基于非线性超声纵波的高温蠕变损伤检测与评价研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高温结构长时间受载会产生蠕变损伤,影响结构的服役安全性,因此实现对高温结构蠕变损伤进行快速有效检测以及剩余寿命定量预测具有重要意义。本文研究高温结构/材料蠕变过程中超声波传播非线性特性变化规律,为利用非线性超声技术无损评价高温蠕变损伤及预测蠕变剩余寿命提供依据。
     本文首先以钛合金Ti60材料为对象,通过设计实施经历不同高温蠕变试验时间的试验,模拟获得代表不同蠕变寿命阶段的损伤试样。利用金相显微镜、扫描电子显微镜分析了Ti60材料蠕变过程的显微结构变化情况。利用SNAP 5000高能超声检测系统搭建了超声检测平台,对处于不同蠕变寿命阶段的Ti60材料进行超声检测。得到如下结果:
     (1)随着蠕变损伤的演化和发展,超声纵波声速变化并不明显;(2)衰减系数在蠕变前期变化并不明显,而在蠕变寿命后期,衰减系数显著增加;(3)二次谐波参量β在整个蠕变过程中变化量达到80%以上,其变化总体上呈逐渐增大趋势,表现为振荡上升规律。
     最后,以实验研究结果为基础,提出一种利用超声非线性参量p来预测材料蠕变剩余寿命的无损评价方法。
Components and structures being operated at high temperature for long periods usually face the threat of creep damage. Therefore, it is of increasing importance to perform quick and effective testing and quantitative life prediction for structure health monitor (SHM) during creep damage. In this paper, we have performed a research on the characteristics of the nonlinear ultrasonic wave propagating in the creep damaged components or materials after different thermal loadings. The results from this paper may lay a foundation for nondestructive evaluation and life prediction of creep damage by using nonlinear ultrasonic technique.
     In this research, the creep damaged samples were acquired by high-temperature creep tests based on titanium alloy Ti60 for different holding times, which can represent the simulation of various creep damage levels. Then, the microstructure changes of the creep degraded samples were observed based on metallographic studies, such as scanning electron microscope (SEM) and optical microscope (OM). The ultrasonic parameters such as velocity, attenuation coefficient, second harmonic based nonlinear parameter and third harmonic based nonlinear parameter of these samples are measured using the SNAP 5000 high power ultrasonic testing system. The results show that:
     (1) The longitudinal velocity does not change significantly during the creep process. (2) The attenuation coefficient does not change significantly during the early creep period, but it increases obviously in the latter period. (3) The second harmonic based nonlinear parameterβis sensitive to the creep damage, whose variation reaches to 80% compared with that of the initial state. Moreover, the change ofβdoes not exhibit a monotonic increase with increasing creep life, but an oscillatory increase.
     Finally, we proposed a nondestructive evaluation method based on the nonlinear parameterβfor life prediction of metallic material under creep loading.
引文
[1]税国双,汪越胜,曲建明.材料力学性能退化的超声无损检测与评价[J].力学进展.2005,35(1):52-68
    [2]Meyendorf NGH, Kramb V. Thermo acoustic fatigue characterization[J]. Ultrasonics. 2002,40:427-434
    [3]Cantrell JH. Substructural organization dislocation plasticity and harmonic generation in cyclically stressed wavy slip metals[J]. PTOC R Soc Lond A.2004,460:1-24
    [4]张俊哲.无损检测技术及其应用[M].北京:科学出版社.1993
    [5]王淑莲.超声检测技术的发展与应用[J].机电一体化.1999,5:53-54
    [6]张家骏.超声检测技术的某些新进展[J].无损检测.1993,15:324-327
    [7]袁康.粗晶结构钢材热疲劳损伤的超声无损检测与评价关键技术研究[D].上海:上海大学.2008
    [8]Suzuki T, Hikata A, Elbaum C. Anharmonicity due to glide motion of dislocations[J]. Journal of Applied Physics.1964,35(9):2761-2766
    [9]Hikata A, Chick B, Elbaum C. Dislocation contribution to the second harmonic generation of ultrasonic waves[J]. Journal of Applied Physics.1965,36(1):229—236
    [10]Cantrell JH. Determination of precipitate nucleation and growth rates from ultrasonic harmonic generation[J]. Applied physics letters,2000
    [11]Cantrell JH. Nonlinear ultrasonic characterization of fatigue microstructures[J]. International Journal of Fatigue,2001
    [12]曾昱.超声非线性的理论与实验研究[D].北京:北京交通大学.2008
    [13]Jhang KY. Nonlinear Ultrasonic Techniques for Nondestructive Assessment of Micro Damage in Material:A Review[J]. Internationl journal of precision engineering and manufacturing.2009,10(1):123-135
    [14]Morishita T. Creep damage modeling based on ultrasonic velocities in copper [J]. Inf..I. Solid& Structures 1997,34(10):1169-1182
    [15]Ohtani T. Acoustic Damping Characterization and Microstructure Evolution during High-Temperature Creep of an Austenitic Stainless Steel [J]. Metallurgical and Materials Transactions A.2005
    [16]Kim CS. Characterization of creep-fatigue in ferritic 9Cr-1Mo-V-Nb steel using ultrasonic velocity[J]. Journal of Nuclear Materials.2008(377):496-500
    [17]邢玉生等.HK40炉管蠕变损伤级别的超声检测综合评定方法[J].无损检测.1993
    [18]董志勇,胡金榜.超声波衰减系数法评估材料损伤的研究[J].化工机械.2007,34:139-143
    [19]Kim JY, Jacobs LJ, Qu J, Littles JW. Experimental Charaterization of Fatigue Damage in a Nickel—Base Superalloy Using Nonlinear Ultrasonic Waves [J]. J. Acoust. Soc. Am. 2006
    [20]Kim JY, Qu J, Jacobs LJ, Littles J W and Savage M F. Acoustic Nonlinearity Parameter due to Microplasticity[J]. J. Nondestructive Evaluation.2006
    [21]Herrmann J, Kim J Y, Jacobs L J, Qu J, Littles J W, and Savage M. Assessmentof Material Damage in a Nickel-Base Superalloy Using Nonl inear Rayleigh Surface Waves[J]. Journal of Applied Physics.2006
    [22]Kang Jidong. On the detection of creep damage in a directionally solidified nickel base supper alloy using nonlinear ultrasound [J]. Review of Quantitative Nondestructive Evaluation.2004(23)
    [23]Baby S, Kowmudi BN, Omprakash CM. Creep damage assessment in titanium alloy using a nonlinear ultrasonic technique[J]. Scripta Materialia.2008(59):818-821
    [24]Kim CS. Precipitate Contribution to the Acoustic Nonlinearity in Nickel-Based Superalloy[J]. China physics letter.2009(26):086107
    [25]Kim CS, Park I. Microstructural Degradation Assessment in Pressure Vessel Steel by Harmonic Generation Technique[J]. Journal of Nuclear Science and Technology.2008,45(10): 1036-1040
    [26]Kim CS, Park I, Jhang KY. Nonlinear ultrasonic characterization of thermal degradation in ferritic 2.25Cr-1Mo steel[J]. NDT&E International.2009(42):204-209
    [27]凌祥.材料蠕变损伤与断裂[J].化工机械.1990(17):239-244
    [28]Cantrell J.H. Acoustic nonlinearity in polycrystalline nickel from fatigue-generated microstructures[J]. Review of Progress in Quantitative Nondestructive Evaluation.2005(24A)
    [29]Cantrell JH. Nondestructive Evaluation of Metal Fatigue Using Nonlinear Acoustics[J]. Review of Progress in Quantitative Nondestructive Evaluation.2009(28a)
    [30]Hyunjo Jeong. A progressive damage model for ultrasonic velocity change caused by creep voids in copper[J]. Materials Science and Engineering A.2002(337):82-87
    [31]Jitendra SV, Krishnan B, Raghu VP. Creep damage characterization using non-linear ultrasonic techniques [J]. Acta Mater.2010(58):2079-2090
    [32]中国机械工程学会无损检测分会编.超声波检测 第2版[M].北京:机械工业出版社.2000
    [33]罗斯 JL,何存富(译).固体中的超声波[M].北京:科学出版社.2004
    [34]Jhang KY. Evaluation of material degradation using nonlinear acoustic effect[J]. Ultrasonics.1999(37):39-44
    [35]涂善东.高温结构完整性原理[M].北京:科学出版社.2003
    [36]李家伟,陈积懋.无损检测手册[M].北京:机械工业出版社.2004.
    [37]郑晖,林树青.超声检测(第二版)[M].北京:中国劳动保障出版社.2004
    [38]李国华,吴淼.现代无损检测与评价[M].北京:化学工业出版社.2008:20-34
    [39]冯若.超声手册[M].南京:南京大学出版社.1999
    [40]张均,李东.高温钛合金中的α2相[M].沈阳:东北大学出版社.2002
    [41]GB/T20391997.金属拉伸蠕变及持久试验方法.冶金工业部.1997
    [42]Xiang YX, Xuan FZ, Deng MX. Evaluation of Thermal Degradation Induced Material Damage Using Nonlinear Lamb Waves[J].Chinese Physics Letter.2010,27(1)
    [43]Cantrell JH, Yost WT. Effect of precipitate coherency strains on acoustic harmonic generation[J]. Journal of Applied Physics.1997(81):2957-2962
    [44]敦怡,师小红,徐章遂.基于二次谐波技术的固体火箭发动机界面粘接质量的超声无损评价[J].固体火箭技术.2008,31(2):198-200
    [45]陈小佳,沈成武,Laurence LJ.一种基于非线性超声谐波幅值比的微裂缝探测方法[J].武汉大学学报(工学版).2007,40(6):61-65
    [46]郑海山,张中杰,杨宝俊.固体中非线性纵波一维数值模拟[J].地震学报.2004,26(1):77-83
    [47]陈艺.制氢转化炉HP40Nb炉管材料劣化损伤程度及剩余寿命评价方法研究[D].上海:华东理工大学.2007
    [48]Jerome F, Shamachary S, Theodore EM, Jeong KN. Ultrasonic linear and nonlinear behavior of fatigued Ti-6Al-4V[J]. J.Mater.Res.1999,14(4),1295-1298
    [49]ES-Souni M. Creep deformation behavior of three high-temperature near a-Ti alloys: IMI834, IMI829, and IMI 685[J].2001(32A):285-293
    [50]Luo J, Li MQ, Yu WX. Microstructure Evolution during High Temperature Deformation of Ti-6A1-4V Alloy[J]. Rare Metal Materials and Engineering.2010,39(8):1323-1328
    [51]蔡云.TC4钛合金高温拉伸力学性能研究和组织演变[D].南京:南京航空航天大学.2009
    [52]Penny RK, Weber MA. Robust Methods of life assessment during creep[J]. Int.J.Pres.Ves.&piping.1992(50):109-131
    [53]Es-Souni M. Creep behavior and creep microstructures of a high-temperature titanium alloy Ti-5.8Al-4.0Sn-3.5Zr-0.7Nb-0.35Si-0.06C(Timetal 834) Part2[J]. Primary and steady-state creep.2001(46):365-379
    [54]张延杰.钛合金相变的电子显微镜研究(II)-钛及其合金的两个基本相的结晶结构和它们可能产生的晶格缺陷[J].稀有金属材料与工程.1989(3):54-60
    [55]Palanisamy S. Ultrasonic Inspection of Gas Porosity Defects in Aluminium Die Castings. Australia:Swinburne University of Technology[D].2006
    [56]汪淳.高温长期服役后Cr9Mo炉管剩余寿命的研究[D].南京:南京工业大学.2006
    [57]Hatanaka H. Ultrasonic Creep Damage Detection by Frequency Analysis or Boiler Piping[J]. Journal of Pressure Vessel Technology.2007(129):713-718
    [58]Cantrell JH. Quantitative assessment of fatigue damage accumulation in wavy slip metals from acoustic harmonic generation[J]. Philosophical Magazine.2006,86(11): 1539-1554
    [59]Shalabh G, Asok R, Eric K. Online fatigue damage monitoring by ultrasonic measurements:A symbolic dynamics approach[J]. International Journal of Fatigue.2007(29): 1100-1114
    [60]Luxenburger S, Arnold W. Laser ultrasonic absorption measurement in fatigue-damaged materials[J]. Ultrasonics.2002(40):797-801
    [61]Yoshikazu Y, Yoshihiro N, Kazuhiro M, Takuichi I. Nondestructive evaluation of creep damage using leaky surface acoustic wave technique [J].JSME International Journal A.2002,45(1):39-45
    [62]Peters RD, Breazeale MA, Pare VK. Ultrasonic Measurement of the Temperature Depnedence of Nonlinearity Parameters of Copper[J]. Physical Review B.1970, 1(8):3245-3251
    [63]Xiang YX, Deng MX, Xuan FZ. Analysis of second-harmonic generation of Lamb waves using a combined method in a two-layered solid waveguide [J]. Journal of Applied Physics.2009
    [64]Cantrell JH. Nondestructive Evaluation of Metal Fatigue Using Nonlinear Acoustics[J]. Review of Progress in Quantitative Nondestructive Evaluation.2009(28a)
    [65]Hyunjo J. A progressive damage model for ultrasonic velocity change caused by creep voids in copper [J],Materials Science and Engineering A.2002(337):82-87
    [66]Yost WT, Cantrell JH. Absolute ultrasonic displacement amplitude measurements with a submersible electrostatic acoustic transducer [J].Rev. Sci. Instrum.1992,83:4182-4188
    [67]郭伟灿.超高压容器和管道周向超声检测技术研究[D].浙江:浙江大学.2006
    [68]Sake M, Uchikawa T. Simplified NDE of a closed vertical crack using ultrasonics[J]. NDT&E Int.1995,28(5):289-296
    [69]Gerd L, James CW. Engineering Materials and Processes-Titanium[M]. ISSN 1619-0181.Springer Berlin Herdelberg New York.2007
    [70]Ohtani T, Ogi H, Hirao M. Evolution of microstructure and acoustic damping during creep of a Cr-Mo-V ferritic steel[J]. Acta Materialia.2006,54:2705-2713
    [71]Solodov I, Wackerl J, Pfleiderer K, Busse G. Nonlinear self-modulation and subharmonic acoustic spectroscopy for damage detection and location[J]. Applied Physics Letter.2004,84(26):5386-5390
    [72]Ogi H, Hirao M, Aoki S. Noncontact monitoring of surface-wave nonlinearity for predicting the remaining life of fatigued steels[J]. Journal of Applied Physics 2001,90(1):438-443
    [73]Jhang K Y. Applications of nonlinear ultrasonics to the NDE of material degradation[J]. IEEE Transations on ultrasonics.2000,47(3):540-548

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700