多层金属粘接结构粘接质量的超声检测
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
粘接结构由于具有比强度、比模量高等特点,被广泛应用于航空航天、军工等重要部门。但是粘接过程中易出现粘接不良、气孔、局部脱粘等缺陷,破坏粘接结构的完整性。目前,超声检测已经成为粘接结构无损检测应用最广的技术之一。对金属-非金属粘接结构的超声检测技术研究较早,已趋于成熟,但是对多层金属粘接结构的超声检测研究较少。本文即是基于实际生产需要,针对多层金属粘接结构粘接质量的超声检测技术展开研究。
     本文首先根据产品的实际要求,设计了不同层数的金属平板粘接试样,建立了各种粘接试样的声学物理模型。针对不同的粘接试样,分析了不同检测方法的适用性。结合超声波在多层介质中的透射模型,分析了水浸透射法检测过程中不同频率的超声波在三层以上金属粘接结构中的声压透射率及能量损失情况。结果表明:对于两层金属粘接试样,直接接触多次反射底波法和水浸透射法都能够检测出人工缺陷;对于三层金属粘接结构,5MHz、2MHz、1MHz的水浸聚焦探头均能检测第二粘接界面的人工缺陷;对于四层金属粘接结构,5MHz的超声波在粘接层中损失殆尽,难以检测第三粘接界面的缺陷,而2MHz、1MHz的水浸聚焦探头却可以实现。
     在分析了粘接结构声学特性的基础上,提出了低频水浸聚焦超声换能器的设计方案。从晶片的选择、背衬的设计及优化、声透镜的设计等三个方面展开低频水浸聚焦换能器的设计。并提出了具体的设计指标。
     采用自行设计的水浸聚焦超声换能器及现有的5MHz的水浸聚焦换能器对粘接试样进行检测实验。实验结果表明:对于两层金属粘接结构,水浸透射法和纵波探头直接接触多次底波法都能检测出Φ6mm缺陷;对于三层金属粘接结构,水浸透射法能够较好的实现第二粘接界面Φ6mm缺陷的检测,但是5MHz的水浸聚焦换能器的缺陷检出能力明显高于2MHz、1MHz的水浸聚焦换能器;对于四层金属粘接结构,2MHz、1MHz的水浸聚焦换能器能够检测出第三粘接界面Φ6mm缺陷,但是5MHz的水浸聚焦换能器由于超声波能量的大幅损失无法完成检测。这与理论分析的结果基本一致。为同类粘接结构粘接质量的超声检测提供了一定的可借鉴经验。
Adhesive structure is widely applied in aviation & aerospace, war industry and other important fields, because of its high specific strength and specific modulus characteristics. However, it is easy to appear defects during bonding process, such as weak bonding, air hole, local debonding and so on, to destroy the integrality of the adhesive structure. At present, ultrasonic testing has already become one of the most widely-applied techniques in NDT of adhesive structure. Researches on the ultrasonic testing of multi-layered metal-nonmetal adhesive structure begin earlier, and tend to be ripe, but those of multi-layered metal-metal adhesive structure are less. According to the actual production need, this paper researches on the bonding qualities of multi-layered metal-metal.
     This paper according to the actual need of production, designed different layered bonding samples of metal-metal plane, established respective acoustic models, and analysed the applicability of different testing methods. Then associated with transmission model of ultrasonic in multi-layered media, this paper analysed its sound pressure transmissivities and energy losses in above three-layered metal-metal adhesive structure by immersion testing under different frequencies. The analysis result showed that both multiple echo method with direct contact and immersion testing could detect the position of the artificial defect in two-layered adhesive structure; immersion focusing probes with frequencies of 5MHz, 2 MHz and 1 MHz all could detect the artificial defect on the second bonding interface of the three-layered adhesive structure; and in four-layered adhesive structure, immersion focusing probe with frequency of 5MHz was difficult to detect the defect because of the attenuation in media, but those of 2 MHz and 1 MHz could be used to detect.
     On the basis of analysis of the acoustic properties of the adhesive structure, this paper proposed the contrivance of low-frequency immersion focusing probe. According to the contrivance , it planed to design the probe from chips choice, backing design and optimization and acoustic lens design, and specific design index are also proposed.
     Finally, testing experiments of bonding samples were carried on by self-design immersion focusing probe and 5 MHz probe, the experiments result showed that multiple echo method with direct contact and immersion testing could detect the 06mm defect in two-layered adhesive structure; immersion testing could achieve better detection of 06mm defect on the second bonding interface of the three-layered adhesive structure, but the capacity of detection of 5MHz probe was obviously higher than 2MHz and 1MHz probes; and in four-layered adhesive structure, 2 MHz and 1 MHz probes could detect 06mm defect on the third bonding interface, but 5MHz probe could not complete the detection because of the large energy loss. This was basically consistent with the theoretical analysis result mentioned above, and provided certain available experience for ultrasonic testing of similar adhesive structure.
引文
[1] 应崇福,超声学[M],科学出版社 1993
    [2] 李家伟,陈积懋,无损检测手册[M],机械工业出版社 2002.1
    [3] 林书玉,超声换能器的原理及设计[M],科学出版社,2004.6
    [4] 郭建中,林书玉,高伟,超声换能器电感电容匹配电路的改进[J1.压电与声光,2005.6
    [5] 尚志远,压电超声换能器的性能分析及应用领域[J].压电与声光,1994.2
    [6] 贾宝贤,边文凤等,压电超声换能器的应用与发展[J].压电与声光,2004.4
    [7] 程院莲,鲍鸿等,压电陶瓷应用研究进展[J].中国测试技术,2005.3
    [8].李明轩,粘接质量超声检测研究[J],应用声学,21(1).2002
    [9] R.D.Adams and B.W.Drinkwater, Nondestructive testing of adhesively-bonded joints[J]. NDT&E International, 1997.30(2): 93-98,
    [10] Cawley P. The Sensitivity of the mechanical impedance method of nondestructive testing[J]. NDT International, 1987, 20(4): 209-215
    [11] 刘松平,郭恩明等,固体推进器钢-橡胶包覆层胶接结构超声回波法检测技术研究[J].无损检测,2003.10(25)
    [12] Akker S, Arman J. Ultrasonic investigation on plane interfaces between polymers[J]. Ultrasonics, 1997, 35(4): 287-295
    [13] 李明轩,声阻法检测原理[M],科学出版社.1976
    [14] "Tap Testing", Nondestructive Testing Handbook, second edition: Vol.9, Special Nondestructive Testing Methods. Columbus[M], OH: American Society for Nondestructive Testing(1995): 220-227.
    [15] 赵慧蓉,赵克熙,喷管台阶形壳体粘接面脱粘超声探伤研究[J].宇航材料工艺,2001.6
    [16] Luca Goglio, Massimo Rossetto, Ultrasonic testing of adhesive bonds of thin metal sheets[J], NDT&E International 32 (1999) 323-331
    [17].袁艺,路宏年,粘接结构的一种在线检测技术[J].兵工学报,1994.11(4)
    [18]. Billson DR. Ultrasonic testing adhesively bonded layers using shear waves[A]. Ultrasonics International[C]. Le Touquet France: 1991, 447-450
    [19] 王召巴,金永,复合材料多界面脱粘超声检测技术[J].太原师范学院学报.2003.3 2(1)
    [20]..唐明州,张记龙,粘接结构超声信号的小波分解与特征提取[J].检测技术学报,17(4).2003
    [21] 张吉堂,路宏年,吕国松,多界面结构粘接质量检测中干扰信号的消除方法[J].无损检测,2003.4
    [22] 丁玉兰,石来德,机械设备故障诊断技术[M].上海科学技术文献出版社,1994
    [23] 张吉堂,路宏年,幅值谱在斜声束回波法多界面粘接质量检测中的应用[J].兵工学报,2004.1
    [24].张吉堂,路宏年,火箭发动机多层粘接结构的双模式检测[J].固体火箭技术,2003.26(4)
    [25].杨风暴,王召巴,超声C扫描绝热层粘接图像的分割识别[J].兵工学报,2001.2(22)
    [26]..Liang-MT Wu-J, Theoretical Elucidation on the Empirical Formulas for the Ultrasonic Testing Method for Concrete Structures[J], CEMENT AND CONCRETE RESEARCH 2002, Vol 32, Iss 11, pp 1763-1769
    [27] Goglio-L Rossetto-M, Ultrasonic Testing of Anaerobic Bonded Joints[J], ULTRASONICS 2002, Vol 40, Iss 1-8, pp 205-210
    [28] Tang W, Courouble-Irsid B. Lamb waves in multilayered media[A]. Ultrasonics International[C]. Le Touquet France, 1991. 579-582
    [29] Acoustoultrasonic Nondestructive Testing. Nondestructive Testing Handbook, second edition: Vol.9, Special Nondestructive Testing Methods. Columbus[M], OH: American Society for Nondestructive Testing(1995): 220-227.
    [30] Abhijit S.Pandya and Robert B.Macy著,徐勇等译,神经网络模式识别及其实现[M].电子工业出版社,1999.6
    [31].[俄]A.加卢什金著,阎平凡译,神经网络理论[M],清华大学出版社 2002.12
    [32].张建生,李明轩,多层粘接结构中脱粘界面的人工神经网络余弦变换谱特征识别[J],声学学报,第26卷第4期,2001年7月.
    [33].李征等,基于多层粘接结构的信号处理方法分析研究[J].山西电子技术,2004.3
    [34].张建生,李明轩,层状粘接结构超声检测信号的同态解卷积脱粘界面定征[J],应用声学2001.20(1)
    [35]. Daubechies, I., The Wavelet Transform, Time-Frequency Localization and Signal Analysis[J], IEEE Trans. Inf. Theory, 1990, vol. 36, pp. 961D1005.
    [36]. Gao, W. and Li, B. L.: 1993, 'Wavelet Analysis of Coherent Structures at the Atmosphere-Forest Interface' [J], J Appl. Meteorol. 32, 1717-1725.
    [37].衡彤,小波分析及其应用研究[D].四川大学博土研究生学位论文,2003年3月
    [38]. D.A. Slesarev and V. A. Barat, Use of Wavelet Transformation for Signal Analysis in The Testing of Steel Cables[J], Measurement Techniques, 2001 Vol. 44, No. 1,
    [39]. Coulter, R. L. and Li, B. L., 'A Technique Using the Wavelet Transform to Identify and Isolate Coherent Structures in the Planetary Boundary Layer' [J], in Proceedings of the 11th Symposium on Boundary Layers and Turbulence, Charlotte, 1995 pp. 291-294.
    [40]. D.V. Perov, A. B. Rinkevich, and Ya. G. Smorodinskii, Wavelet Filtering of Signals from Ultrasonic Flaw Detector[J], Russian Journal of Nondestructive Testing, 2002, Vol. 38, No. 12, pp. 869-882.
    [41]. AstafOeva, N.M., Wavelet Analysis: Fundamentals of Theory and Examples of Applications[J], Usp. Fiz. Nauk, 1996, vol. 166, no. 11, pp. 1145D1170.
    [42].张建生,李明轩,脱粘界面超声检测信号的小波多分辨率分析与重构[J].声学学报,2001.5.
    [43].陈玉宝,章立新,评定复合材料的超声换能器研制[J],南昌航空工业学院学报,2000.6
    [44].魏勤,苏虹,彭如海,聚焦换能器在SiCp/Al复合材料超声无损检测中的应用[J],实验力学,2003.6
    [45].蒋危平,超声检测(一)[M],核工业无损检测高级人员培训教材,
    [46].王自明等,无损检测综合知识[M].机械工业出版社,2005.1
    [47].彭应秋等,航空制件超声检测中的声场特性分析[J].航空学报,2002.2
    [48]. http://www.ndtinfo.net/hichina/tech-area/uttransducer/6-4.htm
    [49].张勇,陈强等,用于无损检测的电磁超声换能器研究进展[J],无损检测.2004.6
    [50] R.N.Thurston, A.D.Pierce, and E.Papadakis, Eds. Physical Acoustic[M] Vol. ⅩⅩⅣ: Ultrasonic Instruments and Divices, San Diego: Academic Press, 1999
    [51] 朱昌平,陈兆华等,超声换能器的宽带阻抗匹配器研究[J],声学技术,1994.13(2)
    [52] Aaron Fleischman, Rushabh Modi, Miniature high frequency focused ultrasonic transducers for minimally invasive imaging procedures[J] sensors and actuators 103(2003): 76-82,
    [53] 肖功纯,超声换能器的频率选择[J],自动化仪表,2001.1
    [54] http://www.weldr.net/skill/html/content_765.htm
    [55] http://www.ndtinfo.net/hichina/tech-area/uttech-book/uttech-book-2-sikaoti.htm
    [56].罗淑云等,高频超声换能器的阻抗匹配研究[J],应用声学,1993.13(6).
    [57]. G. Nassar, B. Nongaillard, Design of a wide-angle spectrum source for a non-destructive material characterization: low-frequency ultrasonic point sensor[J], NDT&E International 37 (2004) 481-488
    [58].彭应秋等,用阻抗均匀过渡法研制高分辨力换能器[J].南昌航空工业学院学报,2000.6
    [59].陈玉宝,章立新,评定复合材料的超声换能器的研制[J].南昌航空工业学院学报,.2000.6
    [60].诸国桢,杨勇,卢克安,10MHz短脉冲超声聚焦换能器的工艺及效果[J].声学技术,2001.3
    [61]. Dorothe'eCallens, Christian Bruneel, Jamal Assaad, D. Callens et al, Matching ultrasonic transducer using two matching layers where one of them is glue[J]. NDT&E International 37 (2004) 591-596
    [62].赵雁,滕永平,水浸宽带聚焦超声探头的研制[J].北方交通大学学报,2001.12

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700