planes in a Cu-5.7wt%Ag alloy single crystal. Philosophical Magazine Letters, 2004,84(6):349-358.
    [53]C. Watanabe, R. Monzen, H. Nagayoshi, and S. Onaka. Elastic state of rod-shaped Ag precipitates in a Cu_5.7 wt% Ag single crystal. Philosophical Magazine Letters,2006, 86(2):65-73.
    [54]葛继平.形变Cu-Fe原位复合材料[博士学位论文].大连:大连交通大学,2005:53-64.
    [55]W. Spitzig, L. Chumbley, J. Verhoeven, Y. Go, and H. Downing. Effect of temperature on the strength and conductivity of a deformation processed Cu-20% Fe composite. Journal of Materials Science,1992,27(8):2005-2011.
    [56]C. Biselli, and D. Morris. Microstructure and strength of Cu-Fe in situ composites after very high drawing strains. Acta Materialia,1996,44(2):493-504.
    [57]J. Verhoeven, S. Chueh, and E. Gibson. Strength and conductivity ofin situ Cu-Fe alloys. Journal of Materials Science,1989,24(5):1748-1752.
    [58]Y. Go, and W. Spitzig. Strengthening in deformation-processed Cu-20% Fe composites. Journal of Materials Science,1991,26(1):163-171.
    [59]G. Jerman, I. Anderson, and J. Verhoeven. Strength and electrical conductivity of deformation-processed Cu-15 vol pct Fe alloys produced by powder metallurgy techniques. Metallurgical Transactions A,1993,24(1):35-42.
    [60]C. Biselli, and D. Morris. Microstructure and strength of Cu-Fe in situ composites obtained from prealloyed Cu-Fe powders. Acta Metallurgica et Materialia,1994,42(1): 163-176.
    [61]S. Hong, H. Kim, and M. Hill. Strength and ductility of heavily drawn bundled Cu-Nb filamentary microcomposite wires with various Nb contents. Metallurgical and Materials Transactions A,2000,31(10):2457-2462.
    [62]S. Jha, R. Delagi, J. Forster, and P. Krotz. High-strength high-conductivity Cu-Nb microcomposite sheet fabricatedvia multiple roll bonding. Metallurgical Transactions A, 1993,24(1):15-20.
    [63]H.G. Brokmeier, R. Bolmaro, J. Signorelli, and A. Fourty. Texture development of wire drawn Cu-Fe composites. Physica B:Condensed Matter,2000,276:888-889.
    [64]W. Spitzig, and S. Biner. Comparison of strengthening in wire-drawn or rolled Cu-20% Nb with a dislocation accumulation model. Journal of Materials Science,1993,28(17): 4623-4629.
    [65]L. Thilly, M. Veron, O. Ludwig, F. Lecouturier, J. Peyrade, and S. Askenazy. High-strength materials:in-situ investigations of dislocation behaviour in Cu-Nb multifilamentary nanostructured composites. Philosophical Magazine A,2002,82(5): 925-942.
    [66]G. Langford, and M. Cohen. Strain hardening of iron by severe plastic deformation. ASM Transation Quart,1969,62(3):623-638.
    [67]P. Funkenbusch, and T. Courtney. On the role of interphase barrier and substructural strengthening in deformation processed composite materials. Scripta Metallurgica, 1989,23(10):1719-1724.
    [68]Funkenbusch, and P. T. Courtney. Reply to comments on:on the role of interphase barrier and substructural strengthening in deformation processed composite materials. Scripta Metallurgica,1990,24(6):1175-1180.
    [69]J. Verhoeven, L. Chumbley, F. Laabs, and W. Spitzig. Measurement of filament spacing in deformation processed Cu-Nb alloys. Acta Metallurgica et Materialia,1991, 39(11):2825-2834.
    [70]C. Trybus, and W. Spitzig. Characterization of the strength and microstructural evolution of a heavily cold rolled Cu-20% Nb composite. Acta Metallurgica,1989, 37(7):1971-1981.
    [71]W. Spitzig, A. Pelton, and F. Laabs. Characterization of the strength and microstructure of heavily cold worked Cu-Nb composites. Acta Metallurgica,1987,35(10): 2427-2442.
    [72]W. Spitzig, C. Trybus, and F. Laabs. Structure properties of heavily cold-drawn niobium. Materials Science and Engineering:A,1991,145(2):179-187.
    [73]U. Hangen, and D. Raabe. Modelling of the yield strength of a heavily wire drawn Cu-20% Nb composite by use of a modified linear rule of mixtures. Acta Metallurgica et Materialia,1995,43(11):4075-4082.
    [74]S.I. Hong. Yield strength of a heavily drawn Cu-20% Nb filamentary microcomposite. Scripta Materialia,1998,39(12):1685-1691.
    [75]J. Verhoeven, H. Downing, L. Chumbley, and E. Gibson. The resistivity and microstructure of heavily drawn Cu-Nb alloys. Journal of Applied Physics,1989,65(3): 1293-1301.
    [76]K.R. Karasek, and J. Bevk. Normal-state resistivity of in situ-formed ultrafine filamentary Cu-Nb composites. Journal of Applied Physics,1981,52(3):1370-1375.
    [77]S. Ohsaki, K. Yamazaki, and K. Hono. Alloying of immiscible phases in wire-drawn Cu-Ag filamentary composites. Scripta Materialia,2003,48(12):1569-1574.
    [78]F. Lux. Models proposed to explain the electrical conductivity of mixtures made of conductive and insulating materials. Journal of Materials Science,1993,28(2): 285-301.
    [79]G. Brandli, and J. Olsen. Size effects in electron transport in metals. Materials Science and Engineering,1969,4(2):61-83.
    [80]Z. Fan. A new approach to the electrical resistivity of two-phase composites. Acta Metallurgica et Materialia,1995,43(1):43-49.
    [81]B. A. Precipitation processes in Copper-rich Copper-iron alloys. Transaction Materials Society AIME,1960,218:812-821.
    [82]R. Brown. A comparison of two theories of dislocation resistivity. Journal of Physics F: Metal Physics,1977,7(11):297-230.
    [83]D. MacDonald. Metallic conduction—The "Internal Size-Effect". Philosophical Magazine,1951,42(330):756-761.
    [84]R. Dingle. The electrical conductivity of thin wires. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences,1950,201(1067):545-560.
    [85]E.H. Sondheimer. The mean free path of electrons in metals. Advances in Physics. 1952,1(1):1-42.
    [86]D. Raabe. Simulation of the resistivity of heavily cold worked Cu-20 wt.% Nb wires. Computational Materials Science,1995,3(3):402-412.
    [87]姚再起,葛继平,刘书华,李明生.新型接触线材料的研究.中国铁道科学,2004,1(25):99-102.
    [88]李明生,姚再起,刘书华,葛继平.时效处理对Cu-13Fe合金力学性能和导电性的影响[J].热加工工艺,2004,33(2):27-28.
    [89]S.Hong,, J. Song, and H. Kim, Thermo-mechanical processing and properties of Cu-9Fe-1.2 Co microcomposite wires. Scripta Materialia,2001,45(11):1295-1300.
    [90]Hong, S. and J. Song, Strength and conductivity of Cu-9Fe-1.2 X (X= Ag or Cr) filamentary microcomposite wires. Metallurgical and Materials Transactions A,2001, 32(4):985-991.
    [91]陈翼,张进东,孟亮.时效工艺对Cu-12% Fe合金组织性能的影响.材料热处理学报,2009,30(6):75-78.
    [92]X. Sauvage, L. Renaud, B. Deconihout, D. Blavette, D.H. Ping, and K. Hono. Solid state amorphization in cold drawn Cu/Nb wires. Acta Materials,2001,49(3):389-394.
    [93]J.S. Song, S.I. Hong, and H.S. Kim. Heavily drawn Cu-Fe-Ag and Cu-Fe-Cr microcomposites. Journal of Materials Processing Technology,2001.113(1-3): 610-616.
    [94]M. Xie, J. Liu, X. Lu, A. Shi, Z. Den, H. Jiang, and F. Zheng. Investigation on the Cu-Cr-RE alloys by rapid solidification. Materials Science and Engineering,2001, A 304-306:529-533.
    [95]Y. Jin, K. Adachi, T. Takeuchi, and H.G. Suzuki. Correlation between the electrical conductivity and aging treatment for a Cu-15wt%Cr alloy composite formed in-situ. Materials Letters,1997,32(5-6):307-311.
    [96]D.G. Morris, A. Benghalem, and M.A. Morris-Munoz. Influence of solidification conditions, thermomechanical processing, and alloying additions on the structure and properties of in situ composite Cu-Ag alloys. Scripta Materialia,1999,41(10): 1123-1130.
    [97]D. Raabe, and D. Mattissen. Microstructure and mechanical properties of a cast and wire-drawn ternary Cu-Ag-Nb in situ composite. Acta Materialia,1998,46(16): 5973-5984.
    [98]D. Mattissen, D. Raabe, and F. Heringhaus. Experimental investigation and modeling of the influence of microstructure on the resistive conductivity of a Cu-Ag-Nb in situ composite. Acta Materialia,1999,47(5):1627-1634.
    [99]D. Raabe, and D. Mattissen. Experimental investigation and ginzburglandau modeling of the microstructure dependence of superconductivity in Cu-Ag-Nb wires. Acta Materialia,1999,47(3):769-777.
    [100]K. Han, J. Embury, J. Sims, L. Campbell, H.-J. Schneider-Muntau, V. Pantsyrnyi, A. Shikov, A. Nikulin, and A. Vorobieva. The fabrication, properties and microstructure of Cu-Ag and Cu-Nb composite conductors. Materials Science and Engineering.1999, A267(1):99-114.
    [101]Y. Sakai, and H.-J. Schneider-Muntau. Ultra-high strength, high conductivity Cu-Ag alloy wires. Acta Materialia,1997,45(3):1017-1023.
    [102]Song, J., S. Hong, and Y. Park. Deformation processing and strength/conductivity properties of Cu-Fe-Ag microcomposites. Journal of alloys and compounds,2005, 388(1):69-74.
    [103]J. Song, H. Kim, C. Lee, and S. Hong. Deformation processing and mechanical properties of Cu-Cr-X (X= Ag or Co) microcomposites. Journal of Materials Processing Technology,2002,130(2):272-277.
    [104]J. Song, S. Hong, and H. Kim. Heavily drawn Cu-Fe-Ag and Cu-Fe-Cr microcomposites. Journal of Materials Processing Technology,2001,113(1):610-616.
    [105]Z. Wu, J. Liu, Y. Chen, and L. Meng. Microstructure, mechanical properties and electrical conductivity of Cu-12wt.% Fe microcomposite annealed at different temperatures. Journal of Alloys and Compounds,2009,467(1):213-218.
    [106]S.I. Hong, and M.A. Hill. Mechanical stability and electrical conductivity of Cu-Ag filamentary microcomposites. Materials Science and Engineering,1999, A264: 151-158.
    [107]C. Biselli, and D.G. Morris. Microstructure and strength of Cu-Fe in-situ composites obtained from prealloyed Cu-Fe powders. Acta Materialia,1994,42:163-176.
    [108]D. Raabe, K. Miyake, and H. Takahara. Processing, microstructure and properties of ternary high-strength Cu-Cr-Ag in situ composites. Materials Science and Engineering, 2000, A291:186-197.
    [109]W. Spitzig, H. Downing, F. Laabs, E. Gibson, and J. Verhoeven. Strength and electrical conductivity of a deformation-processed Cu-5 Pct Nb composite. Metallurgical and Materials Transactions A,1993,24(1):7-14.
    [110]F. Heringhaus, H.-J. Schneider-Muntau, and G. Gottstein. Analytical modeling of the electrical conductivity of metal matrix composites:application to Ag-Cu and Cu-Nb. Materials Science and Engineering,2003, A347:9-20.
    [111]Y. Sakai, K. Inoue, T. Asano, H. Wada, and H. Maeda. Development of high-strength, high-conductivity Cu-Ag alloys for high-field pulsed magnet use. Applied Physics Letters,1991,59(23):2965-2967.
    [112]S.I. Hong, M.A. Hill, Y. Sakai, J.T. Wood, and J.D. Embury. On the stability of cold drawn, two-phase wires. Acta Metallurigca Materialia,1995,43(9):3313-3323.
    [113]颜芳,孟亮,张雷.热处理温度对纤维相强化Cu-12Ag合金组织性能的影响.金属学报,2004,40(8):891-896.
    [114]W.A. Spitzig, J.D. Verhoeven, C.L. Trybus, and L.S. Chumbley. Comments on "On the role of interphase barrier and substructural strengthening in deformation processed composite materials" by P.D.Funkenbusch and T.H.Courtney. Scripta Metallurigica Materialia,1990,24(6):1171-1174.
    [115]Z. Wu, Y. Chen, and L. Meng. Microstructure and properties of Cu-Fe microcomposites with prior homogenizing treatments. Journal of Alloys and Compounds,2009,481(1):236-240.
    [116]张雷,孟亮.应变程度对Cu-12%Ag合金纤维相形成及导电性能的影响.金属学报,2005,41(3):255-259.
    [117]J.S. Huang, D.W. Yao, and L. Meng. Microstructure and properties of heavily drawn Cu-Ag-Fe composites. Met. Mater. Int.,2013,19(2):225-230.
    [118]G. Frommeyer, and G. Wassermann. Anomalous properties of in-situ-produced silver-copper composite wires. Phys. Stat. Sol,1975,27(99):99-105.
    [119]L. Zhang, L. Meng, and J.B. Liu. Effect of Cr addition on the microstructure, mechanical and electrical characteristics of Cu-6 wt.%Ag microcomposites. Scripta Materialia,2005,52(7):587-592.
    [120]F. Heringhaus, and D. Raabe. Recent advances in the manufacturing of copper-base composites. Journal of Materials Processing Technology,1996,59(2):367-372
    [121]J.B.Liu, L. Zhang, and L. Meng. Codeformation in Cu-6 wt.% Ag nanocomposites. Scripta Materialia,2011,64(7):665-668.
    [122]P.D.Funkenbusch, T.H. Courtney. Microstructural strengthening in cold worked in situ Cu-14.8 Vol.% Fe composites. Scripta Metallurgica, 1981,15(12):1349-1354.
    [123]He, L., L.F. Allard and E. Ma, Fe-Cu two-phase nanocomposites:application of a modified rule of mixtures. Scripta Materialia,2000,42(5):p.517-523.
    [124]F.K. Lotgering. Topotactical reactions with ferrimagnetic oxides having hexagonal crystal structures—Ⅰ. Journal of Inorganic and Nuclear Chemistry.1959,9(2):113-123.
    [125]J.L.Yu, Z.K. Li, K.F. Zhang, X.Zheng, J.J. Zhang, R. Bai, and W.S. Bai. Mechenical properties of multiphase Ni-Si-Fe in situ composites.Material Science and Engineering A,2010(527):5230-5233.
    [126]L. Zhang, and L. Meng. Microstructure and properties of Cu-Ag, Cu-Ag-Cr and Cu-Ag-Cr-RE alloys Materials Science and Technology,2003,19(1):75-79.
    [127]H. Gao, J. Wang, D. Shu, and B. Sun. Microstructure and properties of Cu-11Fe-6Ag in situ composite after thermo-mechanical treatments. Journal of Alloys and Compounds,2007,438(1):268-273.
    [128]S.I.Hong. Copper-Iron Filamentary Microcomposites Advanced Engineering Materials,2001.3(7):475-480.
    [129]D. Raabe, and J. Ge. Experimental study on the thermal stablility of Cr filaments in a Cu-Cr-Ag in situ composite. Scripta Materialia,2004,51:915-920
    [130]D.Raabe, F. Herringhaus, U. Hangen, and G. Gottstein. Investigation of a Cu-20 mass% Nb in situ composite Part Ⅰ:Fabrication, microstructure and mechanical properties. Z. Metallkd.,1995,86(6):405-415
    [131]J.弗里埃德尔.位错.王煜译.增订版,北京:科学出版社,1984:99-116.
    [132]R.B.Dingle. The electrical conductivity of thin wires Proceedings of the Royal Society of London. Series A, Mathematical and physical sciences,1950, A201(1067):545-560.
    [133]K.R. Karasek, and J. Berk. Normal-state resistivity of in situ-formed ultrafine filamentary Cu-Nb composites. Journal of Applied Physics,1981,52(3):1370-1375.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700