低聚非离子表面活性剂Tyloxapol与两亲分子的相互作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
低聚表面活性剂(oligomeric surfactant)包括二聚(通常称为Gemini)、三聚、四聚以及具有更高聚合度的两亲分子,它是由两个或两个以上相同或几乎相同的两亲分子,在其头基或靠近头基处由连接基团(spacer)通过化学键连接在一起构成的。与传统的表面活性剂相比,低聚表面活性剂具备许多独特的物理化学性质,如:具有很高的表面活性、其水溶液具有特殊的相行为和流变性、而其形成的分子有序组合体往往具有一些特殊的性质和功能。低聚表面活性剂的分子量通常介于传统表面活性剂与高分子表面活性剂之间,它的出现填补了两者之间的空白,被誉为新一代表面活性剂,最有可能成为21世纪广泛应用的一类表面活性剂。
     目前,对低聚表面活性剂的研究大多集中在Gemini表面活性剂,尤其以季铵盐类阳离子类Gemini表面活性剂最多,而有关以聚氧乙烯基为亲水基团的非离子低聚表面活性剂的报道极少。本论文中,我们选择烷基酚聚氧乙烯醚的七聚非离子表面活性剂Tyloxapol为研究对象,采用表(界)面张力、界面流变、紫外光谱、荧光光谱、光散射、计算机模拟和透射电镜等方法研究了Tyloxapol的物理化学性质及其与十六烷基三甲基溴化铵(CTAB)、非离子聚合物(嵌段聚醚、聚乙二醇)、部分水解聚丙烯酰胺(HPAM)/CTAB的相互作用,探讨了Tyloxapol与不同的两亲分子相互作用本质,并与其相应单体异辛基酚聚氧乙烯醚(Triton X-100,TX-100)进行比较。以期为开拓低聚表面活性剂Tyloxapol在不同领域的应用提供基础数据和理论依据。论文主要包括五部分内容:
     论文的第一部分概述了低聚表面活性剂研究的意义,并综述了低聚表面活性剂的研究进展。
     论文的第二部分包括两部分。第一节研究了Tyloxapol/CTAB(十六烷基三甲基溴化铵)复配体系的表面张力和表面扩张粘弹性,并与TX-100/CTAB体系进行了比较。应用Clint、Rubingh、Rosen和Maeda理论分析了表面活性剂在胶束和表面吸附层中的相互作用。实验结果表明,Tyloxapol降低水表面张力的效率高于TX-100,而降低表面张力的效能低于TX-100,这是由于Tyloxapol分子在表面上呈“U”或者“V”构型所致。当混合体系中非离子表面活性剂摩尔分数较高时,Tyloxapol/CTAB复配体系在降低表面张力效率和效能两方面均产生协同增效作用,而TX-100/CTAB混合体系则仅产生降低表面张力效率的协同增效作用。Rubingh和Rosen理论计算结果均表明,两种混合表面活性剂体系的胶束中分子相互作用参数(β~m)和表面吸附层中分子相互作用参数(β~s)均为负值,说明Tyloxapol和CTAB,TX-100和CTAB之间均存在吸引作用。Tyloxapol/CTAB混合体系β~m的绝对值明显小于β~s;而TX-100/CTAB混合体系β~m和β~s相差不大。Tyloxapol/CTAB混合体系的β~m和β~s的绝对值大于TX-100/CTAB混合体系,说明Tyloxapol和CTAB之间的吸引作用更强。通过Maeda理论计算得到的疏水链间的相互作用(B_1)比头基之间的相互作用(β~m、β~s)弱,而且Tvloxapol/CTAB和TX-100/CTAB两混合体系的B_1值差别不大。在胶束和吸附层中非离子表面活性剂均为主导成分。Tyloxapol、TX-100和CTAB的表面扩张模量均随浓度增大出现先增大后减小的趋势,Tyloxapol具有最大的表面扩张模量。混合表面活性剂的扩张模量数值基本介于两种单一表面活性剂之间,而且与非离子表面活性剂的扩张模量数值更接近,Tyloxapol/CTAB混合体系的表面扩张模量值总是大于TX-100/CTAB混合体系的数值。
     第二节对比研究了Tyloxapol/CTAB和TX-100/CTAB混合体系对芘的增溶作用,实验结果表明,单一表面活性剂Tyloxapol对芘的增溶能力最强,CTAB次之,TX-100最弱;Tyloxapol/CTAB混合体系对芘的增溶能力强于TX-100/CTAB,当Tyloxapol/CTAB的摩尔比为5:1时,混合体系的增溶能力最强。
     论文的第三部分采用旋滴法研究了高温高矿化度条件下Tyloxapol/CTAB/HPAM(部分水解聚丙烯酰胺)混合体系与原油间的界面张力,并与TX-100/CTAB/HPAM体系进行了比较,同时考察了非离子表面活性剂种类、非离子表面活性剂/CTAB配比和HPAM浓度对界面张力的影响。结果表明,对于单一表面活性剂体系,CTAB降低界面张力的能力强于非离子表面活性剂;原油与Tyloxapol溶液之间的界面张力高于原油与TX-100溶液,这是由于Tyloxapol在界面上异常的聚集行为引起的;而原油与混合表面活性剂体系间的界面张力总是高于原油与CTAB溶液之间的界面张力;然而,不论是单一表面活性剂还是混合表面活性剂,它们与原油间的界面张力都不能达到超低水平。只有当混合体系中含有适量的HPAM后,其水溶液与原油间的界面张力方可达到超低水平,这是由于非离子表面活性剂/CTAB和HPAM分子在油/水界面共吸附而形成具有高活性聚合物/表面活性剂复合物PS_γ所致。混合体系中非离子表面活性剂/CTAB的质量比对油/水界面张力也有影响,当非离子表面活性剂/CTAB比例为1:1、3:1和5:1时,界面张力才可达到超低水平。Tyloxapol/CTAB/HPAM混合体系与原油之间的界面张力达到超低所需时间比TX-100/CTAB/HPAM要长;但是壬基酚聚氧乙烯醚NP-10/CTAB/HPAM和TX-100/CTAB/HPAM二种混合体系与原油达到超低界面张力所需时间差别不大,而壬基酚聚氧乙烯醚二聚体bis-(NP-10)/CTAB/HPAM混合体系与原油间达到超低界面张力所需时间比NP-10/CTAB/HPAM要短,这是因为尽管bis-(NP-10)扩散到界面的速度比NP-10要慢,但是前者界面活性比较高。
     论文的第四部分采用表面张力、表面扩张流变、荧光光谱、动态光散射和计算机模拟方法研究了Tyloxapol与F127(PEO_(99)PPO_(65)PEO_(99))的相互作用,并与聚乙二醇(PEG10000)和TX-100进行了对比。表面张力和动态表面粘弹性实验结果均表明,Tyloxapol和TX-100与聚合物F127、PEG在表面上的相互作用机理相同。Tyloxapol和TX-100与F127在表面上形成混合吸附层,Tyloxapol和TX-100与PEG的混合体系表面上主要是表面活性剂分子吸附。当Tyloxapol溶液中存在F127时,芘在混合体系中的I_1/I_3值小于在单一F127和Tyloxapol中的数值,而且随着体系中F127浓度的不断增加,芘在混合胶束中的I_1/I_3值越来越小,这说明混合胶束中分子排列更加紧密。而对于Tyloxapol/PEG混合体系,芘在混合体系中的I_1/I_3值高于在单一Tyloxapol中的数值,这是由于PEG分子链段插入Tyloxapol胶束中使得表面活性剂分子排列疏松。光散射测定结果也表明,表面活性剂与F127形成混合胶束,而与PEG形成复合物,这种复合物的形成是PEG分子链段插入Tyloxapol胶束中。聚集体的结构与表面活性剂和聚合物的浓度和二者比例密切相关。光散射和DPD模拟结果表明,F127浓度较低时,Tyloxapol与F127的亲水链段通过氢键相互作用形成混合胶束;F127浓度较高时,二者的亲水和疏水链段均存在相互作用从而形成混合胶束。对于TX-100/F127混合体系,二者的亲水和疏水链段存在相互作用从而形成混合胶束。与TX-100相比,由于Tyloxapol分子的空间位阻作用和单体之间的相互作用使其与F127的相互作用较弱一些。PEG浓度很低时,其分子会缠绕在表面活性剂Tyloxapol和TX-100胶束周围;PEG浓度增大,其分子会在胶束间起到“桥联”作用。
     论文的第五部分通过紫外可见近红外光谱、拉曼光谱和高分辨透射电镜方法研究了Tyloxapol对碳纳米管(CNTs)的分散作用,并与TX-100做了比较。结果表明,随着溶液中Tyloxapol和TX-100浓度的增加,表面活性剂分散CNTs的量先增强后减弱。相比TX-100,Tyloxapol在较低的浓度下就表现出分散CNTs的能力。Tyloxapol分散CNTs的最大量略强于TX-100所分散的最大量。这是由于一方面每个Tyloxapol包含大约7个TX-100分子,Tyloxapol分子中的部分链段吸附在碳管上,另外一部分链段则有可能伸向水相,产生较大的空间位阻作用,从而有利于分散碳管;另一方面Tyloxapol分子本身的空间位阻效应也使其不易吸附在CNTs表面,而更倾向于在溶液中自聚集形成胶团,这不利于分散碳管。因此,Tyloxapol分散CNTs的最大量只是略高于TX-100所分散的最大量。
Oligomeric surfactants are a new class of amphiphiles including dimeric(gemini), trimeric,and tetrameric,etc.These surfactants are made up of two amphiphilic moieties connected at the level of the head groups or very close to the head groups by a spacer group. Oligomeric surfactants have more excellent physico-chemical properties than conventional surfactants,such as higher surface activity,special phase behavior and rheologial property. The molecular weight of oligomeric surfactants is between that of conventional and macromolecular surfactants,so they have filled the gap between conventional and macromolecular surfactant.Oligomeric surfactants are the most likely to be used in 21st century.
     People have paid much attention to the study on Gemini surfactants,especially on quaternary ammonium Gemini surfactants.However,a few studies on poly(ethylene oxide) nonionic oligomeric surfactants are reported.In this thesis,it is focused on the study of the nonionic oligomeric surfactant Tyloxapol,which can be considered as an oligomer of the non-ionic polyoxyethylene tert-octylphenyl ether(Triton X-100,TX-100),with a polymerization degree below 7.The physicochemical property of Tyloxapol and its interactions with hexadecyltrimethylammonium bromide(CTAB),polymer [(PEO_(99)PPO_(65)PEO_(99),F127) and(poly ethylene glycol,PEG)]and partially hydrolytic polyacrylamide(HPAM)/CTAB are investigated via surface tension,surface dilational rheology,steady-state fluorescence,UV-vis spectrum,DLS(dynamic light scattering), computer simulation and high-resolution transmission electron microscopy(HRTEM) method.For comparison,parallel measurement on TX-100 is made.The thesis aims to provide basic data and theoretical basis for developing Tyloxapol's widely use in different areas.This thesis consists of five parts.
     In the first section,the importance and the progress of studies on oligomeric surfactant are summarized.
     The second section consists of two parts.In part one,surface tension and dilational viscoelasticity of water in the presence of surfactants Tyloxapol and TX-100 with CTAB are investigated.The surfactant interactions in the micelles and monolayers have been analyzed using the theories of Clint,Rubingh,Rosen,and Maeda with the aim to reveal the comparative performance of these mixtures.The results show that the surface tension reduction efficiency of Tyloxapol is higher than that of TX-100,however,the surface tension reduction effectiveness of the former is lower than that of the latter.The aberrant behavior of Tyloxapol is attributed to its "U" or "V" conformation at the air/water surface. It is noticeable that cmc andγ_(cmc) of the Tyloxapol/CTAB mixture is even lower than those of Tyloxapol at higher mole fraction of nonionic surfactant,indicating synergism in surface tension reduction effectiveness and efficiency.However,the TX-100/CTAB mixture only shows the synergism in surface tension reduction effectiveness.According to the Rubingh and Rosen theory,the results indicate that both interaction parameters for mixed micelle formation in an aqueous solutionβ~m and interaction parameters for mixed monolayersβ~s at the air/water interface are negative,predicting non-ideal mixing and attractive interaction between the constituent surfactants in the mixed micelle and layer.β~m is less negative thanβ~s in the Tyloxapol/CTAB mixed system,bothβ~m andβ~s are more or less the same for the TX-100/CTAB system.Furthermore,bothβ~m andβ~s are more negative for the Tyloxapol/CTAB mixture than that for the TX-100/CTAB one,indicating stronger attractive interaction between Tyloxapol and CTAB.The chain-chain interaction parameter B_1 is less negative thanβ~m andβ~s.The mixed micelles and monolayer are predominated by nonionic surfactants.The surface dilational viscoelasticity results show that the adsorption layer of Tyloxapol has the highest dilational modulus value among three single surfactants.Also,it indicates the surface dilational modulus maximum values of surfactant mixtures are usually between that of the single surfactant.Moreover,it is worth noting that the dilational modulus maximum values of Tyloxapol/CTAB mixtures are always higher than those of TX-100/CTAB ones.
     In part two,the solubility of pyrene in Tyloxapol and TX-100 with CTAB are investigated.For three single surfactants,the solubilization power increases in the order of TX-100<CTAB<Tyloxapol.Tyloxapol/CTAB has higher solubilization power than TX-100/CTAB.In addition,Tyloxapol/CTAB mixture has the highest solubilization power when the mole ratio of Tyloxapol to CTAB is 5:1.
     In the third section,interfacial tension(IFT) between Tyloxapol and TX-100 with CTAB in the presence of HPAM is investigated by spinning drop technology at high salinities and temperature.Effects of different nonionic surfactants,HPAM concentration and mass ratios of nonionic surfactant/CTAB on the dynamic IFT between crude oil and aqueous solution are studied in detail.For single surfactant systems,it is found that the ability of lowering IFT for CTAB is better than that for nonionic surfactant,while the IFT between Tyloxapol and crude oil is higher than that that between TX-100 and crude oil, which is attributed to the aberrant aggregation behavior of Tyloxapol at the crude oil/water interface.The IFTs between mixed surfactants systems and crude oil are always higher than that between CTAB and crude oil.However,IFTs between both single and mixed surfactants systems and crued oil can't reach ultra-low level.Interestingly,the ultra-low IFT is obtained for all surfactant mixtures in the presence of appropriate HPAM,which is ascribed to the formation of polymer-surfactant complexes PS_γwith high surface-activity at interface by nonionic surfactant/CTAB and HPAM.Mass ratios of nonionic surfactant/CTAB in aqueous phase also have effect on IFT.Only proper mass ratios of nonionic surfactant/CTAB in aqueous phase could yield ultra-low IFT values,which are 1:1, 3:1 and 5:1.The time to reach ultra-low level for Tyloxapol/CTAB/HPAM mixed system is much longer than TX-100/CTAB/HPAM,but the time to reach ultra-low level for polyoxyethylene nonylphenyl ether NP-10/CTAB/HPAM and TX-100/CTAB/HPAM mixed system is almost the same.The time to reach ultra-low level for polyoxyethylene nonylphenyl ether dimer bis-(NP-10)/CTAB/HPAM mixed system is shorter than NP-10/CTAB/HPAM,this is because that the transport of bis-(NP-10) molecules to interface is slower,but it has high surface activity than NP-10.
     In the fourth section,the interaction between Tyloxapol and F127(PEO_(99)PPO_(65)PEO_(99)) is investigated via the surface tension,dynamic surface dilational viscoelasticity, steady-state fluorescence,DLS measurement and computer simulation method.For comparison,PEG and TX-100 are also selected.The results of both surface tension and dynamic surface dilational viscoelasticity testify that the interaction mechanism between Tyloxapol and TX-100 with F127 is the same.There is formation of mixed adsorption layer between Tyloxapol and TX-100 with F127 mixtures,while the surfactant molecules mainly adsorb on the surface for Tyloxapol and TX-100 with PEG mixtures.The I_1/I_3 value in Tyloxapol/F127 mixed micelle is smaller than in single Tyloxapol and F127 micelle.The I_1/I_3 value becomes smaller with increasing F127 concentration,indicating the packing of molecules in mixed micelle is denser.However,The I_1/I_3 value in Tyloxapol/PEG mixed micelle is higher than in single Tyloxapol micelle,which is due to penetration of PEG molecules into Tyloxapol micelle making the mixed micelle looser.The results of DLS measurement also show that there is formation of mixed micelle for surfactant and F127, while surfactant and PEG forms surfactant/PEG complex by the penetration of PEG molecules into surfactant micelle.The structure of aggregate is related to the ratio and concentration of surfactant and polymer.The results of dissipative particle dynamics(DPD) simulation and DLS measurement show that there is interaction between hydrophilic chains for and F127 mixture at low F127 concentration.However,there is interaction between hydrophilic and hydrophobic chain for Tyloxapol and F127 mixture at high F127 concentration.Compared to the interaction between TX-100 and F127,the interaction between Tloxapol and F127 is weaker due to Tyloxapol's steric effect and the interaction between its monomers.When the PEG concentration is low,the molecule will wrap around the Tyloxapol and TX-100 micelle.When the PEG concentration is increased,the PEG molecules will act as a "bridge" between micelles.
     In the fifth section,the ability of dispersing carbon nanotubes(CNTs) in aqueous solutions by Tyloxapol is investigated in detail by UV-vis-NIR,Raman spectra and HRTEM observations.For comparison,TX-100 is also selected.The results show that the amount of the CNTs in surfactant solution first increases and then decreases with increasing surfactant concentration.Tyloxapol could disperse CNTs at rather low concentration compared with TX-100.The maximum dispersing amount of the CNTs in Tyloxapol solution is a little higher than in TX-100 solution.On one hand,this is because that some chains of Tyloxapol will adsorb on the CNTs,while the others can stretch into water phase and hence create steric repulsion effect,which is favorable to disperse CNTs;on the other hand,it is not easy for Tyloxapol to adsorb on the CNTs due to its steric repulsion effect,Tyloxapol will self-aggregate to form micelle in solution,which is unfavorable to disperse CNTs.As a result,the maximum dispersing amount of the CNTs in Tyloxapol solution is just a little higher than in TX-100 solution.
引文
[1]Erhardt,R.;Boker,A.;Zettl,H.;Kaya,H.;Pyckhout-Hintzen,W.;Krausch,G.;Abetz,V.;Muller,A.H.E.Janus micelles.Macromolecules,2001,34:1069-1075.
    [2]Muzzalupo,R.;Gente,G.;La Mesa,C.;Caponetti,E.;Chillura-Martino,D.;Pedone,L.;Saladino,M.L.Micelles in mixtures of sodium dodecyl sulfate and a bolaform surfactant.Langmuir,2006,22:6001-6009.
    [3]Putlitz,B.zu.;Hentze,H.P.;Landfester,K.Antonietti M.New cationic surfactants with sulfonium headgroups.Langmuir,2000,16:3214-3220.
    [4]Nilsson,F.;Soderman,O.;Johansson,I.Physical-chemical properties of some branched alkyl glucosides.Langmuir,1997,13:3349-3354.
    [5]孙岩,殷福珊,宋湛谦,王墨林.新表面活性剂.化学工业出版社,北京,2003,p308.
    [6]Rosen,M.J.Surfactants and interfacial phenomena(third edition).John Wiley.&.Sons,Inc.,New York,2004,chap.12.
    [7]Zana,R.Dimeric and oligomeric surfactants.Behavior at interfaces and in aqueous solution:a review.Adv.Colloid Interface Sci.,2002,97:203-251.
    [8]Menger,F.M.;Keiper,J.S.Gemini surfactants.Angew.Chem.Int.Ed.,2000,39:1906-1920.
    [9]Menger,F.M.;Littau C.A.Gemini Surfactants:A New Class of Self-Assembling Molecules.J.Am.Chem.Soc.1993,115:10083-10090.
    [10]Menger,F.M.;Mbadugha,B.N.A.Gemini Surfactants with a Disaccharide Spacer.J.Am.Chem.Soc.,2001,123:875-885.
    [11]Duval,F.P.;Zana,R.;Warr,G.G.Adsorbed layer structure of cationic gemini and corresponding monomeric surfactants on mica.Langmuir,2006,22:1143-1149.
    [12]Zana,R.Comments on fluorescence study of premiceliar aggregation in cationic gemini surfactants.Langmuir,2002,18:7759-7760.
    [13]Grosmaire,L.;Chorro,C.;Chorro,M.;Partykal,S.;Zana R.Investigations of first adsorption step of cationic dimeric(Gemini) surfactants onto silica surfaces by analytical and calorimetric methods.J.Colloid Interface Sci.,2001,243:525-527.
    [14]Alargova,R.G.;Kochijashkya,I.I.;Sierrac,M.L.;Kwetkatd K.;Zana,R.Mixed micellization of dimeric(gemini) surfactants and conventional surfactants-Ⅱ.CMC and micelle aggregation numbers for various mixtures.J.Colloid Interface Sci.,2001,235:119-129.
    [15]Mathias,J.H.;Rosen,M.J.;Davenport,L.Fluorescence Study of Premicellar Aggregation in Cationic Gemini Surfactants.Langmuir,2001,17:6148-6154.
    [16]Li F.;Rosen,M.J.Sulthana S.B.Surface Properties of Cationic Gemini Surfactants and Their Interaction with Alkylglucoside or-maltoside Surfactants.Langmuir,2001,17:1037-1042.
    [17]Zhou,T.H.;Zhao,J.X.Synthesis and thermotropic liquid crystalline properties of heterogemini surfactants containing a quaternary ammonium and a hydroxyl group.J.Colloid Interface Sci.,2009,331:476-83.
    [18]Zhao,J.X.;Deng,S.J.;Liu,J.Y.;Lin,C.Y.;Zheng,O.Fourier transform infrared investigation on the state of water in reverse micelles of quaternary ammonium gemini surfactants C-12-s-C-12·2Br in n-heptane.J.Colloid Interface Sci.,2007,311:237-242.
    [19]Lu,T.;Li,Z.H.;Huang,J.B.Aqueous surfactant two-phase systems in a mixture of cationic gemini and anionic surfactants.Langmuir,2008,24:10723-10728.
    [20]Fan,H.M.;Zhu,X.M.;Gao,L.N.;Li,Z.C.;Huang,J.B.The photodimedzation of a cinnamoyl moiety derivative in dilute solution based on the intramolecular chain interaction of gemini surfactant.J.Phys.Chem.B,2008,112:10165-10170.
    [21]Zhang,G.C.;Liu M.H.Interfacial Assemblies of Cyanine Dyes and Gemini Amphiphiles with Rigid Spacers:Regulation and Interconversion of the Aggregates.J.Phys.Chem.B,2008,112:7430-7437.
    [22]Jiang,M.;Zhai,X.D.;Liu M.H.Fabrication and Photoluminescence of Hybrid Organized Molecular Films of a Series of Gemini Amphiphiles and Europium(Ⅲ)-Containing Polyoxometalate.Langmuir,2005,21:11128-11135.
    [23]Li,Y.J.;Wang,X.Y.;Wang Y.L.Comparative Studies on Interactions of Bovine Serum Albumin with Cationic Gemini and Single-Chain Surfactants.J.Phys.Chem.B,2006,110:8499-8505.
    [24]Li,Y.J.;Cao,M.W.;Wang Y.L.Aizheimer Amyloid β(1-40) Peptide:Interactions with Cationic Gemini and Single-Chain Surfactants.J.Phys.Chem.B,2006,110:18040-18045.
    [25]周栋梁,杨红伟,朱谱新,孙玉海,冯玉军,吴大诚.季铵盐型双子表面活性剂与十八醇的混合单分子膜.高等学样化学学报,2007,5:932-935.
    [26]Wang,R.L.;Han,S.H.;Hou,W.G.;Sun,L.X.;Zhao,J.;Wang,Y.S.Highly Ordered Supermicroporous Silica.J.Phys.Chem.C,2007,111:10955-10958.
    [27]Yan,X.;Han,S.H.;Hou,W.G.;Yu,X.J.;Zeng,C.M.;Zhao,X.H.;Che H.W.Synthesis of highly ordered mesoporous silica using cationic trimeric surfactant as structure-directing agent Colloids Surf.A,2007,303:219-225.
    [28]Han,S.H.;Xu,J.;Hou,W.G.;Yu,X.M.;Wang,Y.S.Synthesis of High-Quality MCM-48Mesoporous Silica Using Gemini Surfactant Dimethylene-1,2-bis(dodecyldimethylammonium bromide).J.Phys.Chem.B,2004,108:15043-15048.
    [29]Yves,C.New surfactants:new chemical functions and molecular architectures.Curr.Opin.Colloid Interface Sci.,2002,7:3-11.
    [30]Zana,R.Dimeric(Gemini) Surfactants:Effect of the Spacer Group on the Association Behavior in Aqueous Solution.J.Colloid Interface Sci.,2002,248:203-220.
    [31]Ao,M.Q.;Xu,G.Y.;Zhu,Y.Y.;Bai Y.Synthesis and properties of ionic liquid-type Gemini imidazolium surfactants.J.Colloid Interface Sci.,2008,326:490-495.
    [32]Ao,M.Q.;Huang P.P.;Xu G.Y.;Yang X.D.;Wang Y.J.Aggregation and thermodynamic properties of ionicliquid-type gemini imidazolium surfactants with differentspacer length.Colloid.Polym.Sci.,2009,287:395-402.
    [33]Huang,X.;Cao,M.W.;Wang J.B.;Wang,Y.L.Controllable Organization of a Carboxylic Acid Type Gemini Surfactant at Different pH Values by Adding Copper(Ⅱ) Ions.J.Phys.Chem.B,2006,110:19479-19486.
    [34]Zheng,Q.;Zhao,J.X.Solubiliazation of pyrene in aqueous solutions of gemini surfactants C_(12)-s-C_(12)·2Br.J.Colloid Interface Sci.,2006,300:749-754.
    [35]In,M.;Bec,V.;Chariol,O.A.;Zana,R.Quaternary Ammonium Bromide Surfactant Oligomers in Aqueous Solution:Self-Association and Microstructure.Langmuir,2000,16:141-148.
    [36]Laschewsky,A.;Wattebled L.;Arotc(u|¨)are'na,M.;Habib-Jiwan,J.L.;Rakotoaly,R.H.Synthesis and Properties of Cationic Oligomeric Surfactants.Langmuir,2005,21:7170-7179.
    [37]Wattebled,L.;Laschewsky A.;Moussa,A.;Habib-Jiwan,J.L.;Aggregation Numbers of Cationic Oligomeric Surfactants:A Time-Resolved Fluorescence Quenching Study.Langmuir,2006,22: 2551-2557.
    [38]Murgu'ia,M.C.;Cabrera,M.I.;Guastavino J.F.;Grau,R.J.New oligomeric surfactants with multiple-ring spacers:Synthesis and tensioactive properties.Colloids Surf.A,2005,262:1-7.
    [39]Kuo,J.-h.S.;Jan,M.-s.;Chiu,H.W.Cytotoxic Properties of Tyloxapol.Pharm.Res.,2006,23:1509-1516.
    [40]Westesen,K.Phase diagram of Tyloxapol and water-Ⅰ.Int.J.Pharm.,1994,102:91-100.
    [41]Westesen,K.Koch,M.H.J.Phase diagram of Tyloxapol and water-Ⅱ.Int.J.Pharm.,1994,103:225-236.
    [42]Regev,O.;Zana,R.Aggregation Behavior of Tyloxapol,a Nonionic Surfactant Oligomer,in Aqueous Solution.J.Colloid Interface Sci.,1999,210:8-17.
    [43]Schott,H.;Comparing the Surface Chemical Properties and the Effect of Salts on the Cloud Point of a Conventional Nonionic Surfactant,Octoxynol 9(Triton X-100),and of Its Oligomer,Tyloxapol (Triton WR-1339).J.Colloid Interface Sci.,1998,205:496-502.
    [44]肖进新,赵振国.表面活性剂应用原理.化学工业出版社,北京,2004,p422.
    [45]赵国玺,朱步瑶.表面活性剂作用原理.中国轻工业出版社,北京,2003.
    [46]Ghosh,S.;Chakraborty,T.Mixed Micelle Formation among Anionic Gemini Surfactant(212) and Its Monomer(SDMA) with Conventional Surfactants(C_(12)E_5 and C_(12)E_8) in Brine Solution at pH11.J.Phys.Chem.B 2007,111:8080-8088.
    [47]Zana,R.;Le'vy,H.;Kwetkat.K.Mixed Micellization of Dimeric(Gemini) Surfactants and Conventional Surfactants.Ⅰ.Mixtures of an Anionic Dimeric Surfactant and of the Nonionic Surfactants C_(12)E_5 and C_(12)E_8.J.Colloid Interface Sci.,1998,197:370-376.
    [48]Liu,L.;Rosen,M.J.The Interaction of Some Novel Diquaternary Gemini Surfactants with Anionic Surfactants.J.Colloid Interface Sci.,1996,179:454-459.
    [49]Bakshi,M.S.;Singh,K.Synergistic interactions in the mixed micelles of cationic gemini with zwitterionic surfactants:Fluorescence and Krafft temperature studies.J.Colloid Interface Sci.,2005,287:288-297.
    [50]Singh,K.;Marangoni,D.G.;Synergistic interactions in the mixed micelles of cationic gemini with zwittedonic surfactants:The pH and spacer effect.J.Colloid Interface Sci.,2007,315:620-626.
    [51]赵剑曦,郑欧,游毅,陈荣杰.C_(12)-s-C_(12)·2Br和C_(12)E_n混合水溶液的胶团化行为.物理化学学报,2002,18:463-467
    [52]郑欧,赵剑曦,陈荣杰.C_(12)-s-C_(12)·2Br和Triton X-100混合水溶液的胶团生成.应用化学,2002,19:1076-1079
    [53]Wang,X.Y.;Wang,J.B.;Wang,Y.L.;Ye,J.P.;Yan,H.K.;Thomas,R.K.Properties of mixed micelles of cationic gemini surfactants and nonionic surfactant triton X-100:Effects of the surfactant composition and the spacer length.J.Colloid Interface Sci.,2005,286:739-746.
    [54]Liu,Y.L.;Chang,C.H.Dynamic Surface Tension Behavior of a Mixed Insoluble/Soluble Surfactant Dispersion at Pulsating Air/Liquid Interfaces:Roles of the Soluble Surfactant.J.Colloid Interface Sci.,2001,238:85-90.
    [55]Lucassen-Reynders,E.H.Physical Chemistry of Surfactant Action(Surfactant Science Series Vol.11).New York:Marcel Dekker Inc.,1981:131.
    [56]Goddard E.D.;Ananthanthapadmanabhan,K.P.Interactions of surfactants with polymers and proteins.New York:CRC Press,Inc.,1993:1-1.
    [57]Kwak,J.C.T.Polymer-surfactant Systems.New York:Marcel Dekker Inc.,1998:267.
    [58]Taylor,D.J.F.;Thomas,R.K.;Penfold,J.Polymer/surfactant interactions at the air/water interface.Adv.Colloid lnterface Sci.,2007,132:69-110.
    [59]He,Q.;Zhang,Y.;Lu,G.;Miller,R.;M(o|¨)hwald,H.;Li,J.B.Dynamic adsorption and characterization of phospholipid and mixed phospholipid/protein layers at liquid/liquid interfaces.Adv.Colloid Interface Sci.,2008,140:67-76.
    [60]Richardson,R.M.;Pelton,R.;Cosgrove,T.;Zhang,J.A Neutron Reflectivity Study of Poly(N-isopropylacrylamide) at the Air-Water Interface with and without Sodium Dodecyl Sulfate.Macromolecules,2000,33:6269-6274.
    [61]Noskov,B.A.;Alexandrov,D.A.;Loglio,G.;Miller,R.Characterisation of adsorbed polymer film structure by dynamic surface tension and dilational elasticity.Colloids Surf.A,1999,156:307-313.
    [62]Patino,J.M.R.;Fernandez,M.C.;Sanchez,C.C.;Ni(?)o,M.R.R.Structural and shear characteristics of adsorbed sodium caseinate and monoglyceride mixed monolayers at the air-water interface.J.Colloid Interface Sci.,2007,313:141-151.
    [63]Blomqvist,B.R.;Warnheim,T.;Claesson,P.M.Surface Rheology of PEO-PPO-PEO Tribiock Copolymers at the Air-Water Interface:Comparison of Spread and Adsorbed Layers.Langmuir,2005,21:6373-6384.
    [64]Monteux,C.;Mangeret,R.;Laibe,G.;Freyssingeas,E.;Bergeron,V.;Fuller,G.Shear Surface Rheology of Poly(N-isopropylacrylamide) Adsorbed Layers at the Air-Water Interface.Macromolecules,2006,39:3408-3414.
    [65]Murray,B.S.Interfacial theology of food emulsifiers and proteins.Curr.Opin.Colloid Interface Sci.,2002,7:426-431.
    [66]Bonfillon,A.;Langevin,D.Viscoelasticity of monolayers at oil-water interfaces.Langmuir,1993,9:2172-2177.
    [67]Monteux,C.;Fuller,G.G.;Bergeron,V.Shear and Dilational Surface Rheology of Oppositely Charged Polyelectrolyte/Surfactant Microgels Adsorbed at the Air-Water Interface.Influence on Foam Stability.J.Phys.Chem.B.,2004,108:16473-16482.
    [68]李佟茗,赵丽燕.界面流变性质对小液滴聚并过程的影响.物理化学学报,1996,12:709-715.
    [69]Stoodt,T.J.;Slattery,J.C.C.Effect of the interracial viscosities upon displacement.AIChE J,1984,30:564-568.
    [70]Giordano,R.M.;Slattery,J.C.Effect of interfacial viscosities upon displacement in sinusoidal capillaries[osities upon displacement.AIChE J,1987,33:1592-1602.
    [71]Li,J.B.;Kretzschmar,G.;Miller,R.;M(o|¨)hwald,H.Viscoelasticity of phospholipid layers at different fluid interfaces.Colloids Surf.A,1999,149:491-497.
    [72]张春荣,李振泉,罗澜,张路,宋新旺,曹绪龙,赵濉,俞稼镛.氧乙烯数对辛基苯酚聚氧乙烯醚表面扩张粘弹性质的影响.物理化学学报,2007,23:247-252.
    [73]Tadros,T.F.Colloid Stability The role of surface forces-Part Ⅰ.Weinheim:Wiley-Vch.;2007:295
    [74]王东贤,罗澜,张路,王宜阳,赵濉,俞稼镛.疏水缔合共聚物与表面活性剂的界面相互作用.物理化学学报,2005,21:1205-1210.
    [75]Noskov,B.A.;Akentiev,A.V.;Bilibin,A.Y.;Zorin,I.M.;Miller,R.Dilational surface viscoelasticity of polymer solutions.Adv.Colloid Interface Sci.,2003,104:245-271.
    [76]Noskov,B.A.;Akentiev,A.V.;Loglio,G.;Miller,R.Dynamic Surface Properties of Solutions of Poly(ethylene oxide) and Polyethylene Glycols.J.Phys.Chem.B.,2000,104:7923-7931.
    [77]Noskov,B.A.;Akentiev,A.V.;Miller,R.Dynamic Surface Properties of Poly(vinylpyrrolidone)Solutions.J.Colloid Interface Sci.,2002,255:417-424.
    [78]Pereira,L.G.;The'odoly,O.;Blanch,H.W.;Radke,C.J.Dilatational Rheology of BSA Conformers at the Air/Water Interface.Langmuir,2003,19:2349-2356.
    [79]Noskov,B.A.;Loglio,G.;Miller,R.Dilational Viscoelasticity of Polyelectolyte/Surfactant Adsorption Films at the Air/Water Interface:Dodecyltrimethylammonium Bromide and Sodium Poly(styrenesulfonate).J.Phys.Chem.B.,2004,108:18615-18622.
    [80]Noskov,B.A.;Grigoriev,D.O.;Lin,S.Y.;Loglio,G.Miller,R.Dynamic Surface Properties of Polyelectrolyte/Surfactant Adsorption Films at the Air/Water Interface:Poly(diallyldimethylammonium chloride) and Sodium Dodecylsulfate.Langmuir,2007,23:9641-9651.
    [81]Latnikova,A.V.;Lin,S.-Y.;Loglio,G.;Miller,R.;Noskov,B.A.Impact of Surfactant Additions on Dynamic Properties of β-Casein Adsorption Layers.J.Phys.Chem.C.,2008,112:6126-6131.
    [82]Aksenenko,E.V.;Kovalchuk,V.I.;Fainerman,V.B.;Miller,R.Surface dilational rheology of mixed adsorption layers at liquid interfaces.Adv.Colloid Interface Sci.,2006,122:57-66.
    [83]Wang,Y.Y.;Zhang,L.;Sun,T.L.;Zhao,S.;Yu,J.Y.A study of interfacial dilational properties of two different structure demulsifiers at oil-water interfaces.J.Colloid Interface Sci.,2003,270:163-170.
    [84]Wu,D.;Xu,G.Y.;Feng,Y.J.;Li,Y.M.Aggregation behaviors of gelatin with cationic Gemini surfactant at air/water interface.Int.J.Biol.Macromol.2007,40:345-350.
    [85]Zhang,L.;Wang,C.X.;Yan,F.;Luo,L.;Zhang,L.;Zhao,S.;Yu,J.Y.Interfacial dilational properties of partly hydrolyzed polyacrylamide and gemini surfactant at the decane-water interface Colloid Polym Sci.2008,286:1291-1297.
    [86]吴丹,博士论文,山东大学,济南,2007,第一章.
    [87]Wu,D.;Xu,G.Y.;Sun,Y.H.;Zhang,H.X.;Mao,H.Z.;Feng,Y.J.Interaction between proteins and cationic gemini surfactant.Biomacromolecules,2007,8:708-712.
    [88]Wu,D.;Xu,G.Y.;Feng,Y.J.;Wang,Y.J.;Zhu,Y.Y.Comparative study on interaction of bovine serum albumin with dissymmetric and symmetric gemini surfactant by spectral method.Colloid Polym Sci.;2009,287:225-230.
    [89]Cheng,C.C.;Chang,C.H.Retardation Effect of Tyloxapol on Inactivation of Dipalmitoyl Phosphatidylcholine Surface Activity by Albumin.Langmuir,2000,16:437-441.
    [90]Liu,Y.L.;Chang,C.H.Inhibitory effects of fibrinogen on the dynamic tension-lowering activity of dipalmitoyl phosphatidylcholine dispersions in the presence of tyloxapol.Colloid Polym Sci.,2002,280:683-687.
    [91]Chang,C.H.;Tseng,S.C.;Chuang,T.K.Inhibitory effects of tyloxapol on the surface activity of albumin at the air:liquid interface.Colloids Surf.A,2000,164:287-295.
    [92]Cao,M.W.;Deng,M.L.;Wang,X.L.;Wang,Y.L.Decompaction of Cationic Gemini Surfactant-Induced DNA Condensates by β-Cyclodextrin or Anionic Surfactant.J.Phys.Chem.B 2008,112:13648-13654.
    [93]Ca'rdenas,M.;Nylander,T.;Thomas,R.K.;Lindman,B.DNA Compaction onto Hydrophobic Surfaces by Different Cationic Surfactants.Langmuir,2005,21:6495-6502.
    [94]Vongsetskul,T.;Taylor,D.J.F.;Zhang,J.;Li,P.X.;Thomas,R.K.;Penfold,J.Interaction of a Cationic Gemini Surfactant with DNA and with Sodium Poly(styrene sulphonate) at the Air/Water Interface:A Neutron Reflectometry Study.Langmuir,2009,25,4027-4035
    [95]Zhao,X.F.;Shang,Y.Z.;Hu,J.;Liu,H.L.;Hu,Y.Biophysical characterization of complexation of DNA with oppositely charged Gemini surfactant 12-3-12.Biophys.Chem.,2008,138:144-149.
    [96]Wang,X.L.;Zhang,X.H.;Cao,M.W.;Zheng,H.Z.;Xiao,B.;Wang,Y.L.Li,M.Gemini Surfactant-Induced DNA Condensation into a Beadlike Structure.J.Phys.Chem.B,2009,113:2328-2332.
    [97]Grant,J.;Cho,J.;Allen,C.Self-Assembly and Physicochemical and Rheological Properties of a Polysaccharide-Surfactant System Formed from the Cationic Biopolymer Chitosan and Nonionic Sorbitan Esters,Langmuir,2006,22:4327-4335.
    [98]Babak,V.G.;Desbrieres,J.Dilational viscoelasticity of the adsorption layers of hydrophobically modified chitosans.Mendeleev Commun.,2005,15:35-38.
    [99]Li,Y.M.;Xu,G.Y.;Xin,X.;Cao,X.R.;Wu,D.Dilational surface viscoelasticity of hydroxypropyl methyl cellulose and CnTAB at air-water surface.Carbohydr.Polym.,2008,72:211-221.
    [100]Li,Y.M.;Xu,G.Y.;Chen,A.M.;Yuan,S.L.;Cao,X.R.Aggregation between Xanthan and Nonyphenyloxypropyl β-Hydroxyltrimethylammonium Bromide in Aqueous Solution:MesoDyn Simulation and Binding Isotherm Measurement.J.Phys.Chem.B,2005,109:22290-22295.
    [101]Li,Y.M.;Xu,G.Y.;Luan,Y.X.;Yuan,S.L.;Zhang,Z.Q.Studies on The Interaction between Tetradecyl Dimethyl Betaine and Sodium Carboxymethyl Cellulose by DPD Simulations.Colloids Surf.A,2005,257-258:385-390.
    [102]Li,Y.M.;Xu,G.Y.;Wu,D.;Sui,W.P.;Sun,H.Y.The Aggregation Behavior between Anionic Carboxymethyichitosan and Cetyltrimethylammonium Bromide:MesoDyn Simulation and Viscosity Measurements.European Polym.J.,2007,43:2690-2698.
    [103]Muzzalupo,R.;Infante,M.R.;Prez,L.;Pinazo,A.;Marques,E.F.;Antonelli,M.L.;Strinati,C.;Mesa C.L.Interactions between Gemini Surfactants and Polymers:Thermodynamic Studies.Langmuir,2007,23:5963-5970.
    [104]Ka"stner,U.;Zana,R.Interactions between Quaternary Ammonium Surfactant Oligomers and Water-Soluble Modified Guars.J.Colloid Interface Sci.,1999,218:468-479.
    [105]Monteux,C.;Fuller,G.G.;Bergeron,V.Shear and Dilational Surface Rheology of Oppositely Charged Polyelectrolyte/Surfactant Microgels Adsorbed at the Air-Water Interface.Influence on Foam Stability.J.Phys.Chem.B.,2004,108:16473-16482.
    [106]Ritacco,H.;Kurlat,D.;Langevin,D.Properties of Aqueous Solutions of Polyelectrolytes and Surfactants of Opposite Charge:Surface Tension,Surface Rheology,and Electrical Birefringence Studies.J.Phys.Chem.B.,2003,107:9146-9158.
    [107]Monteux,C.;Williams,C.E.;Bergeron,V.Interfacial Microgels Formed by Oppositely Charged Polyelectrolytes and Surfactants.Part 2.Influence of Surfactant Chain Length and Surfactant/Polymer Ratio.Langmuir,2004,20:5367-5374.
    [108]Wang,X.Y.;Wang,J.B.;Wang,Y.L.;Yan,H.K.Salt Effect on the Complex Formation between Cationic Gemini Surfactant and Anionic Polyelectrolyte in Aqueous Solution.Langmuir,2004,20:9014-9018
    [109]王新平,张嘉云,唐季安,江龙.表面活性剂与聚丙烯酰胺在油水界面的流变性.物理化学学报,1998,14:88-92.
    [110]Zhang,H.X.;Xu,G.Y.;Wu,D.;Wang,S.W.Aggregation of cetyltrimethylammonium bromide with hydrolyzed polyacrylamide at the paraffin oil/water interface:Interfacial rheological behavior study.Colliods Surf.A,2008,317:289-296.
    [111]Yoshimura,T.;Nagata,Y.;Esumi K.Interactions of quaternary ammonium salt-type gemini surfactants with sodium poly(styrene sulfonate).J.Colloid Interface Sci.,2004,275:618-622.
    [112]Pi,Y.Y.;Shang,Y.Z.;Peng,C.J.;Liu,H.L.;Hu,Y.;Jiang,J.W.Phase behavior of gemini surfactant hexylene-1,6-bis(dodecyldimethylammonium bromide) and polyelectrolyte NaPAA.J.Colloid Interface Sci.,2006,299:410-415.
    [113]Esumia,K.;Iitakaa,M.;Koide,Y.Simultaneous Adsorption of Poly(ethylene Oxide) and Cationic Surfactant at the Silica/Water Interface.J.Colloid Interface Sci.,1998,208,178-182.
    [114]Qiu,L.G.;Cheng,M.J.;Xie,A.J.;Shen,Y,H.Study on the viscosity of cationic gemini surfactant-nonionic polymer complex in water. J. Colloid Interface Sci., 2004,278: 40-43.
    [115]Wettig, S. D.; Verrally, R. E. Studies of the Interaction of Cationic Gemini Surfactants with Polymers and Triblock Copolymers in Aqueous Solution. J. Colloid Interface Sci., 2001, 244: 377-385.
    [116]Li, X. F.; Wettig, S. D.; Verrall, R. E. Interactions between 12-EO_x-12 Gemini Surfactants and Pluronic ABA Block Copolymers (F108 and P103) Studied by Isothermal Titration Calorimetry. Langmuir, 2004,20: 579-586
    [117]Li, X. F.; Wettig, S. D.; Verrall, R. E. Isothermal titration calorimetry and dynamic light scattering studies of interactions between gemini surfactants of different structure and Pluronic block copolymers. J. Colloid Interface Sci., 2005,282: 466-477.
    [118]Zhou, L. M.; Jiang, X. H.; Li, Y. T.; Chen, Z.; Hu, X. Q. Synthesis and Properties of a Novel Class of Gemini Pyridinium Surfactants. Langmuir, 2007,23: 11404-11408.
    [119]Bai, G. Y.; Wang, Y. J.; Yan,,H. K.; Thomas, R. K.; Kwak, J. C. T. Thermodynamics of Interaction between Cationic Gemini Surfactants and Hydrophobically Modified Polymers in Aqueous Solutions. J. Phys. Chem. B, 2002,106: 2153-2159.
    [120] Wang, Y. Y.; Dai, Y. H.; Zhang, L.; Luo, L; Chu, Y. P.; Zhao, S.; Li, M.-Z.; Wang, E.-J.; Yu, J. Y. Hydrophobically Modified Associating Polyacrylamide Solutions: Relaxation Processes and Dilational Properties at the Oil-Water Interface. Macromolecules, 2004,37: 2930-2937.
    [121] Wang, X. Y.; Li, Y.J.; Wang, J. B.; Wang, Y. L.; Ye, J. P.; Yan, H. K.; Interactions of Cationic Gemini Surfactants with Hydrophobically Modified Poly(acrylamides) Studied by Fluorescence and Microcalorimetry. J. Phys. Chem. B, 2005,109: 12850-12855
    [122]Esumil, K.; Hara, J.; Aihara, N.; Usui, K.; Torigoe K. Preparation of Anisotropic Gold Particles Using a Gemini Surfactant Template. J. Colloid Interface Sci., 1998,208: 578-581.
    [123] Xu, J.; Han, X.; Liu, H. L.; Hu Y. Synthesis of Monodisperse Gold Nanoparticles Stabilized by Gemini Surfactant in Reverse Micelles. J. Dispersion Sci. Technol. 2005,26: 473-476.
    [124] Liu, Q.; Guo, M. L.; Nie, Z.; Yuan, J. B. Tan, J. Yao, S. Z.; Spacer-Mediated Synthesis of Size-Controlled Gold Nanoparticles Using Geminis as Ligands. Langmuir, 2008,24: 1595-1599
    [125]Bakshi, M. S.; Possmayer, F. Petersen N. O. Aqueous-Phase Room-Temperature Synthesis of Gold Nanoribbons: Soft Template Effect of a Gemini Surfactant. J. Phys. Chem. C, 2008,112: 8259-8265
    [126]Xu, J.; Hu, J.; Peng, C. J.; Liu, H. L.; Hu, Y. A simple approach to the synthesis of silver nanowires by hydrothermal process in the presence of gemini surfactant.J.Colloid Interface Sci.,2006,298:689-693
    [127]Bakshi,M.S.;Sharma,P.;Banipal,T.S.Au and Au-Ag bimetallic nanoparticles synthesized by using 12-3-12 cationic Gemini surfactant as template.Mater.Lett.,2007,61:5004-5009.
    [128]Liu,M.X.;Gan,L.H.;Zeng,Y.L.;Xu,Z.J.;Hao,Z.X.;Chen L.W.Self-Assembly of CdTe Nanocrystals into Two-Dimensional Nanoarchitectures at the Air-Liquid Interface Induced by Gemini Surfactant of 1,3-Bis(hexadecyldimethylammonium) Propane Dibromide.J.Phys.Chem.C,2008,112:6689-6694.
    [129]Seong,K.S.;Zhang,W.;Pinnavaia,T.J.Ultrastable Mesostructured Silica Vesicles.Science,1998,282:1302-1305.
    [130]Czechura,K.;Sayari,A.Synthesis of MCM-48 Silica Using a Gemini Surfactant with a Rigid Spacer.Chem.Mater.,2006,18:4147-4150.
    [131]Voort,P.V.D.;Mathieu,M.;Mees,F.;Vansant,E.F.Synthesis of High-Quality MCM-48 and MCM-41 by Means of the GEMINI Surfactant Method.J.Phys.Chem.B,1998,102:8847-8851.
    [132]Choi,T.S.;Shimizu,Y.;Shirai,H.;Hamada,K.Solubilization of disperse dyes in cationic Gemini surfactant micelles.Dyes and Pigments,2000,45:145-152.
    [133]Choi,T.S.;Shimizu,Y.;Shirai,H.Disperse Dyeing of Nylon 6 Fiber using Gemini Surfactants Containing Ammonium Cations as Auxiliaries.Dyes and Pigments,2001,48:217-226.
    [134]Choi,T.S.;Shimizu,Y.;Shirai,H.Disperse Dyeing of Polyester Fiber using Gemini Surfactants ContainingAmmonium Cations as Auxiliaries.Dyes and Pigments,2001,50:55-65.
    [135]Bagha,A.R.T.;Bahrami,H.;Movassagh,B.;Arami,M.;Menger,F.M.Interactions of gemini cationic surfactants with anionic azo dyes and their inhibited effects on dyeability of cotton fabric.Dyes and Pigments,2007,72:331-338.
    [136]Chen,H.;Han,L.J.;Luo,P.Y.The interfacial tension between oil and gemini surfactant solution.Surf.Sci.,2004,552:L53-L57.
    [137]Chen,H.;Han,L.J.;Luo,P.Y.;Ye Z.B.The ultralow interfacial tensions between crude oils and Gemini surfactant solutions.J.Colloid Interface Sci.,2005,285:872-874.
    [138]Ye,Z.B.;Zhang,F.X.;Han,L.J.;Luo,P.Y.;Yang,J.J.;Chen,H.The effect of temperature on the interfacial tension between crude oil and gemini surfactant solution.Colloids Surf.A,2008,322:138-141.
    [139]Dubnickova, M. Bobrowska-Haegerstrand. M.; Soederstroem, T.; Iglic, A.; Haegerstrand, Henry. Gemini (dimeric) surfactant perturbation of the human erythrocyte. Acta Biochem Pol. 2000, 47: 651-660.
    [140]Camilleri, P.; Kremer, A.; Edwards, A. J.; Jennings, K. H.; Jenkins, O.; Marshall, I.; Neville, W.; Rice, S. Q.; Smith, R. J.; Wilkinson, M. J.; McGregor, C.; Kirby, A. J. A novel class of cationic gemini surfactants showing efficient in vitro gene transfection properties. Chem Commun, 2000, 14:1253-1254.
    [141]Caillier, L.; Givenchy, E. T. d.; Levy, R.; Vandenberghe, Y.; Geribaldi, S.; Guittard, F. Polymerizable semi-fluorinated gemini surfactants designed for antimicrobial Materials. J. Colloid Interface Sci., 2009,332: 201-207.
    [142] Tan, H.; Xiao, H. N. Synthesis and antimicrobial characterization of novel L-lysine gemini surfactants pended with reactive groups. Tetrahedron Lett., 2008,49:1759-1761.
    [143]Serikov, V. B.; Glazanova, T. V.; Jerome, E. H.; Fleming, N. W.; Higashimori, H.; Staub, N. C. Tyloxapol Attenuates the Pathologic Effects of Endotoxin in Rabbits and Mortality Following Cecal Ligation and Puncture in Rats by Blockade of Endotoxin Receptor-Ligand Interactions. Inflammation, 2003,27: 175-190.
    [144]Gursoy, N.; Garrigue, J. S.; Razafindratsita, A.; Lambert, G.; Benita, S. Excipient effects on in vitro cytotoxicity of a novel paclitaxel self-emulsifying drug delivery system. J.Pharm. Sci. 2003, 92: 2411-2418.
    [145]Kukowska-Latallo, J. F.; Chen, C.; Eichman, J.; Bielinska, A.U.; Baker, J. R. Enhancement of Dendrimer-Mediated Transfection Using Synthetic Lung Surfactant Exosurf Neonatal in Vitro. Biochem. Biophys. Res. Commun. 1999,14:253-261.
    [146] Staub, N. C.; Longworth, K. E.; Serikov, V.; Jerome, E. H.; Elsasser, T. Detergent inhibits 70-90% of responses to intravenous endotoxin in awake sheep. J. Appl. Physiol. 2001,90:1788-1797.
    [147]Thomassen, M. J.; Antal, J. M.; Divis, L. T. Regulation of Human Alveolar Macrophage Inflammatory Cytokines by Tyloxapol: A Component of the Synthetic Surfactant Exosurf. Clin. Immunol. Immunopathol. 1995, 77: 201-205.
    [148]Shen, B.; Scanu, A. M. In vitro effect of Triton WR-1339 on canine plasma high density lipoproteins. J. Lipid Res., 1984,25: 770-779.
    [149] Steven, J. H.; Lin, Y. L.; Tseng, J. W. Interactions between U-937 human macrophages and tyloxapol,Colloids Surf.B,2008,64:208-215.
    [1]Scamehorn,J.F.Phenomena in Mixed Surfactant Systems.American Chemical Society,1986.
    [2]Nakano,T.Y.;Sugihara,G.;Nakashima,T.;Yu,S.C.Thermodynamic Study of Mixed Hydrocarbon/Fluorocarbon Surfactant System by Conductometric and Fluorimetric Techniques.Langmuir,2002,18:8777-8785
    [3]Moroi,Y.Micelles:theoretical and applied aspects.Plenum,New York,1992,Chap.10.
    [4]赵国玺,朱步瑶.表面活性剂作用原理,中国轻工业出版社,2003,第七章.
    [5]Chakraborty,T.;Ghosh,S.;Moulik,S.P.Micellization and Related Behavior of Binary and Temary Surfactant Mixtures in Aqueous Medium:Cetyl Pyridinium Chloride(CPC),Cetyl Trimethyl Ammonium Bromide(CTAB),and Polyoxyethylene(10) Cetyl Ether(Brij-56) Derived System.J.Phys.Chem.B,2005,109:14813-14823.
    [6]Chou,T.H.;Lin,Y.S.;Li,W.T.;Chang,C.H.Phase behavior and morphology of equimolar mixed cationic-anionic surfactant monolayers at the air/water interface:Isotherm and Brewster angle microscopy analysis.J.Colloid Interface Sci.,2008,321:384-392.
    [7]Tucker,I.;Penfold,J.;Thomas,R.K.;Grillo,I.;Barker J.G.;Mildner,D.F.R.Self-Assembly in Mixed Dialkyl Chain Cationic-Nonionic Surfactant Mixtures:Dihexadecyldimethyl Ammonium Bromide-Monododecyl Hexaethylene Glycol(Monododecyl Dodecaethylene Glycol) Mixtures,Langmuir,2008,24:7674-7687.
    [8]Dar,A.A.;Rather,G.M.;Das,A.R.Mixed Micelle Formation and Solubilization Behavior toward Polycyclic Aromatic Hydrocarbons of Binary and Ternary Cationic-Nonionic Surfactant Mixtures.J.Phys.Chem.B,2007,111:3122-3132.
    [9]Islam,M.N.;Okano,T.;Kato,T.Surface Phase Behavior of a Mixed System of Anionic-Nonionic Surfactants Studied by Brewster Angle Microscopy and Polarization Modulation Infrared Reflection-Absorption Spectroscopy,Langmuir,2002,18:10068-10074.
    [10]Tucker,I.;Penfold,J.;Thomas,R.K.;Grillo,I.Monomer-Aggregate Exchange Rates in Dialkyl Chain Cationic-Nonionic Surfactant Mixtures,Langmuir,2009,25:2661-2666.
    [11]Zana,R.;Le'vy,H.;Kwetkat,K.Mixed Micellization of Dimeric(Gemini) Surfactants and Conventional Surfactants.I.Mixtures of an Anionic Dimeric Surfactant and of the Nonionic Surfactants C_(12)E_5 and C_(12)E_8.J.Colloid Interface Sci.,1998,197:370-376.
    [12]Alargova,R.G.;Kochijashky,I.I.;Sierra,M.L.;Kwetkat,K.;Zana,R.Mixed Micellization of Dimeric(Gemini) Surfactants and Conventional Surfactants Ⅱ.CMC and Micelle Aggregation Numbers for Various Mixtures.J.Colloid Interface Sci.,2001,235:119-129.
    [13]Liu,L.;Rosen,M.J.The Interaction of Some Novel Diquaternary Gemini Surfactants with Anionic Surfactants.J.Colloid Interface Sci.,1996,179:454-459.
    [14]Zhao,J.X.;Yang,X.F.;Jiang,R.Adsorptionlayer structure formation at the air/water interface in aqueous mixtures of ananionic carboxylate Gemini and a cationic surfactant.Colloids Surf.A,2006,275:142-147.
    [15]Jiang,R.;Ma,Y.H.;Zhao,J.X.Adsorption dynamics of binary mixture of Gemini surfactant an d opposite-charged conventional surfactant in aqueous solution.J.Colloid Interface Sci.,2006,297:412-418
    [16]Jiang,R.;Zhao,J.X.;Ma,Y.H.Dynamic adsorption of opposite-charged Gemini surfactant mixture at air/water interface.Colloids Surf.A,2006,289:233-236.
    [17]Zhao,J.X.;Liu,J.Y.;Jiang,R.Extremely strong interaction between an ionic/cationic Gemini surfac tan ts at air/water interface and in aqueous bulk solution.应用化学,2007,24:507-514.
    [18]Zana,R.Dimeric(Gemini) Surfactants:Effect of the Spacer Group on the Association Behavior in Aqueous Solution.J.Colloid Interface Sci.,2002,248:203-220.
    [19]Wanka,G.;Hoffmann,H.;Ulbricht,W.Phase diagrams and aggregation behavior of poly(oxyethylene)-poly(oxypropylene)-poly(oxyethlene) triblock copolymers in aqueous solutions.Macromolecules,1994,27:4145-4159.
    [20]Zana,R.Dimeric and oligomeric surfactants.Behavior at interfaces and in aqueous solution:a review.Adv.Colloid Interface Sci.,2002,97:203-251.
    [21]Alexandridis,P.;Athanassiou,V.;Fukuda,S.;Hatton,T.A.Surface activity of poly(ethylene oxide)-block-poly(propylene oxide)-block-poly(ethylene oxide) copolymers.Langmuir,1994,10:2604-2612.
    [22]Sedeva,R.;Steitzb,R.;Findenegg,G.H.The structure of PEO-PPO-PEO triblock copolymers at the water/air interface.Physica B.,2002,315:267-272.
    [23]Xin X.;Xu G.Y.Aggregation Behavior of Star-like PEO-PPO-PEO Block Copolymer in Aqueous Solution Eur.Polym.J.,2007,43:3106-3111.
    [24]Laschewsky,A.;Wattebled,L.;Arotc(u|¨)are'na,M.;Habib-Jiwan,J.L.;Rakotoaly,R.H Synthesis and Properties of Cationic Oligomeric Surfactants.Langmuir,2005,21,7170-7179.
    [25]Schott,H.Comparing the Surface Chemical Properties and the Effect of Salts on the Cloud Point of a Conventional Nonionic Surfactant,Octoxynol 9(Triton X-100),and of Its Oligomer,Tyloxapol (Triton WR-1339).J.Colloid Interface Sci.,1998,205:496-502.
    [26]李外郎,潘传斌,顾惕人.Triton X-100和Triton X-305在油水界面上的吸附膜.油田化学,1986,3:252-257.
    [27]李外郎,潘传斌,顾惕人.聚醚型表面活性剂在界面上的分子取向.物理化学学报,1986,2:297-301.
    [28]Rosen,M.J."Surfactant and Interfacial Phenomena," 2nd Ed.,Wiley-Inter-science:New York,2004
    [29]Rosen,M.J.;Zhou Q.Surfactant-Surfactant Interactions in Mixed Monolayer and Mixed Micelle Formation.Langmuir,2001,17:3532-3537.
    [30]Maeda,H.A Simple Thermodynamic Analysis of the Stability of Ionic/Nonionic Mixed Micelles.J.Colloid Interface Sci.1995,172:98-105.
    [31]Sharma,K.S.;Hassan,P.A.;Rakshit,A.K.Self aggregation of binary surfactant mixtures of a cationic dimeric(gemini) surfactant with nonionic surfactants in aqueous medium.Colliods Surf.A,2006,289:17-24.
    [32]Errico,G.;Ortona,O.;Paduano,L.;Tedeschi,A.;Vitagliano,V.Mixed micellar aggregates of cationic and nonionic surfactants with short hydrophobic tails.An intradiffusion study.Phys.Chem.Chem.Phys.,2002,4:5317-5324.
    [33]DasBurman,A.;Dey,T.;Mukherjee,B.;Das,A.R.Solution Properties of the Binary and Ternary Combination of Sodium Dodecyl Benzene Sulfonate,Polyoxyethylene Sorbitan Monlaurate,and Polyoxyethylene Lauryl Ether.Langmuir,2000,16:10020-10027.
    [34]Ruiz,C.C.;Aguiar,J.Mixed micelles of triton X100:interaction,composition,stability and micro-environmental properties of the aggregates.J.Mol.Phys.1999,97:1095-1103.
    [35]Wu,D.;Feng,Y.J.;Xu,G.Y.;Chen,Y.J.Cao,X.R.;Li,Y.M.Dilational rheological properties of gemini surfactant 1,2-ethane bis(dimethyl dodecyl ammonium bromide) at air/water interface.Colliods Surf.A,2007,299:117-123.
    [36]Zhang,H.X.;Xu,G.Y.;Wu,D.;Wang,S.W.Aggregation of cetyltrimethylammonium bromide with hydrolyzed polyacrylamide at the paraffin oil/water interface:interfacial rheological behavior study.Colliods Surf.A,2008,317:289-296.
    [37]Tadros,T.F."Colloid Stability The role of surface forces-Part Ⅰ," Wiley-Vch,2007,p.295.
    [38]Zhang,C.R.;Li,Z.Q.;Luo,L.;Zhang,L.;Song,X.W.;Cao X.L.;Zhao,S.;Yu,J.Y.Effect of Oxyethylene Numbers on Surface Dilational Properties of Octylphenol Polyoxyethylene Ethers.Acta Phys-Chim Sin.,2007,23:247-252.
    [39]Paria,S.;Yuet,P.K.Solubilization of Naphthalene by Pure and Mixed Surfactants,Ind.Eng.Chem.Res.,2006,45,3552-3558.
    [40]Itagaki,M.;Takeda,Rie.;Endo K.Solubilization of Pyrene in C_nE_7 Micelles Chikako Honda,Langmuir,2002,18,1999-2003.
    [41]Kim,J.-H.;Domach,M.M.;Tilton,R.D.Pyrene solubilization capacity in octaethylene glycol monododecyl ether(C_(12)E_8) micelles,Colliods Surf.A,1999,150:55-68.
    [42]郑玉婴,江琳沁,赵剑曦,许秀枝.Pluronic嵌段共聚物F127和P123胶束对萘、蒽、芘的增溶,高等学校化学学报,2001,22:617-621.
    [43]Morisue,T.;Moroi,Y.;Shibatat,Osamu Solubilization of Benzene,Naphthalene,Anthracene,and Pyrene in Dodecylammonium Trifluoroacetate Micelles,J.Phys.Chem.1994,98:12995-13000.
    [44]Zheng,O.;Zhao,J.X.Solubilization of pyrene in aqueous micellar solutions of Gemini surfactants C12-s-C12·2Br,J.Colloid Interface Sci.,2006,300:749-754.
    [45]Mohamed,A.;Mahfoodh,A.M.Solubilization of naphthalene and pyrene by sodium dodecyl sulfate(SDS) and polyoxyethylenesorbitan monooleate(Tween 80) mixed micelles,Colliods Surf.A,2006,287:44-50.
    [46]朱利中,冯少良.混合表面活性剂对多环芳烃的增溶作用及机理,环境科学学报,2002,22:774-778
    [47]余海粟,朱利中.混合表面活性剂对菲和芘的增溶作用,环境化学,2004,23:485-489
    [48]陈宝梁,马战宇,朱利中.表面活性剂对苊的增溶作用及应用初探,环境化学,2003,22:53-58
    [49]Zhu L.Z.;Feng S.L.Synergistic solubilization of polycyclic aromatic hydrocarbons by mixed anionic-nonionic surfactants,Chemosphere,2003,53:459-467
    [50]Fan,Y.R.;Cao,M.W.;Yuan,G.C.;Wang,Y.L.;Yan,H.K.;Han,C.C.Aggregation behavior in mixed system of double-chained anionic surfactant with single-chained nonionic surfactant in aqueous solution,J.Colloid Interface Sci.,2006,299:928-937.
    [51]Regev,O.;Zana,R.Aggregation Behavior of Tyloxapol,a Nonionic Surfactant Oligomer,in Aqueous Solution.J.Colloid Interface Sci.1999,210:8-17.
    [52]Bhat,P.A.;Dar,A.A.;Rather,G.M.Solubilization Capabilities of Some Cationic,Anionic,and Nonionic Surfactants toward the Poorly Water-Soluble Antibiotic Drug Erythromycin,J.Chem.Eng.Data,2008,53:1271-1277.
    [53]Zheng,Q.;Zhao,J.X.Solubiliazation of pyrene in aueous solutions of gemini surfactants C_(12)-s-C_(12)·2Br.J.Colloid Interface Sci.,2006,300:749-754.
    [1]李干佐,郑利强,徐桂英.石油开采中的胶体化学,化学工业出版社,北京,2008,第六章.
    [2]赵福麟,石油大学出版社,东营,1994,第二章.
    [3]Rosen,M.J.;Wang,H.Z.;Shen,P.P.;Zhu,Y.Y.Ultra low interfacial tension for enhanced oil recovery at very low surfactant concentrations,Langmuir,2005,21:3749-3756.
    [4]Nasr-El-Din,H.A.;Taylor,K.C.Interfacial behaviour of crude oil/alkali systems in the presence of partially hydrolysed polyacrylamide,Colloids Surf.A,1993,75:169-183.
    [5]Nilsson,S.;Lohne,A.;Veggeland,K.Effect of polymer on surfactant floodings of oil reservoirs,Colloids Surf.A,1997,127:241-247.
    [6]Hou,J.R.;Liu,Z.C.;Zhang,S.F.;Yue,X.A.;Yang,J.Z.The role of viscoelasticity of alkali/surfactant/polymer solutions in enhanced oil recovery,J.Pet.Sci.Eng.,2005,47:219-235.
    [7]Austad,T.;Hodne,H.;Strand,S.;Veggeland,K.Chemical flooding of oil reservoirs 5.the multiphase behavior of oil/brine/surfactant systems in relation to changes in pressure,temperature,and oil composition,Colloids Surf.A,1996,108:253-262.
    [8]Nagarajan,R.;Harold,M.P.Surfactant-polymer interactions in tertiary oil recovery,Solution behavior of Surfactants Theoretical and Applied Aspects,1982,2:1391-1414.
    [9]Zhang,L.;Luo,L.;Zhao,S.;Yu,J.Y.Studies of synergism/antagonism for lowering dynamic interfacial tensions in surfactant/alkali/acidic oil systems 1.synergism/antagonism in surfactant/model oil systems,J.Colloid Interface Sci.,2002,249:187-193.
    [10]Zhao,Z.K.;Liu,F.;Qiao,W.H.;Li,Z.S.;Cheng,L.B.Novel alkyl methylnaphthalene sulfonate surfactants:a good candidate for enhanced oil recovery,Fuel,2006,85:1815-1820.
    [11]Zhao,Z.K.;Bi,C.G.;Li,Z.S.;Qiao,W.H.;Cheng,L.B.Interfacial tension between crude oil and decylmethylnaphthalene sulfonate surfactant alkali-free flooding systems,Colliods Surf.A,2006,276:186-191.
    [12]Rudin,J.;Wasan,D.T.Mechanisms for Lowering of Interfacial Tension in Alkali/Acidic Oil Systems:Effect of Added Surfactant,Ind.Eng.Chem.Res.,1992,3:1899-1906.
    [13]Chu,Y.P.;Gong,Y.;Tan,X.L.;Zhang,L.;Zhao,S.;An,J.Y.;Yu,J.Y.Studies of synergism for lowering dynamic interfacial tension in sodiumα-(n-alkyl) naphthalene sulfonate/alkali/acidic oil systems,J.Colloid Interface Sci.,2004,276:182-187.
    [14]Zhao,Z.K.;.Bi,C.G.;Qiao,W.H.;Li,Z.S.;Cheng,L.B.Dynamic interfacial tension behavior of the novel surfactant solutions and Daqing crude oil,Colliods Surf.A,2007,294:191-202.
    [15]刘木辛,徐桂英,李干佐,毛宏志,李方.油酸-油酸钠水溶液/原油间的瞬时界面张力.物理化 学学报.1995,11:1040-1043.
    [16]徐桂英,王富华,刘木辛,毛宏志.油酸-油酸钠水溶液/原油间的瞬时界面张力.油田化学.1993,10:57-61.
    [17]Rosen,M.J.;Zhou,Q.Surfactant-surfactant interactions in mixed monolayer and mixed micelle formation,Langmuir,2001,17:3532-3537.
    [18]Sharma,K.S.;Patil S.R.;Rakshit,A.K.;Glenn,K.;Doiron,M.;Palepu,R.M.;Hassan,P.A.Self-aggregation of a cationic-nonionic surfactant mixture in aqueous media:tensiometric,conductometric,density,light Scattering,potentiometric,and fluorometric studies,J.Phys.Chem.B.,2004,108:12804-12812.
    [19]Mulqueen,M.Blankschtein,D.Prediction of equilibrium surface tension and surface adsorption of aqueous surfactant mixtures containing zwitterionic surfactants,Langmuir,2000,16:7640-7654.
    [20]Ghoulam,M.B.;Moatadid,N.;Graciaa,A.;Marion,G.;Lachaise,J.Hydrocarbon/fluorocarbon mixed micelle diagram from surface tensiometry,Langmuir,1996,12:5048-5051.
    [21]Matsubara,H.;Nakano,T.;Matsuda,T.;Takiue,T.;Aratono,M.Effect of preferential adsorption on the synergism of a homologous cationic surfactant mixture,Langmuir,2006,22:2511-2515.
    [22]Chen,L.;Xiao,J.-X.;Ruan,K.;Ma,J.Homogeneous solutions of equimolar mixed cationic-anionic surfactants,Langmuir,2002,18:7250-7252.
    [23]Matsubara,H.;Ohta,A.;Kameda,M.;Ikeda,N.;Aratono,M.Interaction between ionic and nonionic surfactants in the adsorbed film and micelle,dodecylammonium chloride and tetraethylene glycol monooctyl ether,Langmuir,2000,16:7589-7596.
    [24]Danov,K.D.;Kralchevska,S.D.;Kralchevsky,P.A.;Ananthapadmanabhan,K.P.;Lips,A.Mixed solutions of anionic and zwitterionic surfactant(betaine):surface-tension isotherms,adsorption,and relaxation kinetics,Langmuir,2004,20:5445-5453.
    [25]Miyazaki,M.;Torigoe,K.;Esumi,K.Interactions of sugar-persubstituted poly(amidoamine)dendrimers with anionic surfactants,Langmuir,2000,16:1522-1528.
    [26]Li,F.;Rosen,M.J.;Sulthana,S.B.Surface properties of cationic gemini surfactants and their interaction with alkylglucoside or-maltoside surfactants,Langmuir,2001,17:1037-1042.
    [27]Ghosh,S.T.Chakraborty,Mixed micelle formation among anionic gemini surfactant(212) and its monomer(SDMA) with conventional surfactants(C_(12)E_5 and C_(12)E_8) in brine solution at pH 11,J.Phys.Chem.B.,2007,111:8080-8088.
    [28]Sharma,K.S.;Hassan,P.A.;Rakshit,A.K.Self aggregation of binary surfactant mixtures of a cationic dimeric(gemini) surfactant with nonionic surfactants in aqueous medium,Colloids Surf.A,2006,289:17-24.
    [29]Szymczyk,K.;Ja'nczuk,B.J.The wettability of polytetrafluoroethylene by aqueous solution of cetyltrimethylammonium bromide and Triton X-100 mixtures,J.Colloid Interface Sci.,2006,303:319-325.
    [30]Mitra,R.K.;Paul,B.K.;Moulik,S.P.Phase behavior,interfacial composition and thermodynamic properties of mixed surfactant(CTAB and Brij-58) derived w/o microemulsions with 1-butanol and 1-pentanol as cosurfactants and n-heptane and n-decane as oils,J.Colloid Interface Sci.,2006,300:755-764.
    [31]Huang,J.B.;Zhu,Y.;Zhu,B.Y.;Li,R.K.;Fu,H.L.Spontaneous Vesicle Formation in Aqueous Mixtures of Cationic Surfactants and Partially Hydrolyzed Polyacrylamide,J.Colloid Interface Sci.,2001,236:201-207.
    [32]Zhang,L.;Luo,L.;Zhao,S.;Yu,J.Y.Studies of synergism/antagonism for lowering dynamic interracial tensions in surfactant/alkali/acidic oil systems,part 2:synergism/antagonism in binary surfactant mixtures,J.Colloid Interface Sci.,2002,251:166-171.
    [33]Zhang,L.;Luo,L.;Zhao,S.;Yang,B.H.;Yu,J.Y.Studies of synergism/antagonism for lowering dynamic interfacial tension in surfactant/alkali/acidic oil systems 3.Synergism/ antagonism in surfactant/alkali/acidic model oil systems,J.Colloid Interface Sci.2003,260:398-403.
    [34]Chen,H.;Han,L.J.;Luo,P.Y.;Ye,Z.B.The interfacial tension between oil and gemini surfactant solution,Surf.Sci.,2004,552:L53-L57.
    [35]Chen,H.;Han,L.J.;Luo,P.Y.;Ye,Z.B.The ultralow interfacial tensions between crude oils and Gemini surfactant solutions,J.Colloid Interface Sci.,2005,285:872-874.
    [36]Gong,H.J.;Xin,X..;Xu,G.Y.;Wang,Y.J.The dynamic interfacial tension between HPAM/C17H33COONa mixed solution and crude oil in the presence of sodium halide,Colloids Surf.A,2008,317:522-527.
    [37]Gong,H.J.;Xu,G.Y.;Zhu,Y.Y.;Wang,Y.J.;Wu,D.;Wang,L.S.;Guo,H.J.;Wang,H.B.Influencing Factors on the Properties of Complex Systems Consisting of Hydrolyzed Polyacrylamide/ Triton X-100/ Cetyl trimethylammonium Bromide:Viscosity and Dynamic Interracial Tension Studies.Energy & Fuels,2009,23:300-305.
    [38]Xu,G.Y.;Chen,A.M.;Yang,Y.L.;Yuan,S.L.;Zheng,L.Q.Aggregation behavior of hydrophobically modified polyacrylate in aqueous solution,Colloids Surf.A,2005,256:69-75.
    [39]Asnacius,A.;Langevin,D.;Argillier,J-F.o.Complexation of cationic surfactant and anionic polymer at the air-water interface,Macromolecules,1996,29:7412-7417.
    [40]Zhang,H.X.;Xu,G.Y.;Wu,D.;Wang,S.W.Aggregation of cetyltrimethylammonium bromide with hydrolyzed polyacrylamide at the paraffin oil/water interface:interfacial rheological behavior study,Colliods Surf.A,2008,317:289-296.
    [41]Noskov,B.A.;Loglio,G.;Miller,R.Dilational Viscoelasticity of Polyelectolyte/Surfactant Adsorption Films at the Air/Water Interface:Dodecyltrimethylammonium Bromide and Sodium Poly(styrenesulfonate),J.Phys.Chem.B,2004,108:18615-18622.
    [42]Asnacios,A.;Klitzing,R.;Langevin,D.Mixed monolyers of polyelectrolytes and surfactants at the air-water interface,Colloids Surf.A,2000,167:189-197.
    [43]Jain,N.J.;Albouy,P.A.;Langevin,D.;Study of adsorbed monolyers of a cationic surfactant and an anionic polyelectrolyte at the air-water interface,Langmuir,2003,19:5680-5690.
    [44]Staples,E.;Tucker,I.;Penfold,J.;Warren,N.;Thomas,R.K.Organization of polymer-surfactant mixtures at the air-water interface:poly(dimethyldiallylammonium chloride),sodium dodecyl sulfate,and hexaethylene glycol monododecyl ether,Langmuir,2002,18:5139-5146.
    [45]Dubin,P.L.;The,S.S.;McQuigg,D.W.;Chew,C.H.;Gant,L.M.Binding of polyelectrolytes to oppositely charged ionic micelles at critical micelle surface charge densities,Langmuir,1989,5:89-95.
    [46]Li,Y.J.;Xia,J.L.;Dubin,P.L.Complex formation between polyelectrolyte and oppositely charged mixed micelles:static and dynamic light scattering study of the effect of polyelectrolyte molecular weight and concentration,Macromolecules,1994,27:7049-7055.
    [47]Acharya,D.P.;Gutierrez,J.M.;Aramaki,K.;Aratani,K-i.;Kunieda,H.Interfacial properties and foam stability effect of novel gemini-type surfactants in aqueous solutions,J.Colloid Interface Sci.,2005,291:236-243.
    [48]Zhao,Z.K.;Bi,C.G.;Qiao,W.H.;Li,Z.S.;Cheng,L.B.Dynamic interfacial tension behavior of the novel surfactant solutions and Daqing crude oil,Colloids Surf.A,2006,276:186-191.
    [49]Davies J.T.,and Rideal,E.K.,"Interfacial Phenomena," 2nd ed.,Academic Press,New York,1963.pp.154-216.
    [50]Zhang,L.;Luo,L.;Zhao,S.;Yu.Y.Studies of Synergism/Antagonism for Lowering Dynamic Interfacial Tensions in Surfactant/Alkali/Acidic Oil Systems,Part 2:Synergism/Antagonism in Binary Surfactant Mixtures,J.Colloid Interface Sci.,2002,251:166-171.
    [1]Lucassen-Reynders,E.H.Physical chemistry of surfactant action(Surfactant Science Series.Vol.11.New York:Marcel Dekker Inc.,1981:131
    [2]Goddard,E.D.;Ananthanthapadmanabhan,K.P.Interactions of surfactants with polymers and proteins.NewYork:CRC Press,Inc.,1993:1
    [3]Kwak,J.C.T.Polymer-surfactant systems.NewYork:Marcel Dekker Inc.,1998:267
    [4]Taylor,D.J.F.;Thomas,R.K.;Penfold,J.Polymer/surfactant interactions at the air/water interface.Adv.Colloid Interface Sci.,2007,132:69-110.
    [5]Tzeng,J.K.;Hou,S.S.Interactions between Poly(N-vinylformamide) and Sodium Dodecyl Sulfate As Studied by Fluorescence and Two-Dimensional NOE NMR Spectroscopy.Macromolecules 2008,41:1281-1288.
    [6]Guo,W.;Sun,Y.W.;Luo,G.S.;Wang,Y.J.Interaction of PEG with ionic surfactant SDS to form template for mesoporous material.Colloids Surf.A.2005,252:71-77.
    [7]Meszaros,R.;Varga,I.;Gilanyi,T.Effect of Polymer Molecular Weight on the Polymer/Surfactant Interaction.J.Phys.Chem.B,2005,109:13538-13544.
    [8]Middleton,H.;English,R.J.;Williams,P.A.Interaction of Sodium Dodecyl Sulfate with Methacrylate-PEG Comb Copolymers.Langmuir,2005,21:5174-5178.
    [9]Shirahama K,Tsujii K,Takagi T.Free - boundary electrophoresis of sodium dodecyl sulfate - protein polypeptide complexes with special reference to SDS - polyarcylamide gel electrophoresis.J.Biochem.,1974,75:309 - 319.
    [10]Sastry,N.V.;Hoffmann,H.Interaction of amphiphilic block copolymer micelles with surfactants.Colloids Surf.A,2004,250:247-261.
    [11]Kumbhakar,M.Effect of Ionic Surfactants on the Hydration Behavior of Triblock Copolymer Micelles:A Solvation Dynamics Study of Coumarin 153.J.Phys.Chem.B,2007,111:12154-12161.
    [12]Thurn,T.;Couderc,S.;Sidhu,J.;Bloor,D.M.;Penfold,J.;Holzwarth,J.F.;Wyn-Jones,E.Study of Mixed Micelles and Interaction Parameters for ABA Triblock Copolymers of the Type EOm-POn-EOm and Ionic Suffactants:Equilibrium and Structure.Langmuir,2002,18:9267-9275.
    [13]Vieira,J.B.;Thomas,R.K.;Li,Z.X.;Penfold,J.;Unusual Micelle and Surface Adsorption Behavior in Mixtures of Surfactants with an Ethylene Oxide-Propylene Oxide Triblock Copolymer.Langmuir,2005,21:41-4451.
    [14]Hecht,E.Hoffmann,H.Interaction of ABA Block Copolymers with Ionic Surfactants in Aqueous Solution.Langmuir 1994,10:86-91.
    [15]Xin,X.;Xu,G.Y.;Wang,Y.J.;Mao,H.Z.Zhang,Z.Q.Interaction between star-like block copolymer and sodium oleate in aqueous solutions.European Polymer J.,2008,44:3246-3255.
    [16]Wang,X.Y.;Wang,J.B.;Wang,Y.L.;Yan,H.K.Salt Effect on the Complex Formation between Cationic Gemini Surfactant and Anionic Polyelectrolyte in Aqueous Solution.Langmuir,2004,20:9014-9018.
    [17]Zhao,X.E;Shang,Y.Z.;Liu,H.L.Complexation of DNA with cationic gemini surfactant in aqueous solution.J.Colloid Interface Sci.,2007,314:478-483.
    [18]Vongsetskul,T.;Taylor,D.J.E;Zhang,J.;Li,E X.;Thomas,R.K.;Penfold,J.Interaction of a Cationic Gemini Surfactant with DNA and with Sodium Poly(styrene sulphonate) at the Air/Water Interface:A Neutron Reflectometry Study.Langmuir,2009,25:4027-4035.
    [19]Wu,D.;Xu,G.Y.;Sun,Y.H.;Zhang,H.X.;Mao,H.Z.;Feng,Y.J.Interaction between proteins and cationic gemini surfactant.Biomacromolecules,2007,8:708-712.
    [20]Nakano,S.I.;Karimata,H.;Ohmichi,T.;Kawakami,J.J.;Sugimoto,N.The Effect of Molecular Crowding with Nucleotide Length and Cosolute Structure on DNA Duplex.Stability J.Am.Chem.Soc.2004,126:14330-14331.
    [21]Nolan,C.M.;Reyes,C.D.;Debord,J.D.;Garcia,A.J.;Lyon,L.A.Phase Transition Behavior,Protein Adsorption,and Cell Adhesion Resistance of Poly(ethylene glycol) Cross-Linked Microgel Particles.Biomacromolecules,2005,6:2032-2039.
    [22]Razatos,A.;Ong,Y.L.;Boulay,F.;Elbert,D.L.;Hubbell,J.A.;Mukul,M.Measurements between Bacteria and Poly(ethylene glycol)-Coated Surfaces.Langmuir,2000,16:9155-9158.
    [23]Wang,C.R.;Fang,Y.;Feng,J.W.Synthesis of Au nanorings using SDS-PEG cluster as the soft template under mild conditions.Aata Chimica-Sinica.2007,65:1177-1180.
    [24]Ge,L.L.;Zhang,X.H.;Guo,R.Microstructure of Triton X-100/poly(ethylene glycol) complex investigated by fluorescence resonance energy transfer.Polymer,2007,48:2681-2691.
    [25]Ge,L.L.;Guo,R.;Zhang,X.H.Formation and Microstructure Transition of F127/TX-100Complex.J.Phys.Chem.B,2008,112:14566-14577.
    [26]Vieira,J.B.;Thomas,R.K.;Li,Z.X.;Penfold,J.Unusual Micelle and Surface Adsorption Behavior in Mixtures of Surfactants with an Ethylene Oxide-Propylene Oxide Triblock Copolymer.Langmuir,2005,21:4441-4451.
    [27]David,L.;Niemiec,A.;Schille'n,K.;Loh,W.;Olofsson,G.A Calorimetry and Light Scattering Study of the Formation and Shape Transition of Mixed Micelles of EO_(20)PO_(68)EO_(20) Triblock Copolymer(P123) and Nonionic Surfactant(C_(12)EO_6).J.Phys.Chem.B,2007,111:5911-5920.
    [28]Schille'n,K.;Jansson,J.;Lolf,D.;Costa,T.Mixed Micelles of a PEO-PPO-PEO Triblock Copolymer(P123) and a Nonionic Surfactant(C_(12)EO_6) in Water.A Dynamic and Static Light Scattering Study.J.Phys.Chem.B,2008,112:5551-5562.
    [29]Feitosa,E.;Brown,W.;Hansson,P.Interactions between the Non-ionic Surfactant C_(12)E_5 and Poly(ethylene oxide) Studied Using Dynamic Light Scattering and Fluorescence Quenching,Macromolecules,1996,29:2169-2178.
    [30]Feitosa,E.;Brown,W.;Vasilescu,M.;Swanson-Vethamuthu,M.Effect of Temperature on the Interaction between theNonionic Surfactant C_(12)E_5 and Poly(ethylene oxide) Investigated by Dynamic Light Scattering and Fluorescence Methods,Macromolecules,1996,29:6837-6846.
    [31]Feitosa,E.;Brown,W.Interaction of the Nonionic Surfactant C_(12)E_8 with High Molar Mass Poly(ethylene oxide) Studied by Dynamic Light Scattering and Fluorescence Quenching Methods.Langmuir,1996,12:5985-5991.
    [32]Regev,O.;Zana,R.Aggregation Behavior of Tyloxapol,a Nonionic Surfactant Oligomer,in Aqueous Solution.J.Colloid Interface Sci.1999,210:8-17
    [33]Feitosa,E.;Brown,W.,Wang,K.;Barreleiro,P.C.A.Interaction between Poly(ethylene glycol)and C_(12)E_8 Investigated by Dynamic Light Scattering,Time-Resolved Fluorescence Quenching,and Calorimetry.Macromolecules,2002,35:201-207.
    [1]Iijima,S.Helical microtubes of graphitic cabon.Nature,1991,354:56-58.
    [2]Iijima,S.;Ichihashi,T.Single-shell carbon nanotubes of 1-nm diameter.Nature,1993,363:603-605.
    [3]Vaisman,L.;Wagner,H.D.;Marom,G.The role of surfactants in dispersion of carbon nanotubes,Advances in Colloid and Interface Science,2006,128-130:37-46.
    [4]Yang,Y.L.;Zhang,J.;Nan,X.L.;Liu Z.F.Toward the chemistry of carboxylic single-walled carbon nanotubes by chemical force microscopy.J.Phys.Chem.B.2002,106:4139-4144.
    [5]Liu,C.;Fan,Y.Y.;Liu,M.;Cong,H.T.;Cheng,H.M.;Dresselhaus,M.S.Hydrogen storage in single-walled carbon nanotubes at room temperature.Science,1999,286:1127-1129.
    [6]Yoon,S.H.;Jin,H.J.;Kook,M.C.;Pyun,Y.R.Electrically Conductive Bacterial Cellulose by Incorporation of Carbon Nanotubes.Biomacromolecules,2006,7:1280-1284.
    [7]Duque,J.G.;Cognet,L.;Nicholas,A.;Parra-Vasquez,G.;Nicholas,N.;Schmidt,H.K.;Pasquali,M.Stable Luminescence from Individual Carbon Nanotubes in Acidic,Basic,and Biological Environments.J.Am.Chem.Soc.,2008,130:2626-2633.
    [8]Sugie,H.;Tanemura,M.;Filip,V.;Iwata,K.;Takahashi,K.;Okuyama,F.nanotubes as electron source in an x-ray tube.Appl Phys Lett,2001,78:2578-2580.
    [9]Zou,H.L.;Yang,Y.L.;Li,Q.w.;Zhang,J.;Liu,Z.F.;Guo,X.Y.;Du,Z.L.Electron beam induced structure transformation of single-walled-carbon nanotubes.Carbon,2002,40:2282-2284.
    [10]Kong,J.;Franklin,N.R.;Zhou,C.;Chapline,M.G.;Peng,S.;Cho,K.Nanotube molecular wires as chemical sensors.Science,2000,287:622-625.
    [11]Dai,H.J.;Hafner,J.H.;Rinzler,A.G.;Colbert,D.T.;Smalley,R.E.Nanotubes as nanoprobes in scanning probe microscopy.Nature,1996,384:147-150.
    [12]Gong,X.Y.;Liu,J.;Baskaran,S.;Surfactant-assisted processing of carbon nanotube/polymer composites.Chem.Mater.,2000,12:1049-1052.
    [13]张宇军,李鹏,胡元中.碳纳米管的操纵和剪切,科学通报,2002,47:1066-1070.
    [14]Dresselhaus,M.S.;Dresselhaus,G.;Avouris,P.Carbon Nanotubes:Synthesis,structure,properties,and applications.NewYork:Springer,2000,148-151:381-383.
    [15]Shvartzman-Cohen,R.;Nativ-Roth,E.;Baskaran,E.;Levi-Kalisman,Y.;Szleifer,I.;Yerushalmi-Rozen,R.Selective dispersion of single-walled carbon nanotubes in the presence of polymers:the role of molecular and colloidal length scales,J.Am.Chem.Soc.,2004,126:14850-14857.
    [16]Zheng,M.;Jagota,A.;Smeke,E.D.;Diner,B.A.;Mclean,R.S.;Lustig,S.R.;Richardson,R.E.;Tassi,N.G.DNA-assisted dispersion and separation of carbon nanotubes.Nat.Mater.,2003,2:338-342.
    [17]Salvador-Morales,C.;Townsend,P.;Flahaut,E.;Ve'nien-Bryan,C.;Vlandas,A.;Green,M.L.H.;Sim,R.;Binding of pulmonary surfactant proteins to carbon nanotubes;potential for damage to lung immune defense mechanisms.Carbon,2007,45:607-617.
    [18]Vigolo,B.;Penicaud,A.;Coulon,C.;Sauder,C.;Palller,R.Kpirmet,C.;Bermoer,P.Macroscopic fibers and ribbons of oriented carbon nanotubes.Science,2000,290:1331-1134.
    [19]O'Connell,M.J.;Bachilo,S.M.;Huffman,C.B.;Moore,V.C.;Strano,M.S.;Haroz,E.H.;Riaion,K.L.;Boul,P.J.;Noon,W.H.;Kittrell,C.;Ma,J.;Hauge,R.H.;Weisman,R.B.;Smalley,R.E.Band gap fluorescence from individual single-walled carbon nanotubes.Science,2002,297:593-596.
    [20]Bachilo,S.M.;Strano,M.S.;Kittrell,C.;Hauge,R.H.;Smalley,R.E.;Weisman,R.B.Structure-assigned optical spectra of single-walled carbon nanotubes.Science,2002,298:2361-2365.
    [21]Strano,M.S.;Dyke,C.A.;Usrey,M.L.;Barone,P.W.;Allen,M.J.;Shan,H.;Kittrell,C.;Hauge,R.H.;Tour,J.M.;Smalley,R.E.Electronic structure control of single-walled carbon nanotube functionalization.Science,2003,301:1519-1522.
    [22]Moore,V.C.;Strano,M.S.;Haroz,E.H.;Hauge,R.H.;Smalley,R.E.Individually suspended single-walled carbon nanotubes in various surfactants.Nano Letters,2003,3:1379-1382.
    [23]Priya,B.R.;Byrne,H.J.Investigation of Sodium Dodecyl Benzene Sulfonate Assisted Dispersion and Debundling of Single-Wall Carbon Nanotubes.J.Phys.Chem.C,2008,112:332-337.
    [24]Yu,J.R.;Grossiord,N.;Koning,C.E.;Loos,J.Controlling the dispersion of multi-wall carbon nanotubes in aqueous surfactant solution.Carbon,2007,45:618-623.
    [25]Tummala,N.R.;Striolo,A.SDS Surfactants on Carbon Nanotubes:Aggregate Morphology.ACS Nano,2009,3:595-602.
    [26]Xin,X.;Xu,G.Y.;Zhao,T.T.;Zhu,Y.Y.;Shi,X.F.;Gong,H.J.;Zhang,Z.Q.Dispersing Carbon Nanotubes in Aqueous Solutions by a Starlike Block Copolymer.J.Phys.Chem.C,2008,112:16377-16384.
    [27]Wang,Q.;Han,Y.C.;Wang,Y.L.;Qin,Y.J.;Guo,Z.X.Effect of Surfactant Structure on the Stability of Carbon Nanotubes in Aqueous Solution.J..Phys.Chem.B,2008,112:7227-7233.
    [28]Collins,P.G.;Arnold,M.S.;Avouris,E Engineering carbon nanotubes and nanotubo circuits using electrical breakdown.Science,2001,292:706-709.
    [29]Bandow,S.;Asaka,S.;Saito,Y.;Rao,A.M.;Grigorian,L.;Richter,E.;Eklund,E C.Effect of the growth temperature on the diameter distribution and chirality of single-wall carbon nanotubes.Phys.Rev.Lett.,1998,80:3779-3782.
    [30]Wang,H.;Zhou,W.;Ho,D.L.;Winey,K.I.;Fischer,J.E.;Glinka,Charles.J.;Hobbie,E.K.Dispersing Single-Walled Carbon Nanotubes with Surfactants:A Small Angle Neutron Scattering Study.Nano Letters,2004,4:1789-1793.
    [31]李洪光,博士论文,山东大学,济南,2008,第五章.
    [32]Saito,R.;Dresselhaus,G.;Dresselhaus,M.S.Trigonal warping effect of carbon nanotubes.Phys.Rev.B,2000,61:2981-2990.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700