非结构动网格上的多介质流数值模拟方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文主要研究了在非结构动网格上求解含有可自由运动的介质界面的可压缩多介质流场的一套数值模拟方法。
     首先采用阵面推进法生成了二维三角形和三维四面体非结构网格,在生成过程中为了提高网格生成效率,采用双向链表和堆的数据结构,加快插入、删除和查找等单元操作。在三维阵面推进法中,提出了线、面、体几何相交判断规则,将复杂几何体的相交判断看作为几个简单几何体的相交判断的合成,同时加入了边交换和面交换技术,提高了网格质量。
     本文尝试在非结构动网格上通过运用HLLC格式求解ALE方程(ArbitraryLagrangian-Eulerian Formulation)来数值模拟多介质流,将介质界面定义为一种可以自由运动的网格内部边界,它将整个流场分成了若干个区域,分别对应不同的介质。该边界由网格边组成,界面两侧对应两种不同介质中的网格,界面节点上的流动状态矢量都有着两种定义,分别对应界面两侧不同的介质状态。通过求解介质界面上的Riemann问题来追踪介质界面上网格节点的运动。通过公式推导求出了刚性气体状态方程(Stiffened Gas EOS)下多介质Riemann问题的解析解,而对其他拥有复杂形式的状态方程则采用双波近似方法求得Riemann问题的近似解。同时研究了两种介质界面数值通量的求解方法:Lagrange方法和虚拟流体方法(Ghost FluidMethod,GFM),通过算例比较,认为虚拟流体方法比Lagrange方法更适合求解介质界面上存在大压力梯度的多介质流问题。
     在动网格的处理上,对于小变形多介质界面以及简单多介质流场,非结构网格的变形运用弹簧原理来处理;而对于大变形介质界面和复杂多介质流场,采用局部重构技术来处理。同时,介质界面上的网格节点可能会在界面上进行滑移,导致界面上网格体积为负,因此将介质界面定义为网格变形边界,如果节点滑移幅度过大,则会自动调整界面上的节点和网格,避免造成负体积网格的出现。另外,本文在运用动网格技术求解含有运动弹丸的膛口流场过程中,将整个流场分为两个区域,它们由特殊的内部边界联系,从根本上解决了弹丸从膛内到膛外运动时流场结构发生变化的问题。
     最后通过水下爆炸、激波诱导水中气泡变形以及机翼与海面相互作用等多介质模型的数值模拟,证明本文的ALE方法是可行的,而且与国内外流行的基于静止网格的Euler方法有如下优点:(1)能够时刻追踪介质界面上每个节点的运动状态,界面形状描述更加精确;(2)能够捕捉含有微小位移的介质界面。
Numerical methods based on unstructural moving grids are developed to solve compressible multi-material flows where an arbitrarily moving interface exists between two immiscible fluids.
     Unstructural 2D triangle and 3D tetrahedron grids are generated using advancing front technology. The bidirectional chains are applied to accelerate some operations such as inserting, deleting and searching. A simple rule is proposed to judge the intersection of segment, facet and volume during generating tetrahedron grids. Besides, edge swaping and face swaping methods are also applied to improve the quality of tetrahedron grids.
     Arbiratry Lagrangian-Eulerial (ALE) formulation based on unstructual moving grids is used to solve multi-material flows. The material interface is looked upon as a lagrangian interface which can move freely and is composed of a number of edges of the unstructured grids. The state vectors of the points on the interface have two different definitions corresponding to the two different fluids. Then, Riemann problem is solved to track the interface accurately and the grids are moving automatically with the motion of the interface. The analytic solution of Riemann problem for stiffened gas equation of state (EOS) is deduced in this article. And two-shock approximation method is implemented for general EOS. Two different methods, Lagrange methods and ghost fluid method (GFM) are discussed here to compute the numeical flux through the material interface. 1D double-material shock tube problems are solved to indicate that GFM still work well when large pressure grads exists near the interface.
     Spring analogy and local remeshing technology is respectively applied to deal with small and large deforming grids. At the same time, points at the material interface may slip in tangent direction of the interface resulting in negative volume grids. To resolve this problem, the material interface is defined as deforming boundary where the points and grids can adaptively adjust their positions.
     Underwater explosion model, shock bubble model and supersonic aerofoil over water model are computed using ALE method, which indicates that ALE method is feasible in the computing of multi-material flows and holds these advantages comparing with Euler mehods: (1) real-time tracking of the material interface; (2) ability of capturing mirco-deforming interface.
引文
1 Jin H,Wiberg N E.Two-Dimensional Mesh Generation,Adaptive Remeshing and Refinement[J].International Journal for Numerical Methods In Engineering.1990,29:1501-1526
    2 Peraire J,Vahdati M,Morgan K,Zienkiewicz O C.Adaptive Remeshing for Compressible Flow Computations[J].Journal of Computational Physics.1987,72:229-466
    3 Lo S H.A New Mesh Generation Scheme for Arbitrary Planar Domains[J].International Journal for Numerical Methods In Engineering.1985,21:1403-1426
    4 Shahyar P.Structured Background Grids for Generation of Unstructured Grids by Advancing-Front Method[J].AIAA Journal.1993,31(2):257-265
    5 Mathur J S,Weatherill N P.The Simulation Of Inviscid,Compressible Flows Using an Upwind Kinetic Method on Unstructured Grids[J].International Journal For Numerical Methods In Fluids.1992,15:59-82
    6 David A F.Laplacian Smoothing and Delaunay Triangulations[J].Communications in Applied Numerical Methods.1988,4:709-712
    7 Wille S.A Structured Tri-Tree Search Method for Generation of Optimal Unstructured Finite Element Grids in Two and Three Dimensions[J].International Journal for Numerical Methods In Fluids.1992,14:861-881
    8 朱自强.应用计算流体力学[M].北京:北京航空航天大学出版社,1997
    9 陶文铨.计算传热学的近代进展[M].北京:科学出版社,2000
    10 Thacker W C.A Brief Review of Techniques for Generating Irregular Computational Grids[J].International Journal for Numerical Methods In Engineering.1980(15):1335-1341
    11 Marquina A.A Flux-Split Algorithm Applied to Conservative Models for Multicomponent Compressible Flows[J].Journal of Computational Physics,2003(185):120-138
    12 Shyue K.A Fluid-Mixture Type Algorithm for Compressible Multicomponent Flow With Mie-Gruneisen Equation of State[J].Journal of Computational Physics,2001(171):678-707
    13 Abgrall R.Efficient Numerical Approximation of Compressible Multi-material Flow for Unstructured Meshes[J].Computers & Fluids,2003(32):571-605
    14 柏劲松,陈森华.多介质流界面高精度自适应欧拉算法[J].计算物理,2003,20(2):95-101
    15 Toumi I.An Approximate Linearized Riemann Solver for a Two-Fluid Model[J].Journal of Computational Physics,1996(124):286-300
    16 Gloth,D.Hanel,L.Tran R V.A Front Tracking Method on Unstructured Grids[J].Computers & Fluids,2003(32):547-570
    17 Shyue K.An Efficient Shock-Capturing Algorithm for Compressible Multicomponent Problems[J].Journal of Computational Physics,1998(142):208-242
    18 Jia P.Two-Dimensional Compressible Multimaterial Flow Calculations in A Unified Coordinate System[J].Computers & Fluids,2006(35):168-188
    19 董海涛,符鸿源.多介质流的高分辨率Euler方法[J].计算物理,1999,16(4):414-421
    20 Abgrall R.How to Prevent Pressure Oscillations in Multicomponent Flow Calculations:A Quasi Conservative Approach[J].Journal of Computational Physics,1996(125):150-160
    21 柏劲松,陈森华.多介质可压缩流体动力学界面捕捉方法[J].爆炸与冲击,2004,24(1):37-43
    22 Chen L.A Numerical Method for Two-Phase Flows With an Interface[J].Environmental Modelling & Software,1998(113):247-255
    23 Tang H.Tracking of Immiscible Interfaces in Multiple-Material Mixing Processes[J].Computational Materials Science,2004(29):103-118
    24 赵大勇,李维仲.VOF方法中几种界面重构技术的比较[J].热科学与技术,2003,2(4):318-323
    25 张建.VOF方法理论与应用综述[J].水利水电科技进展,2005,25(2):67-70
    26 王晨星,唐维军等.应用多介质PPM方法计算斜激波与物质交界面的相互作用[J].计算物理,2004,21(6):531-537
    27 Shaoping W.A Thermodynamically Consistent and Fully Conservative Treatment of Contact Discontinuities for Compressible Multicomponent Flows[J].Journal of Computational Physics,2004(195):528-559
    28 Hankin R K S.The Euler Equations for Multiphase Compressible Flow in Conservation Form:Simulation of Shock-Bubble Interactions[J].Journal of Computational Physics,2001(172):808-826
    29 Xiao F.An Efficient Numerical Model for Multi-Phase Fluid Dynamics[J].Advaces in Engineering Software,1998,29(3-6):345-352
    30 Xu K.BGK-Based Scheme for Multicomponent Flow Calculations[J].Journal of Computational Physics,1997(134):122-133
    31 蔚喜军,尤迎玖.流体界面不稳定性数值模拟中不同介质界面的处理方法[J].计算物理,2001,18(1):23-26
    32 Nourgaliev R R.Adaptive Characteristics-Based Matching for Compressible Multifluid Dynamics[J].Journal of Computational Physics,2006(213):500-529
    33 Fedkiw R P.An Isobaric Fix for the Overheating Problem in Multimaterial Compressible Flows[J].Journal of Computational Physics,1999(148):545-578
    34 Fedikiw R P.A Non-Oscillatory Eulerian Approach to Interfaces in Multimaterial Flows(the Ghost Fluid Method)[J].Journal of Computational Physics,1999(152):457-492
    35 Caiden R.A Numerical Method for Two-Phase Flow Consisting of Seperate Compressible and Incompressible Regions[J].Journal of Computational Physics,2001(166):1-27
    36 Hu X Y.An Interface Interaction Method for Compressible Multifluids[J].Journal of Computational Physics,2004(198):35-64
    37 Koren B.Riemann-Problem and Level-Set Approaches for Homentropic Two-Fluid Flow Computations[J].Journal of Computational Physics,2002(181):654-674
    38 Liu T G.The Simulation of Compressible Multi-medium Flow.I.A New Methodology with Test Applications to 1D Gas-Gas and Gas-Water Cases[J].Computers & Fluids,2001(30):291-314.
    39 Liu T G.The Simulation of Compressible Multi-Medium Flow.Ⅱ.Applications to 2D Underwater Shock Refraction[J].Computers & Fluids,2001(30):315-337
    40 朱君,赵宁等.R-M界面不稳定性Level Set方法[J].南京理工大学学报,2004,28(2):190-193
    41 姜洋,赵宁等.界面不稳定性数值模拟中的虚拟流动方法[J].计算物理,2003,20(6):549-555
    42 唐维军,张景琳等.三维流体界面不稳定性的Ghost方法[J].计算物理,2001,18(2):164-169
    43 唐维军,赵宁等.随机扰动下三维流体界面不稳定性的并行计算[J].计算物理,2001,18(6):540-543
    44 Liu T G.Ghost Fluid Method for Strong Shock Impacting on Material Interface[J].Journal of Computational Physics,2003(190):651-681
    45 Liu T G.The Ghost Fluid Method for Compressible Gas-Water Simulation[J]. Journal of Computational Physics,2005(204):193-221
    46 Abgrall R.Computations of Compressible Multifluids[J].Journal of Computational Physics,2001(169):594-623
    47 Luo H.A Hybrid Interface of Capturing Method for Compressible Multi-Fluid Flows on Unstructured Grids[C].AIAA 96-0416,1996
    48 柏劲松,陈森华.多介质流体非守恒律欧拉方程组的数值计算方法[J].爆炸与冲击,2001,21(4):265-271
    49 柏劲松,陈森华.界面不稳定性的自适应欧拉数值计算[J].爆炸与冲击,2003,23(1):19-24
    50 柏劲松,陈森华.可压缩密实介质多流体高精度欧拉算法[J].高压物理学报,2002,16(3):204-212
    51 柏劲松,陈森华.一种捕捉可压缩流体多重交汇界面的改进型LS方法[J].高压物理学报,2003,17(4):268-274
    52 柏劲松,陈森华.重新初始化的LS方法跟踪二维可压缩多介质流界面运动[J].高压物理学报,2003,17(1):22-28
    53 马东军.高密度比多介质可压缩流动的PPM方法[J].计算物理,2001,18(6):517-522
    54 马东军,孙德军,尹协远.一维多介质可压缩流动数值方法[J].计算物理,2003,20(2):183-188
    55 郑建国,马东军等.Mie-Gruneisen状态方程可压缩多流体流动的PPM方法[J].爆炸与冲击,2006,26(2):156-161
    56 马东军,蔡勇等.两种多介质流体可压缩流动界面捕捉方法的数值研究[J].中国科学技术大学学报,2002,32(2):186-193
    57 Glimm J.Front Tracking in Two and Three Dimensions[J].Computers &Mathematics with Applications,1998,35(7):1-11
    58 Glimm J.Three-Dimensional Front Tracking[J].SIAM Journal on Scientific Computing,1998,19(3):703-727
    59 Cocchi J.A Riemann Problem Based Method Method for the Resolution of Compressible Multimaterial Flows[J].Journal of Computational Physics,1997(137):265-298
    60 Hao Y.A Numerical Method for Three-Dimension Gas-liquid Flow Computations[J].Journal of Computational Physics,2004(196):126-144
    61 Steinthorsson E.A front Tracking Scheme for High Density-Ratio Multi-Fluid Flows[C].AIAA 99-3326,1999
    62 Tryggvason G.A Front-Tracking Method for the Computations of Multiphase Flow[J].Journal of Computational Physics,2001(169):708-759
    63 Leveque R J.Two-Dimensional Front Tracking Based on High Resolution Wave Propagation Methods[J].Journal of Computational Physics,1996(123):354-368
    64 董素琴,李德元等.多介质流体力学计算的一种二维非守恒型差分格式[J].计算物理,1997,14(3):274-282
    65 陈艺冰.多介质流体力学计算的守恒型高分辨率格式[J].计算物理,2004,21(2):99-105
    66 Luo H.An ALE Method for Compressible Multi-material Flows on Unstructured Grids[C].AIAA 2003-4109,2003
    67 Smith R W.AUSM(ALE):A Geometrically Conservative Arbitrary Lagrangian-Eulerian Flux Splitting Scheme[J].Journal of Computational Physics,1999(150):268-286
    68 Luo H.On The Computation of Multi-Material Flows Using ALE Formulation[J].Journal of Computational Physics,2004(194):304-328
    69 严蔚敏,吴伟民.数据结构[M].北京:清华大学出版社,1997
    70 彭国伦.Fortran 95程序设计[M].北京:中国电力出版社,2002
    71 黄海峰.阵面推进法生成3D非结构网格及运动网格研究与应用[D].南京:南京理工大学,2003
    72 郭正.包含运动边界的多体非定常流场数值模拟方法研究[D].长沙:国防科学技术大学,2002
    73 Ramshaw J D.Conservative Rezoning Algorithm for Generalized Two-Dimensional Meshes[J].Journal of Computational Physics,1985,59:193-199
    74 王永健,赵宁.一类二阶守恒单调重映算法[J].南京航空航天大学学报.2004,36(5):653-657
    75 王永健,赵宁.一类基于ENO插值的守恒重映算法[J].计算物理.2004,21(4):329-334
    76 符尚武,戴自换,邬吉明.二维Lagrange网格的积分守恒重映方法[J].计算物理.2005,22(2):184-188
    77 王瑞利,毛明志.任意网格重映的样条逼近算法[J].计算物理.2001,18(5):429-434
    78 蔡庆东,水鸿寿,符尚武.网格重分中关于守恒重映的几个问题[J].计算物理.2001,18(1):17-22
    79 王东红,王岩青,戴嘉尊.用任意拉格朗日-欧拉方法求解流体力学方程组[J]. 南京航空航天大学学报.2003,35(5):525-528
    80 喻虹.质点积分守恒重映方法[J].爆炸与冲击.2003,23(6):493-500
    81 王东红.Lagrange方法及重映算法的研究[D].南京:南京航空航天大学,2002
    82 王永健.ALE方法及重映技术的研究[D].南京:南京航空航天大学,2004
    83 郭正,刘君,瞿章华.非结构动网格在三维可动边界问题中的应用[J].力学学报.2003,35(2):140-146
    84 吴德红,郑莉,耿继辉,等.含动边界非结构化自适应网格生成方法研究[J].南京理工大学学报.2000,24(5):406-409
    85 耿继辉,吴德红,吴慧中.含运动物体流场计算的自适应非结构二维网格生成方法[J].计算物理.2002,2002(11):493-500
    86 任登凤,谭俊杰,张军.GMRES方法在含动边界流场中的应用[J].力学与实践.2005,27(5):25-28
    87 张玉东,纪楚群.包含动边界的非定常流场动网格数值模拟[J].计算物理.2006,23(2):165-170
    88 张军,谭俊杰,任登凤.副油箱从机翼分离流场的数值模拟[J].自然科学进展.2006,16(8):1033-1037
    89 刘长运,赵学增,陈芳,等.运动边界问题流场仿真技术的发展[J].液压与气动.2005(10):5-8
    90 史爱明.非结构动网格下非定常气动力计算和嗡鸣研究[D].西安:西北工业大学,2003
    91 Hirt C W,Amsden A A,Cook J L.An Arbitrary Lagrangian-Eulerian Computing Method for All Flow Speeds[J].Journal of Computational Physics.1974,14(3):227-253
    92 Ball G J,Howell B P,Leighton T G,et al.Shock-Induced Collapse of a Cylinderical Air Cavity in Water:A Free-Largrange Simulation[J].Shock Waves.2000(10):265-276
    93 Thomas P D,Lombard C K.Geometric Conservation Law and Its Application to Flow Computations on Moving Grids[J].AIAA Journal.1978,17(10):1030-1037
    94 Zhang H,Reggio M,Trepanier J Y,et al.Discrete Form of the GCL for Moving Meshes and Its Implementation in CFD Schemes[J].Computers & Fluids.1993,22(1):9-23
    95 Mavriplis D J.Achieving Higher-Order Time Accuracy for Dynamic Unstructured Mesh Fluid Flow Simulations:Role of GCL[C].Toronto:AIAA 2005-5114,2005
    96 李荫藩,宋松和,周铁.双曲型守恒律的高阶、高分辨有限体积法[J].力学进 展.2001,21(2):245-263
    97 Harten A,Lax P D,van Leer B.On Upstream Differencing and Godnunov-type Schemes for Hyperbolic Conservation Laws[J].SIAM Revision.1983(25):35-61
    98 Davis S F.Simplified Second-order Godnov-Type Methods[J].SIAM Journal on Scientific Computing.1998,9:445-473
    99 Einfeldt B.On Godnov-Type Methods for Gas Dynamics[J].SIAM Journal on Numerical Analyzation.1998,25(2):294-318
    100 Toro E F,Spruce M,Speares W.Restoration of the Contact Surface in the HLL-Riemann Solver[J].Shock Waves Journal.1994,4:25-34
    101 Batten P,Leschziner M A.Average-State Jacobians and Implicit Methods for Compressible Viscous and Turbulent Flows[J].Journal of Computational Physics.1997(137):38-78
    102 Bagabir A,Drikakis D.Numerical Experiments Using High-Resolution Schemes for Unsteady,Inviscid,Compressible Flows[J].Computer Methods in Applied Mechanics and Engineering.2004(193):4675-4705
    103 Van Leer B.Towards the Ultimate Conservative Difference Scheme,Ⅱ.Monotonicity and Conservation Combined in a Second Order Scheme[J].Journal of Computational Physics.1974(14):361-370
    104 Luo H,Baum J D,Lohner R.A Hybrid Cartesian Grid and Gridless Method for Compressible flows[J].Journal of Computational Physics.2006(214):618-632
    105 吴子牛.计算流体力学基本原理[M].北京:科学出版社,2001
    106 Yan W.Exponent Flux Scheme for Conservation Law[D].China Academy of Engineering Physics,2000
    107 宫翔飞.WENO格式和白适应网格方法数值模拟[D].中国工程物理研究院,2003
    108 李征.基于变分的移动网格技术及其在两点边值问题与计算流体中的应用[D].中国工程物理研究院,2005
    109 Kim K H,Kim C.Accurate,Efficient and Monotonic Numerical Methods for Multi-Dimensional Compressible Flows Part Ⅰ:Spatial Discretization[J].Journal of Computational Physics.2005(208):527-569
    110 Kim K H,Kim C.Accurate,Efficient and Monotonic Numerical Methods for Multi-Dimensional Compressible Flows Part Ⅱ:Multi-Dimensional Limiting Process[J].Journal of Computational Physics.2005(208):570-615
    111 孙迎丹,王刚,叶正寅.AUSM+-up格式在无网格算法中的推广[J].空气动力学 学报.2005,23(4):511-515
    112 谭维炎.计算浅水动力学-有限体积法的应用[M].北京:清华大学出版社,1998
    113 水鸿寿.一维流体力学计算方法[M].北京:国防工业出版社,1998
    114 Colella P.Efficient Solution Algorithms for the Riemann Problem for Real Gases[J].Journal of Computational Physics.1985(59):264-289
    115 Menikoff R,Plohr B J,The Riemann Problem for Fluid Flow of Real Material[J].Review of Modern Physics.1989,61(1):75-130
    116 李建良,蒋勇.计算机数值方法[M].南京:东南大学出版社,2000
    117 唐章宏,薛赛男,冯峰等.Visual Fortran程序设计[M].北京:人民邮电出版社,2000
    118 Andrew B,Wardlaw J.Spherial Solutions of an Underwater Explosion Bubble[J].Shock and Vibration.1998(5):89-102
    119 Bagabir A,Drikakis D.Mach Number Effects on Shock-Bubble Interaction[J].Shock Waves.2001(11):209-218
    120 张慧生,丁志杰.Helvin-Helmholtz不稳定性大变形发展阶段的数值模拟[J].复旦学报.2000,39(5):533-540
    121 Frederic J B.Considerations on the Spring Analogy,International Journal for Numerical Methods in Fluids,2000,32(6):647-668
    122 Kira A,Fujita M,Itoh S.Underwater Explosion of Spherial Explosives[J].Journal of Materials Processing Technology.1999(851):64-68
    123 柏劲松,陈森华,李平,等.水下爆炸过程的高精度数值计算[J].应用力学学报.2003,20(1):103-106
    124 邓文彬,王国治.基于DYTRAN软件的水下爆炸数值计算[J].华东船舶工业学院学报.2003,17(6):11-16
    125 马海洋,顾文彬,夏卫国,等.气泡脉动法计算炸药能量的探讨[J].西部探矿工程.2003(9):116-118
    126 鲁传敬.三维水下爆炸气泡的数值模拟[J].航空学报.1996,17(1):92-95
    127 方斌,朱锡,张振华,等.水下爆炸冲击波数值模拟中的参数影响[J].哈尔滨工程大学学报.2005,26(4):419-424
    128 王伟力,曾亮,朱建方.水下爆炸的数值模拟研究现状[J].海军航空工程学院学报.2006,21(2):209-216
    129 梁龙河,曹菊珍,袁仙春.水下爆炸特性的二维数值模拟研究[J].高压物理学报.2004,18(3):203-208
    130 梁龙河,曹菊珍,王元书.水下爆炸特性的一维球对称数值研究[J].高压物理学报.2002,16(3):199-203
    131 尹群,陈永念,胡海岩.水下爆炸研究的现状和趋势[J].造船技术.2003(6):6-12

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700