基于集成芯片的多功能细胞生理自动分析仪研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
细胞传感器(Cell-Based Biosensor, CBB)采用活体细胞作为一级换能器,感受到刺激信号后将产生不同类型的特定变化,如细胞代谢、动作电位和电阻抗变化等。而与细胞相连的二级换能器可以检测到这些来自细胞的变化,并将这些测到的细胞信号转换为电学信号,从而送入电学系统。细胞传感器根据检测生理参数的不同,常用的二级换能器主要有微电极阵列(Microelectrodes Array, MEA)、光寻址电位传感器(Light Addressable Potentiometric Sensor, LAPS)、细胞电阻抗传感器(Electric Cell-substrate Impedance Sensor, ECIS)等。在进行细胞生理实验时,对单一参数的监测往往只能从某一方面反映出细胞的生理活动,而测试环境的复杂性(各种噪声源、长期测试后培养液对电极的腐蚀等)会干扰测试的结果,所以对细胞生理活动机理的揭示则需要同时对多种相关的生理参数进行综合分析才能完成。
     为了实现胞外离子浓度(微环境检测)、胞外动作电位、以及电生理阻抗三种生理参数同时检测,采用电子技术与生物医学技术相结合的方法,研制了一种基于多功能集成芯片的全自动细胞生理参数分析仪。该仪器具有分析时间短、样品消耗少和效率高等优点。在测量过程中可自动调节测量腔中的温度、湿度及CO2浓度,以满足细胞的生长环境要求。同时通过自动进样系统可实现全自动分析功能。可广泛用于细胞生理、药物的筛选和环境检测等领域。此外,该仪器可实现对单细胞、细胞网络的传导以及药物作用后细胞生理状态的实时量化的检测。采用独特的芯片接口装置以及板卡式电路设计,该仪器适用于多种细胞以及多种不同集成芯片检测的需求。
     本论文主要研究内容及创新点:
     一、提出了多功能集成芯片的理论分析模型和仿真设计方法
     本文提出了一种集成MEA、LAPS和ECIS为一体的新型细胞生理检测芯片的设计思想,解决了细胞胞外动作电位、胞外离子浓度以及细胞阻抗三种生理参数同时检测的一些关键问题。
     首先研究了多功能集成芯片检测细胞生理参数的基本理论。通过对细胞作为一级换能器如何感受到外界刺激信号进行了分析,阐述了与细胞代谢、细胞动作电位、细胞膜阻抗特性、以及细胞黏附和迁移相关的细胞基本特性,并给出了细胞感受到外界刺激后不同类型输出信号与二级换能器的耦合模型,最终得出细胞传感器的理论模型。
     其次对多功能集成芯片MEA传感单元、ECIS传感单元、以及LAPS传感单元部分的电学模型进行了研究。仿真结果得出集成芯片各传感单元的设计参数对检测结果的影响,优化了芯片的设计参数,为多功能集成芯片及仪器的设计提供了理论支持。
     二、实现了多功能细胞生理分析仪的系统设计和加工制作
     设计了集成芯片的ECIS、APS、MEA传感单元的相应检测电路,设计了环境控制系统对测量腔的温度、湿度、以及CO2浓度进行严格的控制,使得其维持在细胞最适合生长的环境,设计了自动进样系统控制进样泵和出样泵的通断及转速,从而完成培养液和药物的自动进样以及废液清洗,实现了自动化分析。
     通过中央控制电路对整个生理采集信号的过程进行控制,并对获取的信号数据进行初步分析后,由USB接口传送到计算机上,计算机上设计了相应的软件实现数据的采集、存储、以及后期分析等功能。分析仪通过独特的芯片接口装置和电路按功能模块主板式设计,可适应不同的集成芯片设计。最终设计完成了一台多功能细胞生理分析仪样机,可灵活扩展以及向产业化方向发展,实现了细胞生理多参数分析的需求。
     三、实现了细胞生理多功能参数的综合检测与分析
     首先对分析仪样机进行了的测试评价,包括对LAPS、ECIS、MEA等集成芯片检测电路指标的测试,以及对环境控制系统以及自动进样系统的测试。结果表明,传感器芯片和仪器的性能指标可以满足实际分析的要求。
     其次基于多功能集成芯片,进行了细胞生理参数检测研究,对本文研制的细胞生理分析仪的生物医学应用进行典型实验测试。利用集成芯片的LAPS传感单元对肾细胞在5-氟尿嘧啶作用下的酸化率变化进行了检测。利用集成芯片的MEA传感单元检测乳鼠心肌细胞在河豚毒素(TTX)作用下的胞外动作电位变化。利用集成芯片的ECIS传感单元检测细胞的迁移,生长增殖,以及死亡过程。实验结果表明分析仪可用于细胞多种生理参数的综合分析。
     通过培养的心肌细胞在药物作用下的实验,表明该仪器可以在一次实验中同时检测到心肌细胞的阻抗、胞外动作电位以及胞外Ca2+浓度三种参数的变化过程。数据分析表明,将三种生理参数结合可以获到细胞在药物作用下的多种指标参数的评价,如药物对心脏毒性的评价等。初步的实验结果表明,本文研制的多功能细胞生理分析仪在未来的生物医药领域将有广泛的应用前景。
Cell-based Biosensors (CBB) exploit the naturally evolved sensitivity of cells in order to detect a broad range of biochemical agents as a cellular response. This cellular response is detected by a secondary transducer and converted into an electronic form suitable for analysis. Depending on the measured physiological parameters, commonly used secondary transducers are mainly Micro-electrodes Array (MEA), Light Addressable Potentiometric Sensor (LAPS), and Electric Cell-substrate Impedance Sensor (ECIS). During cellular physiology experiments, single parameter monitoring is often only from one aspect reflects the physiological activities of cells. And the complexity of test environment (various noise sources, long-term testing of the corrosion medium on the electrodes, etc.) may interfere with experimental results. So revealing the mechanism of cellular physiological activities needs the comprehensive analysis of a variety of related physiological parameters.
     An automated multifunctional cellular physiological analyzer based on integrated chip, was developed using electronic technology and biomedical technology. This instrument achieved the simultaneous detection of three kinds of physiological parameters, such as extracellular ion concentrations (micro-environment detection), extracellular action potentials, and electrophysiological impedance. The instrument has several advantages such as shorter analysis time, low sample consumption and high efficiency. Temperature, humidity and CO2 concentration in the measuring cavity can be automatically adjusted during the measuring process, in order to meet environmental requirements in cell growth. At the same time, the fully automated analysis was achieved by the flow analysis system. The instrument can be widely used in cell physiology analysis, drug screening and environmental monitoring and other fields. In addition, the instrument enables real-time quantitative detection of the conduction of single cells and cell networks, and the cellular physiological state after the effects of drugs. Based on the unique design of chip-instrument interface and circuit board, the instrument is applicable to a variety of cells and different designs of multifunctional integrated chip.
     The major contents and innovations of this thesis are given as the following aspects.
     1.Numerical design and simulation of multifunctional integrated chip
     A multifunctional integrated chip was designed, which integrates three kinds of sensors as MEA, LAPS, and ECIS. The chip can simultaneously detect the extracellular action potentials, the state of cell growth and adhesion and extracellular micro-environment.
     Theoretical analysis of multifunctional integrated chip was used to understand the basic theory of cell-based biosensor detecting physiological parameters. We analyzed how cells receipt the stimulation signals as primary transducers. Here, we focused on the basis of cellular functions as they relate to cellular metabolism, electrical activity in cells, cellular membrane impedance characteristics, and cell adhesion and motion. The model of cells coupled to the secondary transducers was established by analyzing cellular responses to the outside stimulation. Based on these results, the model of cell-based biosensor was established.
     We analyzed the different functional units of the integrated chip, and established the electrical model of MEA sensor unit, ECIS sensor unit and LAPS sensor unit. Numerical model and simulation help us design of multifunctional integrated chip and cellular physiological analyzer.
     2.Design and processing of automated multifunctional cellular physiological analyzer
     The corresponding detection circuit of MEA, LAPS, ECIS sensing unit on the integrated chip, was designed. Temperature, humidity and CO2 concentration in the measuring cavity can be automatically adjusted during the measuring process, in order to meet environmental requirements in cell growth. Flow control circuit controls on-off and speed of valve, injection pump and output pump. Thus automatic analysis is achieved, by auto sampling the culture medium and drugs as well as washing the waste liquid.
     The central control circuit controls the process of physical signal acquisition, preliminary analysis of the signal data, and transfer to computer by USB interface. The designed software on PC enables data collection, storage, and post-analysis. Integrated chip cultured with cells was coupled to the instrument by a special interface. At last, a prototype of multifunctional cellular physiological analyzer was completed, which can achieve the needs of cellular multi-parameter analysis.
     3. Detection and analysis of cellular physiological parameters for drugs
     Evaluation of the instrument, mainly include calibration of sensing unit detection circuit calibration, as well as the testing of environment and drug control system. The results indicate that the instrument can be used for analysis of cell physiological parameters.
     Based on multifunctional integrated chip, several experiments were conducted to detect cellular parameters for typical experimental test. LAPS sensor unit on the integrated chip was used to detect acidification rate changes of the kidney cells under the action of 5-fluorouracil. MEA sensor unit on the integrated chip was used to detect extracellular action potential changes of SD rat myocardial cells under the action of TTX. ECIS sensor unit on the integrated chip was used to detect cell extension, growth, proliferation, and death process. At last, the instrument is used to detect the extracellular action potential, cell metabolism, and cell impedance simultaneously. It is used to study the acute toxicity effect of adriamycin acting on the HL-1 cardiac cell line on the electrophysiological point. The results indicated that the multifunctional cellular physiological analyzer can be widely used in future based on the capability of simultaneous detection of three kinds of parameters.
引文
Adami, M., Sartore, M., Nicolini, C.,1995. PAB:a newly designed potentiometric alternating biosensor system. Biosen. Bioelectron.,10:155-167.
    Baumann, W.H., Lehmann, M., Schwinde, A., Ehret, R., Brischwein, M., Wolf, B., 1999. Microelectronic sensor system for microphysiological application on living cells. Sensors and Actuators B,55:77-89.
    Becker, B., Lob, V., Janzen, N., Grundl, D., Ilchmann, F. Wolf, B.,2008. Automated multi-parametric label free 24 channel real-time screening system. IFMBE Proceedings,20:186-189.
    Brischwein, M., Motrescu, E.R., Cabala, E., Otto, A.M., Grothe, H., Wolf, B.,2003. Functional cellular assays with multiparametric silicon sensor chips. Lab Chip, 3:234-240.
    Cai, H. Xu, Y., Liu, Q.J., Li, Y., Wang, L.J., Wang, P.,2006. High speed chemical imaging sensor combined with microlens array based on MEMS, The 3rd Asia-Pacific Conference of Transducers and Micro-Nano Technology, Jun.25-28, Singapore.
    Ciambrone, G.J., Liu, V.F., Lin, D.C., McGuinness, R.P., Leung, G.K., Pitchford, S., 2004. Cellular Dielectric Spectroscopy:A Powerful New Approach to Label-Free Cellular Analysis. J. Biomol. Screen.,9:467-480.
    Ehret, R., Baumann, W., Brischwein, M., Schwinde, A., Stegbauer, K., Wolf, B., 1997. Monitoring of Cellular Behaviour by Impedance Measurements on Interdigitated Electrode Structures. Biosens. Bioelectron.,12:29-41.
    Foster, K.R., Schwan, H.P.,1989. Dielectric properties of tissues and biological materials:a critical review. Critical Review in Biomedical Engineering,17(1): 25-104.
    Geisler, T., Ressler, J., Harz, H., Wolf, B., Uhl, R.,2006. Automated Multiparametric Platform for High-Content and High-Throughput Analytical Screening on Living Cells. IEEE transactions on automation science and engineering,3:1545-5955.
    Giaever, I., Keese, C. R.,1984. Monitoring Fibroblast Behavior in Tissue Culture with an Applied Electric Field. Proc. Natl. Acad. Sci.,81:3761-3764.
    Grattarola, M., Martinoia, S.,1993. Modeling the Neuron-Microtransducer Junction:From Extracellular to Patch Recording, IEEE Trans. Biomed. Eng., 40:35-41.
    Grimnes, S., Martinsen, O. G.,2000. Bioimpedance and Bioelectricity Basic, San Francisco, CA:Academic Press.
    Gross, GW., Rieske, E., Kreutzberg, GW., Meyer, A.,1977. A new fixed-array multi-microelectrode system designed for long-term monitoring of extracellular single unit neuronal activity in vitro, Neurosci Lett 6,101-105.
    Gross, G.W., Azzazy, H.M.E., Wu, M.C., Rhoades, B.K.,1995. The use of neuronal networks on multielectrode arrays as biosensors. Biososensors and Bioelectronics,10:553-567.
    Hafner, F.,2000. Cytosensor(?) Microphysiometer:technology and recent applications. Biosens. Bioelectron.,15:149-158.
    Hafeman, D.G, Parce, J.W., McConnell, H.M.,1988. Light-addressable potentiometric sensor for biochemical systems. Science,240:1182-1185.
    Henning, T., Brischwein, M., Baumann, W., Ehret, R., Freund, I., Kammerer, R., Lehmann, M., Schwinde, A., Wolf, B.,2001. Approach to a multiparametric sensor-chip-based tumor chemosensitivity assay. Anti-Cancer Drugs,12:21-32.
    Hutzler, M., Lambacher, A., Eversmann, B., Jenkner, M., Thewes, R., Fromherz, P., 2006. High-resolution multitransistor array recording of electrical field potentials in cultured brain slices. J Neurophysiol,96(3):1638-1645.
    Jimbo, Y., Kawana, A.,1992. Electrical stimulation and recording from cultured neurons using a planar electrode array. Bioelectrochem Bioenerg.,29:193-204.
    Kovacs, G. T. A.,2003. Electronic sensors with_living cellular components. Proc. IEEE,91:915-929.
    Neher, E.,2001. Molecular Biology Meets Microelectronics. Nat. Biotechnol.,19: 114.
    Novak, J.L., Wheeler, B.C.,1986. Recording from the aplysia abdominal ganglion with a planar microelectrode array. IEEE Trans Biomed Eng.,33:196-202.
    Otto, A. M., Brischwein, M., Motrescu, E., Wolf, B.,2004. Analysis of Drug Action on Tumor Cell Metabolism Using Electronic Sensor Chips. Arch. Pharm. Pharm. Med. Chem.,337:682-686.
    Otto, A. M., Brischwein, M., Niendorf, A., Henning, T., Motrescu, E., Wolf, B., 2003. Microphysiological testing for chemosensitivity of living tumor cells with multiparametric microsensor chips. Cancer Detection and Prevention,27: 291-296.
    Owicki, J.C., Parce, J.W., Kersco, K.M., et al.,1990, Continuous monitoring of receptor-mediated changes in the metabolic rates of living cells. Proceedings of the National Academy of Sciences,87:4007-4011.
    Parce, J.W., Owicki, J.C., Kercso, K.M., et al.,1989, Detection of cell-affecting agents with a silicon biosensor. Science,246:243-247.
    Pine, J.,1980. Recording action potentials from cultured neurons with extracellular microcircuit electrodes. J Neurosci Methods,2(1):19-31.
    Piras, L., Adami, M., Fenua, S., Dovisb, M., Nicolini, C.,1996. Immunoenzymatic application of a redox potential biosensor. Analytica Chimica Acta,335: 127-135.
    Solly, K., Wang, X., Xu, X., Strulovici, B., Zheng, W.,2004. Application of Real-Time Cell Electronic Sensing (RT-CES) Technology to Cell-Based Assays. Assay Drug Dev. Technol.,2:363-372.
    Thomas, C.A., et al.,1972. A Miniature Microelectrode Array to Monitor the Bioelectric Activity of Cultured Cells. Exp. Ceil. Res.,74:61-66.
    Wang, P., Liu, Q. J.,2009. Cell-based Biosensor:Principles and Applications, Artech House Press Inc. USA.
    Wegener, J., Keese, C.R., Giaever, I.,2000. Electric Cell-Substrate Impedance Sensing (ECIS) as a Noninvasive Means to Monitor the Kinetics of Cell Spreading to Artificial Surfaces. Exp. Cell Res.,259:158-166.
    Wolf, B., Brischwein, M., Baumann, W., Ehret, R., Kraus, M.,1998. Monitoring of cellular signalling and metabolism with modular sensor-technique:the physio control-microsystem (PCM). Biosens. Bioelectron.,13(5):501-509.
    Wolf, B., Brischwein, M., Lob, V., Ressler, J., Wiest, J.,2007. Cellular signaling: aspects for tumor diagnosis and therapy. Biomed Tech 2007,52:164-168.
    Wu, Y.C., Wang, P., Ye, X.S., Zhang, G.Y., He, H.Q., Yan, W.M., Zheng, X.X., Han, J.H., Cui, D.F.,2001. Drug evaluations using a novel microphysiometer based on cell-based biosensors. Sens. Actuators B:Chem.80,215-221.
    Xu, Y, Yu, H., Cai, H., Liu, Q.J., Wang, P.,2007. Integrated Cell-based Biosensor for Extracellular Electrophysiological Monitoring. International Conference on Information Acquisition, ICIA'07,69-74.
    Yu, H., Cai, H., Zhang, W., Xiao, L.D., Liu, Q.J., Wang, P.,2009. A novel design of multifunctional integrated cell-based biosensors for simultaneously detecting cell acidification and extracellular potential. Biosensors and Bioelectronics,24: 1462-1468.
    Zhang, Q.T., Wang, P., Wolfgang, J.P., George, M., Zhang, GY.,2001. A novel design of multi-light LAPS based on digital ompensation of frequency domain. Sens. Actuators B:Chem.,73:152-156.
    Breckenridge, L.J., Wilson, R.J.A., Connolly, P., Curtis, A.S.G., Dow, J.A.T., Blackshaw, S.E. and Wilkinson, C.D.W.,1995. Advantages of using microfabricated extracellular electrodes for in vitro neuronal recording. Journal of Neuroscience Research,42:266-276.
    Cai, H., Xu, Y., Liu, Q.J., Li, Y., Li, R., Wang, P.,2005. Numerical design and experimental analysis of cell-based sensors, The 27th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Sep.1-4, Shanghai, China,1051-1054.
    Fan, Y.W., Cui, F.Z., Chen, L.N., Zhai, Y, Xu, Q.Y.,2000. Improvement of neural cell adhesion to silicon surface by hydroxyl ion implantation. Surface and Coatings Technology,131:355-359.
    Fromherz, P.,2003. Semiconductor chips with ion channels, nerve cells and brain. Physica E:Low-dimensional Systems and Nanostructures,16 (1):24-34.
    Fromherz, P., Stett, A.,1995. Silicon-Neuron Junction:Capacitive Stimulation of an Individual Neuron on a Silicon Chip. Physical review letters,75 (8): 1670-1673.
    Fung, C.D., Cheung, P.W., Ko, W.H.,1986. A generalized theory of an electrolyte-insulator-semiconductor field-effect transistor. IEEE Trans. Electron Devices,33:8-18.
    Giaever, I., Keese, C. R.,1991. Micromotion of Mammalian Cells Measured Electrically. Proc. Natl. Acad. Sci.,88 (17):7896-7900.
    Grattarola, M. and Martinoia, S.,1993. Modeling the neuron-microtransducer junction:from extracellular to patch recording. IEEE Transactions on Biomedical Engineering,40 (1):35-41.
    Hafner, F.,2000. Cytosensor Microphysiometer:technology and recent applications. Biosens. Bioelectron.15:149-158.
    Kovacs, G. T. A.,2003. Electric Sensors with Living Cellular Components. Proc. of the IEEE,91 (6):915-929.
    Matsuzawa, M., Liesi, P.,Knoll, W.1996. Chemically modifying glass surfaces to study substratum-guided neurite outgrowth in culture. J Neurosci Methods,69 (2):189-196.
    Miller, D.L., Olson, J.C., Parce J.W., Owicki J.C.,1993. Cholinergic stimulation of the Na+/K+ adenosine triphosphatase as revealed by microphysiometry. Biophysical Journal,64 (3):813-823.
    Regehr, W.G., Pine, J., Cohen, C.S., Mischke, M.D. and Tank, D.W.,1989. Sealing cultured invertebrate neurons to embedded dish electrodes facilitates ling-term stimulation and recording. J. Neuroscience Methods,30:91-106.
    Urdapilleta, E., Bellotti, M., and Bonetto, F. J.,2006. Impedance analysis of cultured cells:A mean-field electrical response model for electric cell-substrate impedance sensing technique. PHYSICAL REVIEW E 74,041908.
    Wegener, J., Keese, C.R., and Giaever, I.,2000. Electric cell-substrate impedance sensing (ECIS) as a noninvasive means to monitor the kinetics of cell spreading to artificial surfaces. Experimental Cell Research,259:158-166.
    Weis, R. and Fromherz, P.,1997, Frequency dependent signal transfer in neuron transistors. Physical Review E,55:877-88.
    Yates, D.E., Levine, S.,Healy, T.W.,1974. Site-binding model of the electrical double layer at the oxide/wafer interface. J. Chem. Soc. Faraday Trans. Ⅰ: 1907-1818.
    王金发,2003.细胞生物学.科学出版社:北京.
    Borkholder, D.A.,1998. Cell Based Biosensors Using Microelectrodes, Ph.D. dissertation, Stanford University, Palo Alto.
    Cai, H., Zhu, S., Yu, H., Xiao, L.D., Hu, Z.Y., Zhang, W., Wang, P.,2008. Investigation of multifunctional cell physiological analysis instrument based on integrated chip, the Seventh Asian-Pacific Conference on Medical and Biological Engineering. Beijing, China.
    El-Ali, J., Peter, K.S., Klavs F.J.,2006. Cells on chips. Nature,442 (7101) 403-411.
    George, M., Parak, W.J., Gerhardt, I.,Moritz, W., Kaesen, F., Geiger, H., Eisele, I., Gaub, H.E.,2000. Investigation of the spatial resolution of the light-addressable potentiometric sensor. Sensors and Actuators,86:187-196.
    Helmholtz, H.L.,1879. Studien uber electrische grenzschichten. Ann. Phys. Chem., 7:377-382.
    Keefer, E. W., Gramowski, A., Stenger, D. A., et al.,2001. Characterization of acute neurotoxic effects of trimethylolpropane phosphate via neuronal network biosensors. Biosensors and Bioelectronics,16:513-525.
    Kovacs, G.T.A.,1994. Microelectrode models for neural interfaces. In Enabling technologies for cultured neural networks (Stenger,D.A. and McKenna, T.M., eds.),121-165, Academic Press, New York.
    Martinoia, S., Bonzano, L., Chiappalone, M.,2005.1n vitro cortical neuronal networks as a new high-sensitive system for biosensing applications.Biosensor and Bioelectronics,20(10):2071-2078.
    Reyes, D.R., Iossifidis, D., Auroux, P.-A., et al.,2002. Micro Total Analysis Systems.1. Introduction, Theory, and Technology. Analytical Chemistry.74 (12):2623-2636.
    Stern, O.,1924. Zur theorie der elektrolytischen doppelschicht. Z. Elektrochem., 30:508-516.
    Xu, Y.,Yu, H., Cai, H., Liu, Q.J., Wang, P.,2007. Integrated cell-based biosensor for extracellular. electrophysiological monitoring, IEEE International Association of Information Acquisition (ICIA) 2007, Jul 8-11, Jeju, Korea (South),69-74.
    黄庆安,1996.硅微机械加工技术.科学出版社:北京.
    余辉,蔡华,徐莹,刘清君,王平,2007.基于多种敏感膜的多参数细胞微生理计研究,微纳电子技术,44(7):367-369.
    DeBusschere, B.D.,2002. Portable cell-based biosensors. Ph.D. dissertation, Stanford University, Palo Alto.
    Jordi, S.R., Fredy, S.Q., Antoni, B., Oses, M.T.,2009. Low power impedance measurement integrated circuit for sensor applications. Microelectronics Journal,40 (1):177-184.
    Liu, J., Fruhauf, U., and Sch necker, A.,1999. Accuracy improvement of impedance measurements by using the self-calibration. Measurement,25 (3): 213-225.
    Robert, P.S., 1983. Detection of extracellular action potentials in noise for the control of microelectrode advancement. Computer Programs in Biomedicine, 17(1-2):3-9.
    XU, Y.,YU, H.,CAI, H. et al. Integrated Cell-based Biosensor for Extracellular Electrophysiological Monitoring.IEEE International Conference on Information Acquisition, Jul.7th,Korea,2007.
    曹楚南,张鉴清,电化学阻抗谱导论.2002:科学出版社.
    黄松鑫,何爱军,霍铖宇,纪晓亮,张荣,2008.基于USB2.0接口生物阻抗分析仪的研制.电子测量技术,31(7):167-170.
    王彪,刘奎学,何月华,陈丽华,全宝富,2006.新型CO2传感检测仪的研制.仪器仪表学报,27(8):835-839.
    魏凡,杨沛,杨刚,2008.基于LT1793放大器的传感器微弱信号检测.电子元 器件应用,10(7):10-11.
    章克来,朱海明,2009.微弱信号检测技术.航空电子技术,40(2):30-36.
    朱奕丹,倪浩如,2008.基于单片机控制的高精度多点温度检测显示系统.自动化仪表,29(8):58-61,64.
    Bousse, L.,1996. Whole cell biosensors. Sensors Actuators B 34,270-275.
    Evert, L.B., Antonio, E.B., Emile, E.V.,2001. Doxorubicin and mechanical performance of cardiac trabeculae after acute and chronic treatment:a review. European Journal of Pharmacology,415:1-11.
    Geisler, T., J. Ressler, et al.,2006. Automated multiparametric platform for high-content and high-Throughput Analytical screening on living cells. Automation Science and Engineering, IEEE Transactions on 3 (2):169-176.
    Gheorghiu, E. and K. Asami,1998. Monitoring cell cycle by impedance spectroscopy:experimental and theoretical aspects. Bioelectrochemistry and Bioenergetics 45 (2):139-143.
    Giaever, I., Keese, CR.1984. Monitoring fibroblast behavior in tissue culture with an applied electric field. Proc Natl Acad Sci USA,81 (12):3761-3764.
    Giaever, I., Keese, C.R.,1993. A morphological biosensor for mammalian cells. Nature 366,591-592.
    Gross, G.W., Rhoades, B.K., Azzazy, H.M.E., Wu, M.C.,1995. The use of neuronal networks on multielectrode arrays as biosensors. Biosens. Bioelectron. 10,553-567.
    Hafeman, D.G., Parce, J.W., McConnell, H.M.,1988. Light-addressable potentiometric sensor for biochemical systems. Science.240,1182-1185.
    Hafner, F.,2000. Cytosensor(?) Microphysiometer:technology and recent applications. Biosens. Bioelectron.15,149-158.
    Heijnis, J.B., Coronel, R., Zwieten, P.A.,1991. The Effects of Calcium Antagonists on Extracellular Potassium Accumulation During Global Ischaemia in Isolated Perfused Rat Hearts. Cardiovascular Drugs and Therapy,5:1035-1041.
    Kirsten, J.M.S., Dick, J.R., Renee, B.A.B., Henk-Jan, G.,2004. Cardiotoxicity of cytotoxic drugs. COMPLICATIONS OF TREATMENT,30:181-191.
    Kovacs, G.T.A.,2003. Electronic sensors with living cellular components. Proc IEEE 91,915-929.
    Liu, Q.J., Cai, H., Xu, Y., Li, Y., Li, R., Wang, P.,2006. Olfactory cell-based biosensor:a first step towards a neurochip of bioelectronic nose, Biosensors and Bioelectronics,22:318-322.
    Liu, Q.J., Cai, H., Xu, Y., Xiao, L.D., Yang, M., Wang, P.,2007. Detection of heavy metal toxicity using cardiac cell-based biosensor, Biosensors and Bioelectronics,22:3224-3229.
    Liu, Q.J., Huang, H.R., Cai, H., Xu, Y, Li, Y, Li, R., Wang, P.,2007. Embryonic stem cells as a novel cell source of cell-based biosensor, Biosensors and Bioelectronics,22:810-815.
    Liu, Q. J., Yu, J., Xiao, L.D., Tang, J.C.O., Wang, P., Yang, M.,2009. Impedance studies of bio-behavior and chemosensitivity of cancer cells by micro-electrode arrays, Biosen. Bioelectron.,24:1305-1310.
    Olli, J.A., Antti, S., Kari, P., Markku, K., Martti, P., Liisa-Maria, V.P.,2000. Acute Doxorubicin Cardiotoxicity Involves Cardiomyocyte Apoptosis. CANCER RESEARCH,60:1789-1792.
    Pancrazio, J.J., Gray, S.A., Shubin, Y.S., Kulagina, N., Cuttino, D.S., Shaffer, K.M., Eisemann,K., Curran, A., Zim, B., Gross, G.W., O'Shaughnessy, T.J., 2003. A portable microelectrode array recording system incorporating cultured neuronal networks for neurotoxin detection, Biosensors and Bioelectronics,18: 1339-1347.
    Pancrazio, J.J., Whelan, J.P., Borkholder, D.A, Ma, W., Stenger, D.A.,1999. Development and Application of cell-based biosensors. Annal.Biomed.Eng.27, 697-711.
    Solly, K., Wang, X., Xu, X., Strulovici, B., Zheng, W.,2004. Application of Real-Time Cell Electronic Sensing (RT-CES) Technology to Cell-Based Assays. Assay Drug Dev. Technol.,2:363-372.
    Stenger, D.A., Gross, G.W, Keefer, E.W., Shaffer, K.M., Andreadis, J.D., Ma, W., Pancrazio, J.J.,2001. Detection of physiologically active compounds using cell-based biosensors. Trends. Biothchnol.19,304-309.
    Wegener, J., C. R. Keese, et al.,2000. Electric Cell-Substrate Impedance Sensing (ECIS) as a Noninvasive Means to Monitor the Kinetics of Cell Spreading to Artificial Surfaces. Experimental Cell Research 259 (1):158-166.
    Wu, S., Ko, Y.S., Teng, M.S., Ko, Y.L., Hsu, L.A., Hsueh,C., Chou, Y.Y., Liew, C.C., Lee, Y.S.,2002. Adriamycin-induced Cardiomyocyte and Endothelial Cell Apoptosis:In Vitro and In Vivo Studies. J Mol Cell Cardiol, 34:1595-1607.
    Wu, Y.C., Wang, P., Ye, X.S., Zhang, G.Y, He, H.Q., Yan, W.M., Zheng, X.X., Han, J.H., Cui, D.F.,2001. Drug evaluations using a novel microphysiometer based on cell-based biosensors. Sensors Actuators B 80,215-221.
    闫福曼,周乐全,康亚丽,李小英,罗荣敬,2008.参附注射液对阿霉素致心肌细胞钙超载的影响.广州中医药大学学报,25(4):339-342.
    王蕾,吴平,胡其艳,孙志华,2009.白细胞介素-2、a-干扰素联合5-氟尿嘧啶治疗肾癌的疗效观察.四川医学,30(3):350-351.
    张向阳,门金娥,刘建霞,郑海萍,田珂,2007.化疗药物诱导后乳腺肿瘤细胞钙离子浓度变化的检测.山东大学学报(医学版),45(7):753-754.
    Borkholder, D.A., Bao, J., Maluf, N.I.,1997. Microelectrode arrays for stimulation of neural slice preparations. Journal of Neuroscience Methods,77:61-66.
    DeBusschere, B.D., Kovacs, G.T.A.,2001. Portable Cell-Based Biosensor System Using Integrated CMOS Cell-cartridges. Biosensors and Bioelectronics,16: 543-556.
    DeBusschere, B.D.,2002. Portable cell-based biosensors. Ph.D. dissertation, Stanford University, Palo Alto.
    Fromherz, P.,2003. Semiconductor chips with ion channels, nerve cells and brain. Physica E:Low-dimensional Systems and Nanostructures,16 (1):24-34.
    Fromherz, P., Stett, A.,1995. Silicon-Neuron Junction:Capacitive Stimulation of an Individual Neuron on a Silicon Chip. Physical review letters,75 (8) 1670-1673.
    Geisler, T., Ressler, J., Harz, H., et al.,2006. Automated multiparametric platform for high-content and high-Throughput Analytical screening on living cells. Automation Science and Engineering, IEEE Transactions on,3(2):169-176.
    Joseph, J., Pancrazio, P. P., Bey, J., et al.,1998. Portable cell-based biosensor system for toxin detection. Sensors and Actuators B,53:179-185.
    Korn, D., Stanski, D.R.,2005. Drug Development Science-Obstacles and opportunities for collaboration academic, industry and government. Washington DC (USA).
    Robitzki, A., Rothermel, A.,2008. Integrative Nanobioengineering:Novel Bioelectronic Tools for Real Time Pharmaceutical High Content Screening in Living Cells and Tissues. Springer Berlin Heidelberg.231-249.
    Tether, T.,2001. Report from the Director of the Defense Advanced Research Projects Agency. House Armed Services Committee, Washington, D.C., June 26.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700