聚合物驱含油污水油水乳状液稳定机理及油水分离化学剂研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
聚合物驱油技术已在大庆油田得到了大规模应用,2001年大庆油田聚合物驱的产油量达到800万吨。随着聚合物驱油技术的实施,大庆油田含油污水油水乳状液的稳定性较以往水驱时显著增强,使得油田已建含油污水处理站的处理能力显著下降,部分含油污水处理站由于处理能力不够造成处理后水质严重超标。由于聚合物驱含油污水中残留的阴离子型聚丙烯酰胺会与水驱含油污水处理中常规使用的阳离子型絮凝剂和混凝剂发生电性中和反应,一方面使所需的加药量显著增大,另一方面所形成的粘附力很强的絮体还会导致含油污水过滤器堵塞,使得在聚合物驱含油污水处理中投加阳离子型絮凝剂和混凝剂的除油效果不好。
     本文中通过聚合物驱含油污水水质分析,油水界面活性物质分离及油水分离特性测试,研究了聚合物驱含油污水油水乳状液稳定性的影响因素,确定聚合物驱含油污水油水乳状液的稳定机理主要为胶态固体颗粒吸附到油珠表面上阻止油珠之间的聚并和降低油珠与水相间的密度差,导致油珠上浮速率下降;水中残留的聚合物一方面使胶态固体颗粒容易沉积在油珠表面上,使油珠聚并困难,另一方面也使水相粘度增大,导致油珠上浮速率下降。
     本文中针对大庆油田聚合物驱含油污水油水分离难度大的问题,从阴离子型和非离子型药剂的思路出发,研发了对聚合物驱采出液有良好破乳作用且对聚合物驱含油污水有浮选除油功能的油水分离化学剂。室内实验结果表明,聚合物驱采出液中投加20mg/L本文中研发的油水分离化学剂经过1h 45℃热化学沉降后的油相水含量和水相含油量可分别降至2.88%和651.1mg/L;初始含油量为827mg/L的聚合物驱含油污水中投加20mg/L本文中研发的油水分离化学剂经6min浮选后的含油量可降至23.9mg/L。根据所研发的油水分离化学剂的性能,提出了将油水分离化学剂的加药点设在聚合物驱采出液破乳之前,采用热化学沉降—浮选处理工艺解决聚合物驱采出液和含油污水油水分离问题的方法。
Polymer flooding has been widely adopted in Daqing Oilfield to enhanced oil recovery. In 2001, 8 million metric ton crude oil was produced by polymer flooding. With the application of polymer flooding, the stability of the inverse oil/water emulsion in produced oily water of Daqing Oilfield has been significantly increased. The tight oil/water emulsion in polymer flooding produced oily water has significantly reduced the treating ability of some old oily water treating facilities. What is worse is that the treated oily water from some oily water treating facilities is seriously out of specification. The reaction between the residual anionic polyacrylamide in the produced oily water and the state-of-the-art cationic flocculant and coagulant has lead to significant increase of flocculant/coagulant dosage, plugging of oily water filters and worse quality of the treated oily water.
    Stabilization of inverse crude oil emulsion in polymer flooding produced oily water of Daqing oilfield was investigated through water quality analysis, interfacial active particle separation and tests on oil-water separation of both artificial and genuine polymer flooding produced oily water. The enhanced stability of inverse crude oil emulsion in polymer flooding produced oily water primarily results from adsorption of colloidal particles on oil droplets which presents steric hindrance to oil droplet coalescence and decreases the density difference between the oil droplet and the water phase. Residual polymer in polymer flooding produced oily water enhances its stability by promoting deposition of colloidal particles on oil droplet surface and increasing water phase viscosity, leading to lower oil droplet floating velocity. An oil/water separation agent, formulated mainly with nonionic and anionic active components, was developed for polymer flooding produced liquid and oily water. The newly developed oil/w
    ater separation agent works well both as demulsifier for o/w type polymer flooding produced crude oil emulsion and as flotation agent for polymer flooding produced oily water. With the dosage of the newly formulated oil/water
    
    
    separation agent at 20mg/L, polymer flooding produced liquid can undergo well phase separation after Ih 45C thermal settling, resulting in only 2.88% water in the oil phase and 651.1 mg/L oil in the water phase. With the dosage of the newly formulated oil/water separation agent at 20mg/L, the oil content of polymer flooding produced oily water can be lowered from 827mg/L to 23.9mg/L after 6min induced air flotation. Based on the performance of the newly developed oil/water separation agent, a thermo-chemical settling - flocculation process, in which the newly developed oil/water separation agent is injected inte polymer flooding produced liquid upstream of free water knock-out, was proposed for the oil/water separation of polymer flooding produced liquid and oily water.
引文
1.杨承志等,化学驱提高石油采收率,北京:石油工业出版社,1995.
    2.冈秦麟,化学驱油论文集,北京:石油工业出版社,1998.
    3.朱步瑶,赵振国,界面化学基础,北京:化学工业出版社,1996.
    4.P.贝歇尔著,北京大学化学系胶体化学教研室译,乳状液理论与实践,北京:科学出版社,1978.
    5.李葵英,界面与胶体的物理化学,哈尔滨:哈尔滨工业大学出版社,1998.
    6.何勤功,古大治等,油田开发用高分子材料,北京:石油工业出版社,1990.
    7.王云峰,张春光,侯万国等,表面活性剂在油气田中的应用,北京:石油工业出版社,1995.
    8.H.A.巴勒斯,J.H.赫顿,K.瓦尔特斯,流变学导引,北京:中国石化出版社,1992.
    9.赵福麟,采油化学,东营:石油大学出版社,1989.
    10.赵福麟,采油用剂,东营:石油大学出版社,1997.
    11.黄俊英,油气水处理工艺与化学,东营:石油大学出版社,1993.
    12.丁德磬,孙在春,杨国华,徐梅清,原油乳状液的稳定与破乳,油田化学,1998,15(1):82-86.
    13.杨小莉,陆婉珍,有关原油乳状液稳定性的研究,油田化学,1998,15(1):87-96.
    14. Sjblom J., Emulsions and Emulsion Stability, New York: Marcel Dekker, Inc, 1996.
    
    
    15. Laurier L. Schramm, Emulsions: Fundamentals and Application in the Petroleum Industry, Washington, DC: American Chemical Society, 1992.
    16. Collyer A.A., and Clegg D.W., Rheological Measurement, New York: Elsevier Applied Science, 1988.
    17. Gebhard Schramm, A Practical Approach to Rheology and Rheometry, Karlsruhe: Haake GmbH, 1994.
    18. Arnold K., Stewart M., Surface Production Operation Volume I Design of Oil-Handling Systems and Facilities, Houston, Texas: Gulf Publishing Company, 1986.
    19. Briscoe B.J., Lawrence C.J., Mietus W.G.P., A review of Immiscible Fluid Mixing. Advances in Colloid and Interface Science, 1999,81:1-17.
    20. Boen O.H., Electrokinetic Studies on Emulsion Stabilized by Ionic Surfactants: The Electroacoustophoretic Behavior and Estimation of Davies' HLB Increments, Journal of Colloid and Interface Science, 1998,198: 249-260.
    21. Nianxi Yan and Jacob H. Masliyah, Effect of PH on Adsorption and Desorption of Clay Particles at Oil-Water Interface, Journal of Colloid and Interface Science, 1996, 181: 20-27.
    22. Midmore B.R., Effect of Aqueous Composition on the Properties of a Silica-Stabilized W/O Emulsion. Journal of Colloid and Interface Science, 1999, 213: 352-359.
    23. Brian W. Brooks and Howard N. Richmond, The Application of a Mixed Nonionc Surfactant Theory to Transitional Emulsion Phase Inversion 2. The Relationship Between Surfactant Partitioning and Transitional Inversion - a Thermodynamic Treatment, Journal of Colloid and Interface Science 162,67-74(1994)
    24. Eric Dickinson and Christos Ritzoulis. Creaming and Rheology of Oil-in-Water Emulsion Containing Sodium Dodecyle Sulfate and Sodium Caseinate, Journal of Colloid and Interface Science, 2000, 224: 148-154.
    25. Midttun ivind, Kallevik H., Sjblom J., and Kvalheim M., Multivariate
    
    Screening Analysis of Water-in-Oil Emulsions in High External Electric Fields as Studied by Means of Dielectric Time Domain Spectroscopy Ⅲ Model Emulsions Containing Asphaltenes and Resins, Journal of Colloid and Interface Science, 2000, 227:262-271.
    26. Ruckenstein Eli, Thermodynamic Insights on Macroemulsion Stability, Advances in Colloid and Interface Science, 1999, 79: 59-76.
    27. Jumaa M., Müller B.W., Influence of the Non-ionic Surfactant PEG-660-12-Hydroxy Stearate on the Surface Properties of Phospholipid Monolayers and Their Effect on Lipid Emulsion Stability, Colloid Polym Sci, 1999, 277:347-353.
    28. Gundersen S.A., Sjblom J., High- and Low-Molecular-Weight Lignosulfonates and Kraft Ligins as Oil/Water-Emulsion Stabilizer Studied by Means of Electrical Conductivity, Colloid Polym Sci, 1999, 277: 462-468.
    29. Harvey W. Yarranton, Hisham Hussein, and Jacob H. Masliyah, Water-in-Hydrocarbon Emulsions Stabilized by Asphaltenes at Low Concentrations, Journal of Colloid and Interface Science, 2000, 228: 52-63.
    30. Horn D., Klingler J., Schorf W., Graf K., Experimental Progress in the Characterization of Colloidal Systems, Progr Colloid Polym Sci, 1998, 111:27-33.
    31. Müller H.G., New Contribution of Analytical Ultracentrifugation to the Investigation of Dispersions, Progr Colloid Polym Sci, 1997, 107: 180-188.
    32. Thieme T., Abend S., Lagaly G., Aggregation in Pickering Emulsions, Colloid Polym Sci, 1999, 277:257-260.
    33. David Tambe and Mukul M. Sharma, Factors Controlling the Stability of Colloid-Stabilized Emulsions Ⅱ A Model for the Rheological Properties of Colloid-Laden Interfaces, Journal of Colloid and Interface Science, 1994, 162:1-10.
    34. David Tambe and Mukul M. Sharma, Factors Controlling the Stability of Colloid-Stabilized Emulsions Ⅲ Measurement of the Rheological Properties of Colloid-laden Interfaces, Journal of Colloid and interface Science, 1995,
    
    171: 456-462.
    35. David Tambe, Janka Paulis, and Mukul M. Sharma, Factors Controlling the Stability of Colloid-Stabilized Emulsions Ⅳ Evaluating the Effectiveness of Demulsifiers, Journal of Colloid and Interface Science, 1995, 171: 463-469.
    36. Joseph D. Mclean and Peter K. Kilpatrick, Effects of Asphaltene Aggregation in Model Heptane-Toluene Mixtures on Stablility of Water-in-Oil Emulsions, Journal of Colloid and Interface Science, 1997, 196: 23-34.
    37. Helen J. Wilson, Lorraine A., Pietraszewski, and Robert H. Davis, Aggregation of Charged Particles under Electrophoresis or Gravity at Arbitrary Péclet Numbers, Journal of Colloid and Interface Science, 2000, 221: 87-103.
    38. Koczo K., Nikolov A.D., Wasan D.T., Borwankar R.P., and Gonsalves A., Layering of Sodium Caseinate Submicelles in Thin Liquid Films- A New Stability Mechanism for Food Dispersions, Journal of Colloid and Interface Science, 1997, 178: 694-702.
    39. Joseph D. Mclean and Peter K. Kilpatrick, Effects of Asphaltene Solvency on Stability of Water-in-Crude-Oil Emulsions, Journal of Colloid and Interface Science, 1997, 189: 242-253.
    40. Miller C.M., Venkatesan J., Silebi C.A., Sudol E.D., and El-Aasser M. S., Characterization of Miniemulsion Droplet Size and Stability Using Capillary Hydrodynamic Fractionation, Journal of Colloid and Interface Science, 1994, 162: 11-18.
    41. Esc M. H., Yang X., Sjblom J., Film Forming Properties of Asphaltenes and Resins. A Comparative Langmuir-Blodgett Study of Crude Oils from North Sea, European Continent, and Venezuela, Colloid Polym Sci, 1998, 276:800-809.
    42. Marco Vanni, Approximate Population Balance Equations for Aggregation-Breakage Processes, Journal of Colloid and Interface Science, 2000, 221: 143-160.
    
    
    43. Andrew Koh, Graeme Gillies, Jeff Gore, and Brian R. Saunders, Flocculation and Coalescence of Oil-in-Water Poly(dimethylsiloxane) emulsions, Journal of Colloid and Interface Science, 2000, 227:390-397.
    44. Martin Whittle, Brent S. Murray, and Eric Dickson, Simulation of Colloid Particle Scattering: Sensitivity to Attractive Forces, Journal of Colloid and Interface Science, 2000, 225: 367-377.
    45. Leong Y.K., Interparticle Forces Arising from an Adsorbed Strong Polyelectrolyte in Colloidal Dispersions: Charged Patch Attraction, Colloid Polym Sci, 1999, 277:229-305.
    46. Folkersma R., van Diemen A.J.G, Stein H.N., Understanding the Influence of Gravity on Perikinetic Coagulation on the Basis of the DLVO theory, Advances in Colloid and Interface Science, 1999, 83: 71-84.
    47. Subramanian R., Zhu S., Pelton R.H., Synthesis and Flocculation Performance of Graft and Random Copolymer Microgels of Acrylamide and Diallydimethylammonium Chloride, Colloid Polym Sci, 1999, 277:939-946.
    48. Dongming Li, Coalescence between Two Small Bubbles or Drops, Journal of Colloid and Interface Science, 1994, 163: 108-119.
    49. Nikolai D. Denkov, Dimitter N. Petsev, and Krassimir D. Danov, Flocculation of Deformable Emulsion Droplets I. Droplet Shape and Line Tension Effects, Journal of Colloid and Interface Science, 1995, 176:189-200.
    50. Dimitter N. Petsev, Nikolai D. Denkov, and Peter A. Kralchevsky, Flocculation of Deformable Emulsion Droplets Ⅱ. Interaction Energy, Journal of Colloid and Interface Science, 1995, 176: 201-213.
    51. Thieme J., Abend S., Lagaly G., Aggregation in Pickering Emulsions, Colloid Polym Sci, 1999, 277:257-260.
    52. Olga I. Vinogradova, and Franois Feuillebois, Elastohydrodynamic Collision of Two Spheres Allowing Slip on Their Surfaces, Journal of Colloid and Interface Science, 2000, 221: 1-12.
    53. Scott G. Flicker, Jennifer L. Tipa, and Stacy G. Bike, Quantifying
    
    double-layer Repulsion between a Colloidal Sphere and a Glass Plate Using Total Internal Reflection Microscopy, Journal of Colloid and Interface Science, 2000, 158: 317-325.
    54. Yu Xiang and Somasundraran P., Role of Polymer Conformation in Interparticle-Bridging Dominated Flocculation, Journal of Colloid and Interface Science, 1996, 177: 283-287.
    55. Kostoglou M. and Karabelas A., Evaluation of Zero Order Methods for Simulating Particle Coagulation, Journal of Colloid and Interface Science, 1997, 163: 420-431.
    56. Van De Ven T.G.M. and Alince B., Heteroflocculation by Asymmetric Polymer Bridging, Journal of Colloid and Interface Science, 1996, 181: 73-78.
    57. Sotira Yiacoumi, David A Rountree and Costas Tsouris, Mechanism of Particle Flocculation by Magnetic Seeding, Journal of Colloid and Interface Science, 1996, 184: 477-488.
    58. Eric Dickinson, Matt Golding, and Malcolm J.W. Povey, Creaming and Flocculation of Oil-in-Water Emulsions Containing Sodium Caseinate, Journal of Colloid and Interface Science, 1997, 185: 515-529.
    59. Adachi Y., Cohen Stuart M.A., and Forkkink R., Dynamic Aspects of Bridging Flocculation Studied Using Standardized Mixing, Journal of Colloid and Interface Science, 1994, 167: 346-351.
    60. Mungai Kamiti, Tadeusz Dabros, and Theo G. M. Van De Ven, Kinetics of Surface Coagulation, Journal of Colloid and Interface Science, 1995, 172: 459-466.
    61. Mikael Jansson, Maria Angeles Pés, Demulsification of Dilute O/W Water Emulsions with Organic Electrolytes, Journal of Colloid and Interface Science, 1994, 163: 512-514.
    62. Delgado A., and Lee H.M., Brown & Root. The Chronology of Water-Oil Handling Equipment, SPE 39878, paper presented at SPE international Conference and exhibition of Mexico held in Villahermosa, Mexico, 1998,
    
    March 3-5.
    63. Chi-Chuan Hwang, Chuar-Kie Lin, and Wu-Yih Uen, A Nonlinear Three-Dimensional Rupture Theory of Thin Liquid Films, Journal of Colloid and Interface Science, 1997, 190: 250-252.
    64. Jun-Liang Chen and Chi-Chuan Hwang, Nonlinear Rupture Theory of a Thin Liquid Film on a Cylinder, Journal of Colloid and Interface Science 1996, 182: 564-569.
    65. Parbhakar K., Lewandowski J., and Dao L.H., Simulation Model for Ostwald Ripening Liquids, Journal of Colloid and Interface Science, 1995, 174:142-147.
    66. Yarranton H.W. and Masliyah J.H., Numerical Simulation of Ostwald Ripening in Emulsions, Journal of Colloid and Interface Science 1997, 196: 157-169.
    67. Rajinder Pal, Shear Viscosity Behavior of Emulsions of Two Immiscible Liquids, Journal of Colloid and Interface Science, 2000, 225: 359-366.
    68. Hyang Mok Lee, Jin Woo Lee, and O Ok Park, Rheology and Dynamics of Water-in-Oil Emulsions under Steady and Dynamic Shear Flow, Journal of Colloid and Interface Science, 1995, 185: 297-305.
    69. Lakatos- Szabó J., and Lakatos I., Effect of Alkaline Materials on Interfacial Rheological Properties of Oil-Water Systems, Colloid Polym Sci, 1999, 277:41-47.
    70. Foyeke O. Opawale and Diane J. Burgess, Influence of Interfacial Properties of Lipophilic Surfactants on Water-in-Oil Emulsion Stability, Journal of Colloid and Interface Science, 1998, 197: 142-150.
    71. Noskov B. A., Grigoriev D. O., and Miller R., Dynamic Surface Properties of Solutions of Phosphine Oxides: A Capillary Wave Study, Journal of Colloid and Interface Science, 1997, 188: 9-15.
    72. Milton J. Rosen and Li D. Song, Dynamic Surface Tension of Aqueous Surfactant Solutions 8. Effect of Spacer on Dynamic Properties of Gemini Surfactant Solutions, Journal of Colloid and Interface Science, 1996, 179:
    
    261-268.
    73. Libero Liggieri, Francesca Ravera, and Alberto Passerone, Dynamic Interfacial Tension Measurements by a Capillary Pressure Method, Journal of Colloid and Interface Science, 1994, 169: 226-237.
    74. Joos P., and Van Uffelen M., Theory on the Growing Drop Technique for Measuring Dynamic Interfacial Tensions, Journal of Colloid and Interface Science 1995, 171: 297-305.
    75. Nagarajan R., and Wasan D.T., Measurement of Dynamic Interfacial Tension by an Expanding Drop Tensiometer, Journal of Colloid and Interface Science, 1993, 159:164-173.
    76. Zholob S.A., Fainerman V.B., and Miller R., Dynamic Adsorption Behavior of Polyethylene Glycol Octylphenyl Ethers at the Water/Oil Interface Studied by a Dynamic Drop Volume Technique, Journal of Colloid and Interface Science, 1997, 186: 149-159.
    77. Francesca Ravera, Libero Liggieri, Alberto Passerone, and Annie Steinchen, Sorption Kinetics at Liquid-Liquid Interfaces with Surface-Active Component Soluble in Both Phases, Journal of Colloid and Interface Science, 1994, 163: 309-314.
    78. Jiang Q., Valentin J.E., and Chiew Y.C., Theoretical Models for Dynamic Dilational Surface Properties of Binary Surfactant Mixtures, Journal of Colloid and Interface Science, 1997, 174: 268-271.
    79. Kitching S., Johnson G. D., Midmore B. R., and Herrington T.M., Surface Kheological Data for A Polymeric Surfactant Using a Pulsed Drop Rheometer, Journal of Colloid and Interface Science, 1996, 177: 58-69.
    80. Leonid K. Filippov, On the Theory of Dynamic Surface Tension of Ionic Surfactant Solutions I. Diffusion-Convective Adsorption, Journal of Colloid and Interface Science, 1996, 182: 330-347.
    81. Leonid K. Filippov and Nadezhda L. Filippova, Dynamic Surface Tension and Adsorption Kinetics from Micellar Solutions on Planar Surfaces, Journal of Colloid and Interface Science, 1997, 187: 304-312.
    
    
    82. Macleod C.A. and Radke C.J., A Growing Drop Technique for Measuring Dynamic Interfacial Tension, Journal of Colloid and Interface Science, 1993, 160: 435-448.
    83. Tao Gao and Milton J. Rosen, Dynamic Surface Tension of Aqueous Surfactant Solutions 7. Physical Significance of Dynamic Parameters and the Induction Period, Journal of Colloid and Interface Science, 1995, 172: 242-248.
    84. Van Hunsel J., Bleys G., and Joos P., Adsorption Kinetics at the Oil-Water Interface, Journal of Colloid and Interface Science, 1986, 114(2): 432-441.
    85. Leonid K. Filippov and Nadezhda L. Filippova, Dynamic Surface Tension and Adsorption Kinetics in Finite systems, Journal of Colloid and Interface Science, 1997, 187: 352-362.
    86. Joos P. and Van Uffelen M., Adsorption Kinetics with Surface Dilation Ⅰ Desorption of Slightly Soluble Monolayers at Constant Surface Pressure, Journal of Colloid and Interface Science, 1993, 155: 271-282.
    87. Van Uffelen M. and Joos P., Adsorption Kinetics with Surface Dilation Ⅱ The Steady State Dynamic Surface Tension by Compressing an Adsorbed Soluble Monolayer with a Constant Dilation Rate, Journal of Colloid and Interface Science, 1993, 158: 452-459.
    88. Young-Ho Kim, Kalman Koczo, and Darsh T. Wasan, Dynamic Film and Interfacial Tensions in Emulsion and Foam Systems, Journal of Colloid and Interface Science, 1997, 187: 29-44.
    89. Alberto Passerone, Libero Liggieri, Nicola Rando, Francesca Ravera, and Endrica Ricci, A New Experimental Method for the Measurement of the Interfacial Tension between Immiscible Fluids at Zero Bond Number, Journal of Colloid and Interface Science, 1991, 146(1): 152-162.
    90. Leonid K. Filippov, Dynamic Surface Tension of Aqueous Surfactant Solutions, 1. Diffusion-Convective Controlled Adsorption, Journal of Colloid and Interface Science, 1994, 163: 49-60.
    91. John R. Campanelli and Xiaohong Wang, Dynamic Interfacial Tension of
    
    Surfactant Mixtures at Liquid-Liquid Interfaces, Journal of Colloid and Interface Science, 1999, 213: 340-351.
    92. Liu J., Messow U., Diffusion-Controlled Adsorption Kinetics at the Air/Solution Interface, Colloid Polym Sci, 2000, 278:124-129.
    93. Donald C. Henderson and Fortunato J. Micale, Dynamic Surface Tension Measurement with Drop Mass Technique, Journal of Colloid and Interface Science, 1993, 158: 289-294
    94. Chauhan A., Svitova T.F., and Radke C.J., A Sorption-Kinetic Model for Surfactant-Driven Spreading of Aqueous Drops on Insoluble Liquid Substrates, Journal of Colloid and Interface Science, 2000, 222: 221-232.
    95. Gbel J.G., and Joppien G.R., Dynamic Interfacial Tensions of Aqueous Triton X-100 Solutions in Contact with Air, Cyclohexane, N-heptane, and N-Hexadecane, Journal of Colloid and Interface Science, 1997, 191: 30-37.
    96. JZEF STACHURSKI and MIECZYSAW MICHAEK. The Effect of the ξ Potential on the Stability of a Non-Polar Oil-in-Water Emulsion, Journal of Colloid and Interface Science, 1996, 184: 433-436.
    97. Mario Lbbus, Jürgen Sonnfeld, Herman P. Van leeuwen, Wolfram Vogelsberger, and Johannes Lyklema, An Improved Method for Calculating Zeta-Potential from Measurements of the Electrokinetic Sonic Amplitude, Journal of Colloid and Interface Science, 2000, 229:174-183.
    98. Jong-Yun Kim, Myung-Geun Song, and Jong-Duk Kim, Zeta Potential of Nanobubbles Generated by Ultrasonication in Aqueous Alkyl Polyglycoside Solutions, Journal of Colloid and Interface Science, 2000, 223: 285-291.
    99. Ennis J., Shugai Alexandre A., and Carnie Steven L., Dynamic Mobility of Particles with Thick Double Layers in a Nondilute Suspension, Journal of Colloid and interface Science, 2000, 223: 37-53.
    100. Syed Abid Hussain, Sahinde Demirci, and Gülhan zbayolu, Zeta Potential Measurements on Three Clays from Turkey and Effects of Clays on Coal Flotation, Journal of Colloid and interface Science, 1996, 184: 535-541.
    101. Jonathan Ennis and Lee R. White, High-Frequency Asymptotic Expansion
    
    for the Electrokinetic Properties of a Spherical Colloid Particle with Dynamic Stern Layer, Journal of Colloid and Interface Science, 1996, 178: 460-470.
    102. Erker J.A. and Baygents J. C., The Equilibrium Electric Potential and Surface Charge Density of Spherical Emulsion Drops with Thin Double Layers, Journal of Colloid and Interface Science, 1996, 179: 76-88.
    103. Jyh-ping Hsu and Ming-Tsan Tseng, An Integral Expression for the Electrical Potential Distribution for Charged Surface in Electrolyte Solutions, Journal of Colloid and Interface Science, 1997, 188: 193-200.
    104. Jonathan Ennis and Lee R. White, Dynamic Stern Layer Contribution to the Frequency-Dependent Mobility of a Spherical Colloid Particle: a Low-Zeta-Potential Analytic Solution, Journal of Colloid and Interface Science 1996, 178: 446-459.
    105. Hiroyuki Oshima, Dynamic Electrophoretic Mobility of a Spherical Colloidal Particle, Journal of Colloid and Interface Science, 1996, 179: 431-438.
    106. Deshiikan S.R., and Papadopoulos K.D., Modified Booth Equation for the Calculation of Zeta Potential, Colloid Polym Sci, 1998, 276: 117-124.
    107. Sophie E. Gibb and Robert J. Hunter, Dynamic Mobility of Colloid Particles with Thick Double Layers, Journal of Colloid and Interface Science, 2000, 224: 99-111.
    108. López-Garcia J.J., Horno J., González-Caballero F., Grosse C., and Delgado A.V., Dynamics of the Electrolyte Double Layer: Analysis in the Frequency and Time Domain, Journal of Colloid and Interface Science, 2000, 228:95-104.
    109. O Boen Ho, Electrokinetic Studies on Emulsions Stabilized by Ionic Surfactants: the Electroacoustophoretic Behavior and Estimation of Davies's HLB Increment, Journal of Colloid and Interface Science, 1998, 198: 249-260.
    110. Ninham B.W., On Progress in Forces since the DLVO Theory. Advances in
    
    Colloid and Interface Science, 1999, 83: 1-17.
    111. Yaminsky V.V., W. Ninham B., Surface Forces vs. Surface Compositions, Colloid Science from the Gibbs Adsorption Perspective, Advances in Colloid and Interface Science, 1999, 83: 227-311.
    112. Churaev N.V., The DLVO Theory in Russian Colloid Science, Advances in Colloid and Interface Science, 1999, 83: 19-32.
    113. Arora A.K., Tata B. V.R., Interactions, Structural Ordering and Phase Transitions in Colloidal Dispersions, Advances in Colloid and Interface Science 1998, 78: 49-97.
    114. Tadao Sugimoto, A New Approach to Interfacial Energy I Formation of Interfacial Energy, Journal of Colloid and Interface Science, 1996, 181: 259-274.
    115. Hua Wang and Robert H. Davis, Experiments on Phase Separation of Dilute Dispersions of Coalescing Drops, Journal of Colloid and Interface Science, 1996, 181: 93-98.
    116.吴迪,艾广智,孟祥春等,曝气对聚合物驱采出水流变性和油水分离特性的影响[J],油田化学,2000,17(4):332-333.
    117.GB/T8929-1988,原油水含量测定方法[S].
    118.SY5329-1994,碎屑岩油藏注水水质推荐指标及分析方法[S].
    119.方开泰,马长兴,正交与均匀实验设计[M].北京:科学出版社,2001.144-152.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700