基于MOCVD-ZnO:B前电极的pin型超薄非晶硅太阳电池的初步研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
pin型硅基薄膜叠层太阳电池因高效率、低成本、光致衰退小等优点具有较大的产业化潜力。为进一步提升这种电池的光电转换效率,通过优化前电极的陷光特性,以实现在宽光谱范围内对太阳光子的高效利用成为研究的热点。其中作为顶电池的非晶硅子电池直接沉积于前电极之上,并且该子电池厚度通常较薄,以实现各子电池之间的电流匹配。此时前电极的绒面形貌结构将对电池输出特性产生较大影响。另外,该超薄非晶硅太阳电池自身的pin结特性也会极大影响到电池性能。针对这些问题,本论文将采用金属有机化学气相沉积(MOCVD)工艺自行研制的高绒度掺硼氧化锌透明导电薄膜(ZnO:B,记为BZO),用作pin型超薄非晶硅太阳电池的前电极,进行了如下三个方面的研究:
     首先,详细研究了高绒度BZO前电极表面大而尖锐的类金字塔形貌对电池开路电压Voc和填充因子FF的影响。结果表明:该前电极表面V型形貌会在非晶硅太阳电池中引入漏电,导致电池Voc和FF的恶化。氩气等离子体刻蚀工艺可将该V型形貌修饰成U型弹坑状,进而避免电池Voc、FF的下降。但该刻蚀工艺会大大消弱前电极的陷光能力,造成电池短路电流的下降。基于此,提出了一种新的表面形貌刻蚀工艺:H2/CH4混合气等离子干法刻蚀方法。深入研究了该刻蚀方法的工艺参数变化(刻蚀时间、刻蚀功率、H2/CH4比等)对刻蚀效果的影响,并对刻蚀后的BZO薄膜的光学、电学特性做了较为全面的探讨。采用该方法刻蚀后的BZO薄膜表面会形成大、小特征尺寸类金字塔交错分布的新型绒面形貌结构,不仅同时兼顾了短波区和长波区的陷光特性,而且避免了因V型绒面形貌对电池Voc和FF特性的不利影响。
     其次,分别从模拟和实验角度研究了界面特性(TCO/p、p/i、n/Metal)对超薄非晶硅电池Voc和FF的影响。针对TCO/p界面接触势垒,设计了三种不同界面结构:①BZO/p+-μc-Si/p-a-SiC;②BZO/n+-μc-Si/p+-μc-Si/p-a-SiC;③BZO/p-a-Si/p-a-SiC。对比了这三种结构对TCO/p界面改善的效果。其中方案2中BZO/n+-μc-Si/p+-μc-Si/p-a-SiC的界面结构,因将BZO表面和隧穿界面分离开,对应电池的Voc.FF最好。同时,还关注了p/i界面导带底位置处势垒和价带顶位置处势垒分别对电子反扩散过程和空穴外迁过程的影响。通过模拟这两处势垒,结果表明:导带底位置处势垒对Voc、FF的影响大于价带顶位置处。为了改善p/i界面,将宽带隙本征非晶硅碳材料插入该界面充当缓冲层,并对该缓冲层进行氢等离子体后处理,相应的电池Voc和FF特性进一步改善。
     最后,将自行开发的微晶硅氧(μc-SiOx)掺杂材料用作超薄非晶硅太阳电池的p层和n层。结果表明:该掺杂层材料不仅有利于改善电池Voc,同时还可增强电池对BZO前电极尖锐、粗糙表面的容忍度。通过改变沉积参数(氢稀释、CO2流量),重点研究了氢、氧元素在微晶硅氧材料中的掺杂行为。另外从实验中还可发现,p型微晶硅氧材料纵向电导比横向电导高约4个数量级,n型微晶硅氧材料的纵向电导比横向电导则高达5个数量级。而常用的n型非晶硅材料,两者电导值则处在同一数量级内。微晶硅氧掺杂层材料独特的两相分离的结构特点,即富氧的非晶硅相和富硅的微晶硅相呈分离分布状态,是造成该材料呈现出电导各向异性的主要原因。而恰恰是该特性提高了超薄非晶硅太阳电池对高绒度衬底的容忍度。通过优化p-μc-SiOx和n-μc-SiOx掺杂层,在本征层厚度约为140nm,仅有铝背反射电极的情况下,非晶硅太阳电池效率为7.76%(Voc:911mv;Jsc:12mA/cm2;FF:71%)。
pin-type silicon based multijunction thin film solar cells has already shown high productive potential because of its excellent device properties, such as high conversion efficiency, low production cost, high stability. Recently, the research topic has been focused on fully utilizing the wide solar-spectrum. Generally, pin-type amorphous silicon thin film solar cells directly deposited on front contact is used as top cell. Along the direction of incident light, this top cell is located at the front of optical path. Its output characteristic has a huge influence on the performance of multijunction solar cells. In this thesis, high-haze boron doped zinc oxide deposited by metal organic chemical vapor deposition was used as front contact in amorphous silicon thin film solar cell with an absorber layer thickness only around150nm. The corresponding study can be divided into three parts as follows:
     First of all, the relationship between the electrical properties of amorphous silicon solar cell(Open circuit voltage; Fill factor) and the as-grown sharp edges of the pyramids at the rough texture surface of ZnO:B was carefully investigated. The result demonstrates that, the V-type surface morphology can cause large defect regions in amorphous silicon material, increase the device current leakage. Argon plasma post-treatment method was introduced to tailor the surface morphology from V-type to U-type, improve the open circuit voltage and fill factor. Unfortunately, this etching process can reduce the light trapping capability. In this thesis, we developed a new dry etching method to modify the surface of ZnO:B thin film:hydrogen and methane mixed gas (H2/CH4) plasma post treatment method. With this etching process, The light trapping capability of ZnO:B thin film in wide solar-spectrum improved simultaneously. The ultrathin amorphous silicon thin film solar cells fabricated on this substrate demonstrated excellent electrical properties. In order to obtain more information about this etching method, the plasma parameters were adjusted to investigate the change of etching process.
     Secondly, the influence of device interface properties on the open circuit voltage and fill factor was also focused on. Different optimized methods has been introduced to overcome the TCO/p contact potential and the comparison of those methods was also listed in the fourth chapter. The result presented that both the tunneling current and the decrease of potential barrier can both improve the open circuit and fill factor. The other part of fourth chapter was to study the p/i contact properties. The potentail barriers at the bottom of conduction band and the top of valence band were compared both from simulation and experiment. It was found that the former p/i potential barrier showed larger influence on the solar cell electrical performance. With the purpose of improving the p/i contact properties, large bandgap intrinsic layer material a-SiC:H was inserted into p/i interface and the mechanism behind this interface layer has been deeply discussed.
     Finally, the doped microcrystalline silicon oxide material (p-layer; n-layer) was introduced in ultrathin amorphous silicon thin film solar cells. The distinctive properties of those doped materials can be summarized into two points:firstly, the in-plane conductivity was smaller by five orders of magnitude than the transverse conductivity. As comparison, the in-plane conductivity of doped amorphous silicon is almost same as the transverse conductivity. Secondly, the doped microcrystalline silicon oxide material consisted of two different crystalline phases:microcrystalline silicon and amorphous silicon oxide. Those two phases distributed separately in the whole material region. On the other hand, we also focused on the performance of solar cells when those doped materials were used. It was presented that, the electrical properties of solar cells deposited on very high-haze front contact successfully avoided the deterioration of open circuit voltage and fill factor. With the optimization of those doped materials, the conversion efficiency of single ultrathin amorphous silicon solar cells can reach up to7.76%for an absorber layer thickness only around140nm(Voc:911mV;Jsc:12mA/cm2; FF:71%).
引文
[1]王大中,21世纪中国能源科技发展展望,北京:清华大学出版社,2007:10-15
    [2]魏一鸣,中国能源报告:战略与政策研究,北京:科学出版社,2006:20-30
    [3]P. Cuony, Optical layer for Thin-film Silicon Solar Cells, Ph.D thesis,2011, (EPFL) 6cole Polytechnique Federale de Lausanne
    [4]王昌林,新阶段我国产业结构优化升级研究,北京:经济管理出版社,2008:102-130
    [5]姜虹,刘力娜,梁冰,降低我国石油对外依存度的思考,《中国石油企业》,2012
    [6]全国两会政府工作报告,2013, http://www.gov.cn/20131h/content_2356704.htm
    [7]MercomCapital,行业研究-全球太阳能预测,2013
    [8]NPDSolarbuzz,行业研究-2013年光伏装机需求,2013
    [9]国家能源局,国家能源局关于印发太阳能发电发展“十二五”规划的通知,2012,http://www.gov.cn/zwgk/2012-09/13/content_2223540.htm
    [10]W.E Spear, P.G LeComber. Substitutional doping of amorphous silicon. Solid State Communications,1975,17:1193
    [11]D. Carlson, C. Wronski. Amorphous silicon solar cell. Appl. Phys. Lett.,1976,28:671
    [12]D.L Staebler, C.R Wronski. Reversible conductivity changes in discharge-produced amorphous Si. Appl. Phys. Lett.,1977,31:292
    [13]D.E Carlson. Recent development in amorphous silicon solar cells. Solar Energy Materials, 1980,3:503-518
    [14]A. Saha. Thin-film solar cells. Swiss, EPFL,2010
    [15]熊绍珍,朱美芳,太阳电池基础与应用,北京:科学出版社,2009
    [16]M. Kondo. Microcrystalline materials and cells deposited by RF glow discharge, Solar Energy Materials & Solar Cells,2003,78:543
    [17]S. Nishida, H. Tasali, M. Konagai et al. Highly conductive and wide band gap amorphous-microcrystalline mixed-phase silicon films prepared by photochemical vapor depostion. J. Appl. Phys.,1985,58:1427
    [18]R. Weismann, A.K Ghosh, T. McMahon et al. a-Si:H produced by high-temperature thermal decomposition of silane. Journal of Applied Physics,1979,50:3752
    [19]B Chapman, Glow Discharge Process:Sputtering and Plasma Etching, New York:John Wiley & Sons,1980
    [20]M. Faraji, S. Gokhale, et al. High mobility hydrogenated and oxygenated Microcrystalline silicon as a photosensitive material in photovoltaic applications" Appl. Phys. Lett.,1992,60 (26):331
    [21]H. Curtins, N. Wyrsch, A. Shah. High-rate deposition of amorphous hydrogenated silicon: effect of plasma excitation frequency. Electron. Lett.,1987,23:228
    [22]S. Guha, X. Xu, J. Yang et al. High deposition rate amorphous silicon-based multijunction solar cell. Appl. Phys. Lett.,1994,66:595
    [23]D. Abou-Ras, T. Kirchartz, U. Rau. Advanced Characterization Techniques for thin film solar cells. Wiley, Germany,2011
    [24]A. Mcevoy, T. Markvart, L. Castaner. Solar cells:Materials, Manufacture and Operation. Elsevier, Netherlands,2013
    [25]B.J Yan, G.Z Yue, L. Sivec et al. Innovative dual function nc-SiOx:H layer leading to a> 16% efficient multi-junction thin-film silicon solar cell. Applied Physics Letters,2011,99: 113512
    [26]S.Y Kim, J-W Chung, H. Lee et al. Remarkable progress in thin-film silicon solar cells using high-efficiency triple-junction technology, Solar Energy Materials and Solar cells,2013 (in press).
    [27]张鹤,高效硅基薄膜叠层太阳电池的模拟与实验研究.[博士论文],天津:南开大学,2012
    [28]Y-M. Li, B.F. Fieselmann, A. Catalano. Novel feedstrocks for a-SiC:H films and devices. IEEE,1991,1231-1235
    [29]Y-M. Li, F. Jackson, R.R. Arya. A study of amorphous silicon-carbon alloy solar cells. IEEE, 1993,850-854
    [30]J. Sritharathikhun, S. Inthisang, T. Krajangsang et al. Optimization of an i-a-SiOx:H absorber layer for thin film silicon solar cell applications. Thin Solid Films,2013, in press
    [31]K. Yamamoto, A. Nakajima, M. Yoshimi et al. A high efficiency thin film silicon solar cell and module. Solar Energy,2004,77:939-949
    [32]B.Yan, G. Yue, J. Yang et al. Hydrogen dilution profiling for hydrogenated microcrystalline silicon solar cells. Applied Physics Letters,2004,85:1955-1957
    [33]D. Domine, J. Bailat, J. Steinhauser et al. Micromorph solar cell optimization using a ZnO layer as intermediate reflector. IEEE,2006,1465-1468
    [34]F. Meillaud, A. Billet, C. Battaglia et al. Latest developments of high-efficiency Micromorph tandem silicon solar cells implementing innovative substrate materials and improved cell design. IEEE Journal of Photovoltaics,2012,2:236-240
    [35]J. Meier, P. Torres, R. Platz et al. On the way towards high efficiency thin film silicon solar cells by the "Micromorph" concept. MRS Proceedings,1996,420:112-116
    [36]J. Yang, A. Banerjee, S. Guha. Amorphous silicon based photovoltaics-from earth to the "final frontier". Solar Energy Materials and Solar Cells,2003,78:597-612
    [37]X-M. Deng, X-B. Liao, S. Han et al. Amorphous silicon and silicon germanium materials for high-efficiency triple-junction solar cells. Solar Energy Materials and Solar Cells,2000,62: 89-95
    [38]J. Yang, A. Banerjee, S. Guha. Triple-junction amorphous silicon alloy solar cell with 14.6% initial and 13% stable conversion efficiencies. Applied Physic Letters,1997,70:2975-2977
    [39]D. Fischer, S. Dubail, J.a.A Selvan et al. The "micromorph" solar cell:Extending a-Si:H technology towards thin film crystalline silicon.25th IEEE PVSEC,1996,1053-1056
    [40]A. Lambertz, A. Dasgupta, W. Reetz et al. Micricrystalline silicon oxide as intermediate reflector for thin film silicon solar cells. Proceedings of 22nd EU-PVSEC,2007,1839-1842
    [41]J. Bailat, D. Domine, R. Schluchter et al. High-efficiency p-i-n microcrystalline and micromorph thin film silicon solar cells deposited on LPCVD ZnO coated glass substrates, in Proceedings of 4th WC-PEC,2006,1533-1536
    [42]C. Droz. Thin film microcrystalline silicon layers and solar cells:microstructure and electrical performances, PhD Thesis,2003
    [43]M. Peters, B. Blasi S.W. Glunz et al. Optical Simulation of Silicon Thin-Film Solar Cells. Energy Procedia,2012,15:212-219
    [44]C-M. Hsu, C. Battaglia, C. Pahud et al. High-Efficiency Amorphous Silicon Solar Cell on a Periodic Nanocone Back Reflector. Advanced Energy Materials,2012,2:628-633
    [45]D. Doming, P. Buehlmann, J. Bailat et al. Optical management in high-efficiency thin-film silicon micromorph solar cells with a silicon oxide based intermediate reflector. Phys. Stat. Sol. (RRL),2008,2(4):163-165
    [46]J. Escarre, K. Sooderstrom, M. Despeisse et al. Geometric light trapping for high efficiency thin film silicon solar cells. Solar Energy Materials & Solar Cells,2012,98:185-190
    [47]Y-f. Wang, X-d. Zhang, L-s. Bai et al. Effective light trapping in thin film silicon solar cell from textured Al doped ZnO substrates with broad surface feature distributions. AppliedPhysics Letters,2012,100:263508-001
    [48]H. Sai, Y. Kanamori, M. Kondo. Flattened light-scattering substrate in thin film silicon solar cells for improved infrared response. Appl. Phys. Lett.,2011,98:113502
    [49]M-S. Choi, Y-J. Lee, J-D. Kwon et al. Effects of hydrogen plasma treatment on SnO2:F substrates for amorphous Si thin film solar cells. Current Applied Physics,2013,13:1589-1593
    [50]H.N. Wanka, M. B. Schubert, E. Letter. Growth of a-Si:H on transparent conductive oxide for solar cell applications. Solar Energy Material and Solar Cells,1996,41:519
    [51]J.Loffler, R. Groenen, J.L. Linden et al. Amorphous silicon solar cells on natively textured ZnO grown by PECVD. Thin Solid Films,2001,392:315-319
    [52]H.L. Ma, D.H. Zhang, S.Z. Win et al. Electrical and optical properties of F-doped textured SnO2 films deposited by APCVD. Solar Energy Materials and Solar Cells,1996,40:371-380
    [53]Z. Remes, M. Vanecek, H.M. Yates et al. Optical properties of SnO2:F films deposited by atmospheric pressure CVD. Thin Solid Films,2009,517:6287-6289
    [54]H.M. Yates, P. Evans, D.W. Sheel et al. The development of high performance SnO2:F as TCOs for thin film silicon solar cells. Surface and Coatings Technology,2012,213:167-174
    [55]Y-M. Song, J-H. Jang, J-C. Lee et al. Disordered submicron structures integrated on glass substrate for broadband absorption enhancement of thin-film solar cells. Solar Energy Material and Solar Cells,2012,101:73-78
    [56]S. Fay, Loxyde de zinc par depot chimique en phase vapeur comme contact electrique transparent et diffuseur de lumiere pour les cellules solaires, EPFL thesis,2003
    [57]S. Fay, U. Kroll, C. Bucher et al. Low pressure chemical vapour deposition of ZnO layers for thin-film solar cells:temperature-induced morphological changes. Solar Energy Material and Solar Cells,2005,86:385
    [58]S. Nicolay, S. Fay, C. Ballif. Growth Model of MOCVD Polycrystalline ZnO. Cryst. Growth and Des.2009,9:4957-4962
    [59]S. Fay, J. Steinhauser, N. Oliveira et al. C. Ballif. Opto-electronic properties of rough LP-CVD ZnO:B for use as TCO in thin-film silicon solar cells, Thin Solid Films,2007,5158558-8561
    [60]L. Ding, S. Nicolay, G. Bugnon et al. Growth of LPCVD ZnO bilayers for solar cell front electrodes, Proceedings of the 25th European Photovoltaic Solar Energy Conference,2010, 2943-2946.
    [61]F. Meillaud, A. Feltrin, M. Despeisse et al. Realization of high efficiency micromorph tandem silicon solar cells on glass and plastic substrates:Issues and potential. Solar Energy Materials & Solar Cells,2011,95:127-130
    [62]S. Nicolay, M. Despeisse, F.-J. Haug et al. Control of LPCVD ZnO growth modes for improved light trapping in thin film silicon solar cells. Solar Energy Materials & Solar Cells, 2011,95:1031-1034
    [63]K. Bittkau, T. Beckers. Near-field study of light scattering at rough interfaces of a-Si:H/ μc-Si:H tandem solar cells. Phys. Status Solidi A,2011,207:661-666
    [64]K. Bittkau, T. Beckers, S. Fahr et al. Nanoscale investigation of light-trapping in a-Si:H solar cell structures with randomly textured interfaces. Phys. Stat. Sol. (a),2008,205:2766-2776
    [65]C. Battaglia, C-M. Hsu, K. Soderstrom et al. Light trapping in solar cells:Can periodic beat random?. ACS Nano,2012,6:2790-2797
    [66]M. Boccard, C. Battaglia, S. Hanni et al. Multiscale Transparent Electrode Architecture for Efficient Light Management and Carrier Collection in Solar Cells. Nano Lett.,2012,12: 1344-1348
    [67]A. Hongsingthong, T. Krajangsang, A. Limmanee et al. Development of textured ZnO-coated low-cost glass substrate with very high haze ratio for silicon-based thin film solar cells. Thin Solid Films,2013,537:291-295
    [68]H.O. Pierson, Handbook of chemical vapor deposition, Norwich, NY Noyes publications, 1999
    [69]Li Wang, Xiaodan Zhang, Xu Yang et al. H2-CH4 mixed gas plasma treatment on LP-MOCVD ZnO:B for amorphous silicon thin film soalr cells. Solar Energy Materials and Solar cells,2013,116:231-237
    [70]M.L. Addonizio, C. Diletto. Doping influence on intrinsic stress and carrier mobility of LP-MOCVD-deposited ZnO:B thin films. Solar Energy Materials and Solar Cells,2008,92: 1488-1494
    [71]A. Matsuda, M. Takai, T. Nishimotc et al. Control of plasma chemistry for preparing highly stabilized amorphous silicon at high growth rate. Solar Energy Materials and Solar Cells, 2003,78:3-26
    [72]陈治明,非晶半导体材料与器件,北京:科学出版社,1991
    [73]A.J. Flewitt, J. Robertson, W.L. Milne. Growth mechanism of hydrogenated amorphous silicon studied by in situ scanning tunneling microscopy. J. Appl. Phy.,1999,85:8032
    [74]W.B. Robertson, J. Kakalios. Evidence for hydrogen motion in annealing of light-induced metastable defects in hydrogenated amorphous silicon. Phys. Rev. B,1988,37:1020-1023
    [75]A. Matsuda. Growth mechanism of microcrystalline silicon obtained from reactive plasmas. Thin Solid Films,1999,337:1.
    [76]C.C. Tsai, GB. Anderson, R. Thompson et al. Control of silicon network structure in plasma deposition. J.Non-Cryst. Solids,1989,114:151
    [77]K. Nakamura, K. Yoshida, S. Takeoka et al. Roles of atomic hydrogen in chemical annealing. Jpn. J. Appl. Phys.,1995,34:442
    [78]J. Goldstein, D.E. Newbury, D C. Joy et al. Scanning Electron Microscopy and X-ray Microanalysis (3nd). Springer,2003
    [79]陈长琦,干蜀毅,朱武,王先路.扫描电子显微镜成像信号分析,真空VACUUM, 2001,6:42-44
    [80]G Binning, C.F. Quate, Ch. Gerber. Atomic Force Microscope. Phys. Rev. Lett,1986,56: 930-933
    [81]F.J. Giessibl. Advances in atomic force microscopy. Rev. Mod. Phys,2003,75:949-983
    [82]D.B. Williams, C.B. Carter. Transmission Electron Microscope.1996, Springer US,3-17
    [83]朱俊杰,刘磁辉,林碧霞,谢家纯,傅竹西.范德堡方法在ZnO薄膜测试中的应用.《发光学报》,2004,6:317-319
    [84]I.J. Van Der Pauw. A method of measuring specific resistivity and hall effect of discs of arbitrary sharp. Phil. Res. Rep.,1958,13:1-9
    [85]毛友德,非晶态半导体,上海:上海交通大学出版社,1986
    [86]周元俊,谢自力,张荣,刘斌,等.薄膜材料研究中的XRD技术,《显微、测量、微细加工技术与设备》,2009,46:108-116
    [87]E. Paterson, R. Swaffield. Clay Mineralogy:Spectroscopic and Chemical Determinative Methods. Springer,1994,226-259
    [88]吴瑾光,近代傅里叶变换红外光谱技术及应用(上下卷),北京:科学技术文献出版社,1994
    [89]翁诗甫,傅里叶变换红外光谱仪,北京:化学工业出版社,2005
    [90]C. Ballif, A. Shah. Investigations on Fill-Factor drop of microcrystalline silicon p-i-n solar cells deposited onto highly surface-textured ZnO substrates. Technical Digest of the 15th International Photovoltaic Science and Engineering Conference,2005,473-474
    [91]M. Python, D. Domine, T. Soderstrom et al. Microcrystalline silicon solar cells:effect of substrate temperature on cracks and their role in post-oxidation. Progress in Photovoltaics: Research and Applications,2010,18:491-499
    [92]M.L. Addonizio, A. Antonaia. Surface morphology and light scattering properties of plasma etched ZnO:B films grown by LP-MOCVD for silicon thin film solar cells, Thin Solid Films, 2009,518:1026-1031
    [93]N.B. Smirnov, A.V. Govorkov, K. Ip et al. Hydrogen plasma treatment effects on electrical and optical properties of n-ZnO, Journal of Applied Physics,2003,94:400-406
    [94]S. Major, S. Kumar, M. Bhatnagar et al. Effect of hydrogen plasma treatment on transparent conducting oxides, Applied Physics Letters,1986,49:394-396
    [95]W.T. Lim, L. Stafford, J.S. Wright et, al. Comparison of plasma chemistries for the dry etching of bulk single-crystal zinc-oxide and rf-sputtered indium-zinc-oxide films.2007, Applied Surface Science,2007,253:9228-9233
    [96]J-W Bae, C-H Jeong, HK. Kim et al. High-Rate Dry Etching of ZnO in BCl3/CH4/H2 Plasmas. Jpn. J. Appl. Phys.,2003,42:L535-L537
    [97]J-Q. Huang, X-Y. Zhang, G. Orkoulas et al. Dynamics and control of aggregate thin film surface morphology for improved light trapping:implementation on a large-lattice kinetic monte carlo model. Chemical Engineering Science,2011,66:5955-5967
    [98]V. Jovanov, X. Xu, S. Shrestha et al. Influence of interface morphologies on amorphous silicon thin film solar cells prepared on randomly textured substrates. Solar Energy Materials and Solar Cells,2013,112:182-189
    [99]Y.M. Strzhemechny, H.L. Mosbacker, D.C. Look et al. Remote hydrogen plasma doping of single crystal ZnO, Applied Physics Letters,2004,84:2545-2547
    [100]D.M. Hofmann, A. Hofstaetter, F. Leiter et al. Hydrogen:a relevant shallow donor in zinc oxide, Physical Review Letters,2002,88:045504-045507
    [101]Y-F. Wang, Q. Huang, C.C. Wei et al. Improvement of electrical and optical properties of molybdenum doped zinc oxide films by introducing hydrogen, Applied Surface Science, 2012,258:8797-8801
    [102]C.J. Anthony, O. Paul. CVD of compound semiconductors:precursor synthesis, development and applications, VCH Verlagsgesellschaft mbH, Weinheim,1997,45-77
    [103]S. Mandal, R.K. Singha, A. Dhar et al. Optical and structural characteristics of ZnO thin films grown by rf magnetron sputtering, Mater. Res. Bull.2008,43:244e250
    [104]J.I. Pankove, Optical processes in semiconductors, New York, NY:Dover,1975
    [105]Z. C. Jin, I. Hamberg, C. G. Granqvist. Optical properties of sputter-deposited ZnO:Al thin films. J. Appl. Phys.,1988,64:5117
    [106]E. Burnstein. Anomalous optical absorption limit in InSb. Phys. Rev.,1954,93:632
    [107]A.P. Roth, J.B. Webb, D.F. Williams. Band-gap narrowing in heavily defect-doped ZnO. Phys. Rev. B,1982,25:7836
    [108]B.E. Semelius, K.F. Berggren, Z.C. Jin et al. Band-gap tailoring of ZnO by means of heavy Al doping. Phys. Rev. B,1988,37:10244
    [109]K. Ellmer, A. Klein, B. Rech. Transparent conductive oxide. Springer,2007
    [110]S. Geiβendorfer, M. Vehse, T. Voss et al. Integration of n-doped ZnO nanorod structures as novel light-trapping concept in amorphous thin film silicon solar cells. Solar Energy Materials & Solar Cells,2013,111:153-159
    [111]M. Vanecek, N. Neykova, O. Babchenko et.al. New 3-dimensional nanostructured thin film silicon solar cells, in:Proceedings of the 25th European Photovoltaic Solar Energy Conference,2010,2763-2766
    [112]J. Kim, M.C. Kim, J. Yu et al. H2/Ar and vacuum annealing effect of ZnO thin films deposited by RF magnetron sputtering system, Current Applied Physics,2010,10:S495-S498.
    [113]F-H. Wang, H-P. Chang, C-C. Tseng et al. Influence of hydrogen plasma treatment on Al-doped ZnO thin films for amorphous silicon thin film solar cells. Current Applied Physics,2011,11:S12-S16
    [114]J.Y.W Seto. The electrical properties of polycrystalline silicon films, Journal of Applied Physics,1975,46:5247-5254
    [115]N.R. Aghamalyan, E.A. Kafadaryan, R.K. Hovsepyan et al. Absorption and reflection analysis of transparent conductive Ga-doped ZnO films. Semiconductor Science and Technology,2005,20:80-85
    [116]C. Marcel, N. Naghavi, G. Couturier et al. Scattering mechanisms and electronic behavior in transparent conducting ZnxIn2Ox+3 indium-zinc oxide thin films. Journal of Applied Physics,2002,91:4291-4297
    [117]A.P. Roth, J.B. Webb, D.F. Williams. Band-gap narrowing in heavily defect-doped ZnO. Physical Review B,1982,25:7836-7839
    [118]J. Steinhauser. Low pressure chemical vapour deposited zinc oxide for silicon thin film solar cells, PhD thesis, University of Neuchatel,2008
    [119]D.L. Young, T.J. Courtts, V.I. Kaydanov et al. Direct measurement of density-of-states effective mass and scattering parameter in transparent conducting oxides using second-order transport phenomena. Journal of Vacuum Science & Technology A:Vacuum, Surfaces and Films,2000,18:2978-2985
    [120]C. Agashe, O. Kluth, J. Hupkes et al. Efforts to improve carrier mobility in radio frequency sputtered aluminum doped zinc oxide films. Journal of Applied Physics,2004,95:1911-1917.
    [121]P. Drude. Zur elektronentheorie der metalle. Annalen Phys.,1900,1:566
    [122]R.J. Hong, X. Jiang, V. Sittinger et al. Uniformity in large area ZnO:Al films prepared by reactive midfrequency magnetron sputtering. J. Vac. Sci. Technol.,2002, A20:900
    [123]M. Losurdo, M. Giangregorio, P. Capezzuo et al. Parametrization of optical properties of indium-tin-oxide thin film by spectroscopic ellipsometry:Substrate interfacial reactivity. J. Vac, Sci. Technol.,2002,20:37
    [124]S. Logothetidis, A. Laskarakis, S. Kassavetis et al. Optical and structural properties of ZnO for transparent electronics. Thin solid films,2008,516:1345
    [125]I. Volintiru, M. Creatore, M.C.M. Van de Sanden. In situ spectroscopic ellipsometry growth studies on the Al-doped ZnO films deposited by remote plasma-enhanced metalorganic chemical vapor deposition. Journal of applied physics,2008,103:033704
    [126]J.Steinhauser, PhD thesis, University of Neuchatel,2008.
    [127]J.Y.W. Seto. The electrical properties of polycrystalline silicon films. J. Appl. Phys.,1975, 46:5247
    [128]S. Benagli, D. Borello, E. Vallat-Sauvain et al. High-efficiency amorphous silicon devices on LPCVD-ZnO TCO prepared in industrial KAI-M R&D reactor. Proceedings of the 24th EU PVSEC, Hamburg, Germany,2009,2293-2298
    [129]J.Bailat, J.Bailat, D.Domine, et al. High-efficiency p-i-n microcrystalline and micromorph thin film silicon solar cells depositedon LPCVD ZnO coated glass substrates, Proceedings of the Fourth World Conference on Photovoltaic Energy Conversion, Hawaii, USA,2006
    [130]S. Fay, S. Dubail, U. Kroll et al. Light trapping enhancement for thin-film silicon solar cells by roughness improvement of the ZnO front TCO. in:Proceedings of the 16th European Photovoltaic Solar Energy Conference, Glasgow, UK,2000.
    [131]周世勋,量子力学教程,北京:高等教育出版社,1979
    [132]S.C Cho, Y.C.Hong, H.S Uhm. Hydrophobic coating of carbon namotubes by CH4 glow plasma at low pressure, and their resulting wettability. J. Mater. Chem.,2007,17:232-237
    [133]Y. Sobajima, T. Higuchi, J. Chantana, et al. Gas-temperature control in VHF-PECVD process for high-rate growth of microcrystalline silicon thin films. Phys. Status Solidi, 2010,521-524
    [134]T. Kilper, M. N. van den Donker. Process control of high rate microcrystalline silicon based solar cell deposition by optical emission spectroscopy. Thin Solid Films,2008,4633-4638
    [135]R.M. Roth, K..G. Spears, G Wong. Spatial Concentrations of Silicon Atoms by Laser-induced Fluorescence in a Silane Glow Discharge. Appl. Phys. Lett.,1984,45:28-35
    [136]F. Tochikubo, A. Suzuki, S. Kakuta et al. Study of the Structure of Glow Discharges in SiH4/H2 by Spatiotemporal Optical Emission Spectroscopy:Influence of negative ions. Journal of Applied Physics,1990,68:5532-5535
    [137]P. Torres, U. Kroll, H. Keppner et al. Deposition of Thin-film Silicon for Photovoltaics: Use of VHF-GD and OES. In:Proc of the 5th Thermal Plasma Process,1998,1-6
    [138]杨恢东,吴春亚,李洪波.VHF等离子体光发射谱(OES)的在线监测.《物理学报》,2003,52:2324-2330
    [139]杨恢东,吴春亚.射频辉光放电硅烷等离子体的光发射谱研究.《光电子·激光》,2003,14:375-379
    [140]张发荣,微晶硅薄膜沉积过程中等离子体的诊断与模拟研究.[博士学位论文],天津:南开大学,2008
    [141]S.S. Hegedus. Current-voltage analysis of a-Si and a-SiGe solar cells including voltage-dependent photocurrent collection. Progress in Photovoltaics:Research and Applications, 1998,5:151-168
    [142]J. Ni, J-J. Zhang, Y. Cao et al. Low temperature deposition of high open-circuit voltage (>1.0V) pin-type amorphous silicon solar cells. Solar Energy Material and Solar Cells, 2011,95:1922-1926
    [143]A. Cuevas, J. Tan. Analytical and computer modelling of Suns-V∞ silicon solar cell characteristics. Solar Energy Materials and Solar Cells,2009,93:958-960
    [144]M. Nath, S. Chakraborty, K.H. Kim et al. Performance of amorphous and microcrystalline silicon pin solar cells under variable light intensity. Physica Status Solidi(c),2010,7:1105-1108
    [145]C.D. Cress, S.J. Polly, S.M. Hubbard et al. Demonstration of a nip-diode photovoltaic. Progress in Photovoltaics:Research and Application,2011,19:552-559
    [146]Y. Mai, S. Klein, P. Carius et al. Open circuit voltage improvement of high-deposition rate microcrystalline silicon solar cells by hot wire interface layers. Applied Physics Letters, 2005,87:073503
    [147]J. Merten, J.M. Asensi, C. Voz et al. Improved equivalent circiut and analytical model for amorphous silicon solar cells and modules, IEEE transactions on electron devices,1998,45: 1101
    [148]A. Marti, GL. Araujo. Limiting efficiencies for photovoltaic energy conversion in multigap system, Solar Energy Materials and Solar Cells,1996,43:203-222
    [149]Y-M. Liu, Y. Sun, A. Rockert. A new simulation software of solar cells- wxAMPS. Solar Energy Materials and Solar Cells,2012,98:124-128
    [150]王利,张晓丹,杨旭等.非晶硅太阳电池BZO/p-a-SiC接触特性改善的研究.《物理学报》,2013,62:058801
    [151]M. Kondo, Y. Nasuno. Low-temperature fabrication of microcrystalline silicon and its application to solar cells. Jorunal of Non-Crystalline Solids,2002,302:108-112
    [152]J.K. Rath, R.E.I. Schropp. Incorporation of p-type microcrytalline silicon films in amorphous silicon based solar cells in a superstate structure. Solar Energy Materials and Solar Cells,1998,53:189-203
    [153]K.L. Chopra, S.R. Das. Thin film solar cells. New York, Plenum Press,1983
    [154]I.M. Dharmadasa. Advances in thin-film solar cells. Singapore, Pan Stanford,2013
    [155]A. Nuruddin, J.R. Abelson. Improved transparent conductive oxide/p+/i junction in amorphous silicon solar cells by tailored hydrogen flux during growth. Thin Solid Films, 394:48-62
    [156]A. Catalanon, G. Wood. A method for improved short-wavelength response in hydrogenated amorphous silicon-based solar cells, Journal of Applied Physics,1988,63:1220-1222
    [157]S. Miyazaki, Y. Kohda, Y. Hazama et al. Structural characterization of amorphous silicon multilayer interfaces. Journal of Non-Crystalline Solids,1989,114:774-776
    [158]A. Hamed, H. Fritzsche, X-M. Deng et al. Metastable defect states and equilibration temperatures in a-SiNx:H, a-SiOx and a-SiCx:H. Journal of Non-Crystalline Solids,1991, 137-138:287-290
    [159]A.Singh, E.A. Davis, S.C. Bayliss. The effect of hydrogenation on the optical bandgaps of a-SiOx:Hy thin films. Journal of Non-Crystalline Solids,1989,114:504-506
    [160]P. Ordejon. Interpretation of the x-ray emission spectra of a-SiOx. Solid State Communications,1992,83:175-178
    [161]K. Haga, H. Miura, M. Kumano et al. Amorphous SiOx:H alloy films as wide optical-gap materials,1989,115:126-128
    [162]R. Carius, K. Jahn, W. Siebert et al. Photoluminescence in amorphous alloys:a-SiOx:H, a-SiNx:H, a-SixCl-x:H. Journal of Luminescence,1984,31-32:354-356
    [163]G.J. Adriaenssens. Amorphous Semiconductors:Optical Characteristics. Encyclopedia of Materials:Science and Technology(2nd),2001
    [164]S-Y. Lin. Shallow defect states in hydrogenated amorphous silicon oxide. Computational materials Science,2002,23:80-84
    [165]J. Poortmans, V. Arkhipov. Thin film solar cells:fabrication, characterization and applications. Wiley, England,2006
    [166]S. Schicho. Amorphous and microcrystalline silicon applied in very thin tandem solar cells. Julich, Germany,2011
    [167]M. Creatore, F. Palumbo, R. d'Agostino et al. RF plasma deposition of SiO2-like films: Plasma phase diagnostics and gas barrier film properties optimisation. Surface and Coatings Technology,2001,142-144:163-168
    [168]Y.N. Sun, A. Feldman, E.N. Farabaugh. X-ray photoelectron spectroscopy of O1s and Si2p lines in films of SiOx formed by electron beam evaporation. Thin Solid Films,1988,157: 351-360
    [169]N. Tomozeiu, J.J. Van Hapert, E.E. Van Faassen et al. Structural properties of a-SiOx layers deposited by reactive sputtering technique. Journal of Optoelectronics and Advanced Materials,2002,4:513-521
    [170]A. Feldman, Y.N. Sun, E.N. Farabaugh. Bonding structure of silicon oxide films. Journal of Applied Physics,2009,63:2149-2151
    [171]A. Feltrin, T. Meguro, E. Van Assche et al. Adavanced light trapping designs for high efficiency thin film silicon solar cells. Solar Energy Materials and Solar Cells,2013 in press
    [172]V. Jovanov, U. Planchoke, P. Magnus et al. Influence of back contact morphology on light trapping and plasmonic effects in microcrystalline silicon single junction and micromorph tandem solar cells,2013,110:49-57
    [173]P. Stulik, J. Singh. Optical modeling of a single-junction p-i-n type and tandem structure amorphous silicon solar cells with perfect current matching. Solar Energy Material and Solar Cells,1997,46:271-288
    [174]P. Buehlmann, J. Bailat, D. Domine et al. In situ silicon oxide based intermediate reflector for thin-film silicon micromorph solar cells. Applied Physics Letters,2007,91:143505
    [175]P. Delli Veneri, L.V. Mercaldo, I. Usatii. Silicon oxide based n-doped layer for improved performance of thin film silicon solar cells, Applied Physics Letters,2010,97:023512
    [176]A. Lambertz, T. Grundler, F. Finger. Hydrogenated amorphous silicon oxide containing a microcrystalline silicon phase and usage as an intermediate reflector in thin-film silicon solar cells. Journal of Applied Physics,2011,109:113109
    [177]V. Smirnov, A. Lambertz, B. Grootoonk et al. Microcrystalline silicon oxide(μc-SiOx:H) alloys:A versatile material for application in thin film silicon single and tandem junction solar cells. Journal of Non-Crystalline Solids,2012,358:1954-1957
    [178]X.D. Zhang, Q. Yue, X.X. Zheng et al. Plasma depostion of n-SiOx nanocrystalline thin film for enhancing the performance of silicon thin film solar cells. Thin Solid Films,2011, 520:684-688.
    [179]K. Schwanitz, S. Klein, T. Stolley et al. Anti-reflective microcrystalline silicon oxide p-layer for thin-film silicon solar cells on ZnO. Solar Energy Materials and Solar Cells, 2012,105:187-191
    [180]T.L. Temple, GD.K. Mahanama, H.S. Reehal et al. Influence of localized surface plasmon excitation in silver nanoparticles on the performance of silicon solar cells. Solar Energy Materials and Solar Cells,2009,93:1978-1985
    [181]樊君,张晓丹,魏长春等.双功能层n-SiOx:H用于非晶硅太阳电池的研究,中国可再生能源年会,2011年
    [182]R. Biron, C. Pahud, F-J. Haug et al. Origin of the V∞ enhancement with a p-doped nc-SiOx:H window layer in n-i-p solar cells. Journal of Non-Crystalline Solids,2012,358: 1958-1961

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700