自由表面流动问题数值方法的理论研究及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自由表面流动问题的数值模拟一直是水动力学和计算流体力学研究领域中的一个热点和难点,研究自由表面流动问题的数值方法几乎涉及到了计算流体动力学的所有理论方法和前沿技术。在船舶水动力学、航天、水利工程、机械工程、石油化工及土木工程中,均存在大量的自由表面流动问题。因此,对自由表面流动问题数值方法的研究具有重要的理论研究意义和实际工程意义。
     本文首先对当今比较流行的自由表面流动问题数值方法的理论进行全面回顾和系统研究。详细论述了基于欧拉网格的Hirt和Nichols、FLAIR、Youngs、FCT这四种用于界面重构的VOF(流体体积)方法、基于无结构网格FVM(有限体积方法)的Level Set方法,和无网格的SPH(光滑粒子流体动力学)方法的基本理论。
     通过数值模拟平移流场、旋转流场及剪切流场这三个追踪自由表面的经典算例,对基于欧拉网格的VOF方法、基于无结构网格的Level Set方法和无网格的SPH方法进行了比较分析,以自由表面追踪的效果为依据定性地选择比较好的数值方法,从而将SPH方法作为进一步研究的对象。
     研究了适用于广义流体动力学的SPH控制方程及其相关的数值技术。由拉格朗日形式的流体控制方程推导出SPH形式下的流体控制方程,应用人工粘性的SPH表达式来模拟求解粘性问题,应用人工压缩率并通过选择对应的状态方程将不可压缩流体模拟为拟不可压缩流体来进行求解分析。论述了固壁边界条件和自由边界条件的处理、时间积分与时间步长的确定方法,特别是自由表面粒子搜索的方法。
     在广义流体动力学的SPH方法基础上,考虑Riemann(黎曼)解法,采用了一种适合强间断性表面的改进的自由表面粒子确定方法,用于确定自由表面的位置,并给出了流体表面张力的计算方法。采用FORTRAN语言编制了计算程序并应用于算例-水珠溅落液面问题,实现了水珠溅落液面问题的SPH方法数值模拟,并将计算结果与Level Set方法作对比。
     应用SPH方法对不同领域的实际工程的自由表面流动问题进行数值求解,成功实现了对水利工程领域的大坝表孔泄流问题和船舶水动力学领域的液舱晃荡问题的数值模拟。
The numerical simulation of free surface flow has been a hot and difficult problem in the field of hydrodynamics and computational fluid dynamics research. The numerical simulation of the free surface flow involved almost all the theory of computational fluid dynamics methods and cutting-edge technology. the question of Free surface flow has been existed in the engineering field, such as ship hydrodynamics, aerospace, hydraulic engineering, mechanical engineering, petrochemical engineering and civil engineering, and so on., Therefore, the problem of free surface flow numerical method of research was important and significance both in theory and in practical engineering.
     Firstly, the popular numerical methods of the free surface flows were reviewed and investigated systematically. The VOF (Volume of Fluid) method for the interface reconstruction based on the Euler grid, which was containd by Hirt and Nichols method, FLAIR method, Youngs method, FCT method, and Level Set Method based on unstructured grid FVM (Finite Volume Method), and SPH(Smoothed Partical Hydrodynamics) based on the meshfree method, all of which, the basic theory were elaborated in detail.
     The numerical methods aboved were compared and analyzed by simulating the three classic examples, which were simple convection flow field, a rotational flow field, and a shear flow field.And selected a finer method from aboved methods by the effect of free surface tracking, and the finer mthod was SPH, which would be discussed in this paper.
     SPH control equations which can be applied to generalized hydrokinetics and related numerical techniques were studied. SPH control equations were derived from Lagrangian equations. Viscosity problem was simulated and solved by applying SPH expression which contained viscosity. Incompressible fluid was converted to approximated incompressible fluid to be solved and analyzed by using artificial compressibility and selecting corresponding state equation. The solution of the solid wall boundary conditions and free boundary conditions, time integration method and time step identification, especially the method for searching free surface particles, all of which were discussed.
     Based on the condition about Riemann condition and SPH method of the generalized hydrokinetics, a new method of how to search the free surface particles and how to calculate free surface tension was determined. SPH numerical simulation was enforced by a Fortran program to simulate the problem of a drop impacting free liquid surface, and its results were compared with the level set result.
     SPH method was applied to simulate free surface flow in the practical engineering field. And the two numerical simulation was finished by SPH, which are the liquid sloshing in ship hydrodynamics field and the discharge through crest orifice on dam in the hydraulic engineering field.
引文
[1]曾江红,王照林,航天器液体晃动动力学的研究方法概述,强度与环境,1997(4):37~43
    [2]王建军,李其汉,陆明万,自由液面流体流动问题的数值分析研究,计算力学学报,2003.2, 20(1):101~108
    [3]吴维武,吴家鸣,水动力计算中自由表面处理的研究方法简介,广东造船,2006(3):16~18
    [4]朱仁庆,吴有生,彭兴宁等,船舶液体晃荡动力学的研究方法及进展,华东船舶工业学院学报,1999,13(1):45~50
    [5]黄筱云,自由表面追踪方法理论研究及数值模拟:[硕士学位论文],天津:天津大学,2005
    [6]洪方文,自由面附近运动物体流场的数值与试验研究:[博士学位论文],无锡:中国船舶科学研究中心,2001
    [7]刘儒勋,王志峰,数值模拟方法和运动界面追踪,合肥:中国科学技术大学出版社,2001
    [8]张兆顺,崔桂香,流体力学(第二版),北京:清华大学出版社,2006:16~20
    [9] Hirt C W, Amsden A A and Cook J L. An arbitrary Lagrangian-Eulerian computing method for all flow speeds. J Comp Physics, 1974, 14: 227~253
    [10] Stein L R, Gentry R A and Hirt C W. Computational simulation of transient blast loading on three-dimensional structures. Comput Meths. Appl Mech Engrg, 1977, 11: 57~74
    [11] Pracht W E. Calculating three-dimensional fluid flows at all flow speeds with an Eulerian-Lagrangian compution mesh. Comput. Phys , 1975, 17: 132~159
    [12] Belytschko T and Kennedy J M . Computer models for subassembly simulation. Nuc Engrg Design, 1978, 49: 17~38
    [13] L iu W K. Finite element procedures for fluid-structure interactions with application to liquid storage tanks. Nucl Engrg Design, 1981, 65: 221~238
    [14] Nitikitpaiboon C and Bathe K J. An arbitrary Lagrangian-Eulerian velocity potential formulation for fluid-structure interaction. Computers and Structures, 1993, 47 (4) : 871~891
    [15] Nomura T, Hughes T J R. An arbitrary Lagrangian-Eulerian finite element method for interact ion of fluid and a rigid body. Comput. Meths. Appl. Mech. Engrg.., 1992, 95: 115~138
    [16] Hughes T J R , Liu W K and Zimmerman T K . Lagrangian-Eulerian finite element for mulation for incompressible viscous flows. Comput, Meths Appll Mech Engrg, 1981, 29: 329~349
    [17] Huerta A and Liu W K . Viscous flow with large free surface motion. Comput Meths Appl Mech Engrg , 1988, 69: 277~324
    [18] U shijima S.Three-dimensional arbitary-Lagrangian-Eulerian numerical prediction method for non-linear free surface oscillation. Int J Numer Meth Fluids, 1998, 26: 605~623
    [19]岳宝增,刘延柱,王照林,非线性流固耦合问题的ALE分步有限元数值方法,力学季刊, 2001, 22:34~39
    [20]岳宝增,刘延柱,王照林,三维液体非线性晃动动力学特性的数值模拟,应用力学学报, 2001, 18:110~115
    [21] Ning J G, Wang C, Ma T B. Numerical analysis of the shaped charged Jet with large coneangle. Int J Nonlinear Sci Numer Simul, 2006, 7(1): 71~78
    [22] Ma T B, Wang C, Ning J G. Multi-material Eulerian formulations and hydro code for the simulation of explosions. CMES-Comp Model Eng Sci, 2008, 33(2): 155~178
    [23] Furzeland R M. A comparative study of numerical method for moving boundary problems. Journal of International mathematics Application, 1980, 20:411~429
    [24] Harlow F H, Welch J E. Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface. Physics of Fluids, 1965, 8(1):2182~2189
    [25] Evans M E and Harlow F H . LA-2139,1957
    [26] Gentry R A, Martin R F and Daly B J.J Comput Phys, 1996,1
    [27] Amsden A A, Harlow F H. The SMAC method: a numerical technique for calculating incompressible fluid flows. Los Alamos Scientific Laboratory, Report LA-4370,1970
    [28] Armenio V. An improved MAC method (SIMAC) for unsteady high-Reynolds free surface flows.International Journal for Numerical Methods in Fluids, 1997, 24:185~214
    [29] Veldman A E , Vogels M E. Axisymmetric liquid splashing under low gravity conditions, Acta Astronautica, 1984,11:641~649
    [30] Miyata H. Finite difference simulation of breaking wave. J Comput Phys,1986,65:179 ~214.
    [31] Castelo A, Tome M F, Cesar C N, et al. Free flow: an integrated simulation system for three-dimensional free surface flows. Computing Visualization in Science,2000,2:199~210
    [32] Tome M F, McKee S.GENSMAC:A Computational Marker and Cell Method for Free Surface Flows in General Domains.J Comput Phys,1994,110(1):171~186
    [33] Tome M F, Castelo A, Murakami J, et al. Numerical simulation of axisymmetric free surface flows. J Comput Phys, 2000,157:441~472
    [34] Tome M F, Castelo A., Cuminato J A, et al.GENSMAC3D:a numerical method for solving unsteady three-dimensional free surface flows. International Journal for Numerical Methods in Fluids,2001,37(7):747~796
    [35] Hirt C W , Nichols D B. Volume of fluid Method for the Dynamics of free boundaries. Journal of Computational Physics , 1981,39:201~225
    [36] Osher S, Sethian J A. Fronts Propagating with Curvature-Dependent Speed: Algorithms Based on Hamilton-Jacobi Formulations. Journal of Computational Physics, 1988,79(l): 12~49
    [37] Ashgriz N and Poo J Y. FLAIR: Flux Line-segment model for Advection and Interface Reconstruction. J Comput Phys, 1991, 39: 449~468
    [38] Youngs D L.Numerical methods for fluid dynamics. Academic, New York,1982
    [39] Ma T B, Wang C, Ning J G. Multi-material Eulerian formulations and hydro code for the simulation of explosions. CMES-Comp Model Eng Sci, 2008, 33(2): 155~178
    [40] Youngs D L .Time-dependent multi-material flow with large fluid distortion. In: Morton K W, Baines M J, eds, Numerical Methods for Fluid Dynamics. New York: Academic Press, 1982: 273~285
    [41]刘儒勋,舒其望,计算流体力学的若干新方法,北京:科学出版社,2003
    [42]宁建国,陈伟龙,Euler方法中的模糊界面处理,中国科学E辑,2004,34(7):763~775
    [43] Boris J P, Book D L. Flux corrected transport. I SHASTA J Comput Phys.1973, 11:38~69
    [44] Danping Peng, Barry Merriman, Stanley Osher. APDE-Based Fast Local Level Set Method. Journal of Computational Physics, 1999, 155(2):410~438
    [45] Douglas Enright, Ronald Fedkiw. A Hybrid Particle Level Set Method for Improved Interface Capturing. Journal of Computational Physics, 2002, 183(l):83~116
    [46] Chen S, Merriman B Osher S. A Simple Level Set Method for Solving Stefan Problems. Journal of Computational Physics, 1997, 135:8~29
    [47] Merriman B, Bence J K, Osher S. Motion of multiple junctions: A level set approach. Journal of Computational Physics, 1994, 112(2): 334-363
    [48] Sussman M, Smereka P, Osher S. A level set method for computing solutions to incompressible two-phase flow. Journal of Computational Physics, 1994, 114(1): 146~159
    [49] Chunming Li, Chenyang Xu, Changfeng Gui, et al. Level Set Evolution Without Re-initialization: A New Variational Formulation.CVPR,2005::1063~6919
    [50]刘儒勋,刘晓平,张磊等,运动界面的追踪与重构方法,应用数学和力学,2004,25(3):279~290
    [51]宫翔飞,张树道,江松,界面捕捉Level Set方法(AMR)数值模拟,计算物理2006,23:391~395
    [52]汪海滨,Level Set算法及其应用:[硕士学位论文],西安:西北工业大学,2006
    [53]陈凡红,王成,郝莉等,用Level Set方法追踪运动界面,力学与实践,2006,28:23~27
    [54]谷汉斌,李保炎,李绍武等,界面追踪的Level Set和Particle Level Set方法,水动力学研究与进展,2005,20:152~160
    [55] Li X L, Jin B.X., Glimm J. Numerical study for the three dimensional rayleigh-taylor instability through the tvd/ac scheme and parallel computation. J Comput Phys, 1996, 126: 343~355
    [56] Fwdkiw R P, Aslam T, Merriman B, and Osher S. A non-oscillatory Eulerian approach to interfaces in multi-material flows(the Ghost Fluid Methid). J Comput Phys, 1999,152:457~492
    [57]吴开腾,郝莉,王成等,Euler方法中的LevelSet界面处理及其应用研究,中国科学G辑,2009,39(9):1204~1213
    [58] G R Liu, Y T GU [著],韩旭,王建明,周学军[译],An Introduction To Meshfree Methods And Their Progrramming.济南:山东大学出版社,2007
    [59] G.R.Liu, M.B.Liu[著],韩旭,杨刚,强洪夫[译],Smoothed Particle Hydrodynamics.长沙:湖南大学出版社,2005
    [60] Monaghan J J. Simulating free surface with SPH. Journal of Computational Physics ,1994,110(2):399~406
    [61]李梅娥,周进雄,不可压流体自由表面流的SPH数值模拟,机械工程学报,2004,40(3):5~9
    [62] Iglesia S, Roja L P, Rodriguez R Z. Simulation of anti-roll tanks and sloshing type problems with Smoothed Particle hydrodynamics. Ocean Engineering, 2004,31:1169~1192
    [63] V. Roubtsova, R. Kahawita. The SPH technique applied to free surface flows. Computers & Fluids, 2006, 35(10):1359~1371
    [64] B Ataie-Ashtiani, G Shobeyri, L, Farhadi. Modified incompressible SPH method for simulating free surface problems. Fluid Dynamics Research, 2008, 40(9):1~25
    [65]龚凯,刘桦,王本龙,SPH固壁边界处理方法的改进,力学季刊,2008,29(4):507~513
    [66]张建,陆利蓬等,SPH方法在溃坝流动模拟中的应用,自然科学进展,2006,16(10):1326~1330
    [67] Songdong Shao, Changming Ji, David I. Graham, etc. Simulation of wave overtopping by an incompressible SPH model. Coastal Engineering, 2006, 53: 723~735
    [68]杜小弢,吴卫等,二维滑坡涌浪的SPH方法数值模拟,水动力学研究与进展,2006,21(5):579~686
    [69]许庆新,沈荣流,充液容器跌落过程的SPH模拟方法,噪声与振动控制,2007,6:13~16
    [70]龚凯,刘桦,圆盘垂直入水的SPH数值模拟,朱德祥,周连第,杨显成等,第二十届全国水动力学研讨会文集,北京:海洋出版社,2007,8:325~330
    [71]崔岩,吴卫,刘桦,SPH方法模拟二维矩形水槽晃荡过程,朱德祥,周连第,杨显成等,第二十届全国水动力学研讨会文集,北京:海洋出版社,2007,8:319~324
    [72] X Y Hu, N A Adams. An incompressible multi-phase SPH method. Journal of Computational Physics 2007, 227: 264~278
    [73]陈正云,朱仁庆,祁江涛,基于SPH法的二维液体大幅晃荡数值模拟,航海工程,2008,37(2):44~47
    [74]张文江,关龙祥,刘顺东等,基于SPH方法的自由水面溢流过程开边界数值模拟,水科学与工程技术,2008:57~60
    [75]李大鸣,刘江川,徐亚男,SPH方法在大坝表孔泄流数值模拟中的应用,水科学进展,2008,19(6):842~845
    [76]刘汉涛,常建忠,安康,基于SPH的自由表面流动数值模拟,水利水运工程学报,2009,3:81~84
    [77]谭小辉,万旺根,黄炳等,基于SPH的三维流体模拟,计算机应用与软件,2009,26(12):222~224
    [78]李大鸣,陈海舟,张建伟,液体纵荡SPH方法模拟中两种不同外激励加载方式的比较研究,工程力学,2010,27(2):241~249
    [79] M. Ellero, R I Tanner. SPH simulations of transient viscoelastic flows at low Reynolds number. J Non-Newtonian Fluid Mech. 2005, 132:61~72
    [80] Jiannong Fang, Robert G. Owens, Laurent Tacher , Aur`ele Parriaux. A numerical study of the SPH method for simulating transient viscoelastic free surface flows. J Non-Newtonian Fluid Mech., 2006,139: 68~84
    [81] A.Rafiee, M.T.Manzari, M.Hosseini. An incompressible SPH method for simulation of unsteady viscoelastic free-surface flows. Non-Linear Mechanics, 2007, 42(10):1210~1223
    [82] J J Monaghan. Smoothed particle hydrodynamics.Rep. Prog. Phys. Institute of Physics Publishing, 2005, 68:1703~1759
    [83] Athey D.R. A finite difference scheme for melting problems. Int J Math Appl, 1974,13:353~366
    [84] Level Set方法在多介质流体中的应用研究:[硕士学位论文],南京:南京理工大学,2007
    [85]谭维炎,计算浅水动力学,北京:清华大学出版社,1998:7~8
    [86] Vincent S, Caltagirone J P. Efficient Solving method for unsteady incompressible interfacial flow problems. Int J Numer Meth Fluids, 1999,30:795~811
    [87] Wang Shimin, Wang Zhaolin. A new numerical method for instantaneous fluid flow with free surface. A dvances in Astronautical Sciences, 1996, 91: 299~308
    [88] Songdong Shao, Edmond Y.M. Lo. Incompressible SPH method for simulating Newtonian and non-Newtonian flows with a free surface. Advances in Water Resources, 2003,26 (7) :787~800
    [89]汤文辉,毛益明,SPH数值模拟中固壁边界的一种处理方法,国防科技大学学报,2001,23 (6):78~81
    [90]陈正云,朱仁庆,祁江涛,基于SPH方法的二维液体大幅晃荡数值模拟,船海工程,2008,37(2):44~47
    [91] Inutsuka S. Reformulation of smoothed particle hydrodynamics with Riemann solvers. JComput Phys 2002;179(1):238~267
    [92] Parshikov AN, Medin SA, Loukashenko II, Milekhin VA. Improvements in SPH method by means of inter-particle contact algorithm and analysis of perforation tests at moderate projectile velocities. Int J Impact Eng 2000;24(8):779~796
    [93] Monaghan J J. SPH and Riemann solvers. J Comput Phys 1997, 136(2): 298~307
    [94] Proseperetti Andrea,Oguz Hasan N.The Impact of Drops on Liquid Surfaces and the Underwater Noise of Rain.Annual Review of Fluid Mechanics,1993,25:577~602
    [95] Oguz Hasan N, Prosperetti Andrea. Bubble Entrainment by the Impact of Drops on Liquid Surfaces. Journal of Fluid Mechanics, 1990, 219: 143~179
    [96]罗朝霞,李会雄等,液滴冲击无限大液面过程的边界元模拟,工程热物理学报,2002,23(6):749~752
    [97] XU Jun. Numerical Simulation of Drops Falling to and Splashing on Liquid Interfaces.北京大学学报(自然科学版),1999,35(1):35~46
    [98] Yasunori Watanabe, Ayumi Saruwatari, David M. Ingram. Free-surface flows under impacting droplets. Journal of Computational Physics, 2008,2344~2365
    [99] N.Nikolopoulos, A.Theodorakakos,G.bergeles. Three-dimensional numerical investigation of a droplet impinging normally onto a wall film.Journal of Computational Physics, 2007, 225:322~341
    [100] O.M. Faltinsen. A numerical nonlinear method of sloshing in tanks with two-dimensional flow. J. Ship Res., 1978 (22):193~202
    [101] Dongming Liu, Pengzhi Lin. A numerical study of three-dimensional liquid sloshing in tanks. Journal of Computational Physics, 2008 (227) :3921~3939

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700