单孔气泡动力学行为的VOF数值模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文综述了气液两相流的基础理论和数值模拟现状,建立了计算的物理模型和数学模型及相应的初始和边界条件,运用计算流体力学方法并结合实验对气液两相流中的单孔气泡形成、上升、变形和聚并等动力学行为进行了研究。
     基于欧拉-欧拉(Euler-Euler)观点,将气液两相处理成连续介质,对气泡在两相流中的运动过程建立了VOF模型,追踪气液两相之间的运动界面,并以Fluent6.3为平台进行了数值模拟研究。单气泡的上升变形过程模拟结果表明:气泡并不是呈直线上升运动,数值模拟结果与采用高速摄像法获得的实验结果进行了比较,一致性较好。且气泡越小,变形幅度越小,摆动幅度越大;模拟研究了液体黏度、表面张力对气泡上升、变形过程的影响,结果发现,液体黏度和表面张力增加,不利于气泡的变形。
     重点模拟研究了表面张力、液体黏度、液体密度、表观液速和孔口气速对气泡脱离时间和气泡平均直径的影响,结果表明,气泡脱离时间随表面张力和液体黏度的增大而延迟,随着液体密度、孔口气速和表观液速的增加而提前;气泡平均直径随着表面张力和孔口气速的增大而增大,随着液体密度和表观液速的增加而减小,随液体黏度变化的趋势不明显。
     对气泡的聚并过程进行了模拟,结果表明,气泡聚并过程分为三个步骤:靠近、融合和聚并;并从开始聚并时间的角度分析了表面张力、液体黏度和表观液速对气泡聚并的影响,表明:开始聚并时间随着表面张力和表观液速的增加而增大,随孔口气速的增加而减小,随黏度变化不明显;表面张力和表观液速的增大不利于气泡聚并,而孔口气速的增大有利于气泡聚并,液体黏度对聚并现象的影响不明显。
On the basis of the overview of fundamental theory and simulation progress of the gas-liquid two phase flow, the physical and mathematical models for single gas bubble hydrodynamics are built and related parameters are determined in this thesis, and the formation, rising, deformation and coalescence of gas bubbles are studied by computational fluid dynamics and experimental methods.
     Volume of fluid (VOF) model is established to simulate the rising of gas bubbles in gas-liquid flow on the frame of the Euler-Euler point of view, in which the gas phase and liquid phase are regarded as continuum and the moving interface between two phases is tracked. It is concluded that bubble movement is not in a straight line. A better consistency is obtained, compared with the experimental results, which is obtained with high-speed camera technology. And the smaller bubble is, the smaller deformation and the larger swing amplitude is. The influence of liquid viscosity and surface tension force on bubble motion is investigated. It is difficult to deform with the increase of viscosity and surface tension force.
     The influence of surface tension force, liquid viscosity, liquid density, gas velocity and superficial liquid velocity on detachment time and bubble mean diameter is mainly studied. It is obtained that the detachment time of bubbles increases with the increase of the surface tension force and viscosity and the decrease of liquid density, gas velocity and superficial liquid velocity. As surface tension force and gas velocity increases and superficial liquid velocity and density decreases, bubble mean diameter increases. It is not obvious with the change of viscosity.
     The process of bubble coalescence is simulated and three steps are divided: close, integration and coalescence. The effect of all kinds of parameters on bubble coalescence is analyzed. With the increase of surface tension force and superficial liquid velocity, the beginning time of bubble coalescence increases accordingly. The beginning time of bubble coalescence increases with the decrease of gas velocity. The increase of gas velocity is beneficial to coalescence while the increase of surface tension force and superficial liquid velocity are not conducive to bubble coalescence. The effect of liquid viscosity on bubble coalescence is insignificant.
引文
[1] Kantarci Nigar, Borak Fahir, Ulgen Kutlu. Bubble column reactors[J]. Process Biochemistry, 2005, 40(7): 2263~2283
    [2] W.D.Dechwer. Bubble Column Reactors[M]. New York, 1992
    [3] Fan L S著蔡平,俞芷青,金涌等译,气液固流态化工程[M],北京:中国石化出版社,1989
    [4]周力行,杨玟,廉春英,鼓泡床内气泡-液体两相湍流代数应力模型的数值模拟[J],化工学报,2002,53(8):780~786
    [5]顾汉洋,郭烈锦,方截面鼓泡床气液两相瞬态数值研究[J],工程热物理学报,2005,26(1):72~75
    [6] Havard Lindborg, Magne Lysberg, Hugo A Jakobsen. Practical validation of the two-fluid model applied to dense gas-solid flows in fluidized beds[J]. Chemical Engineering Science, 2007, 62(21): 5854~5869
    [7] Enwald H., Peirano E., Almstedt A.E. Eulerian two-phase flow theory applied to fluidization[J]. International Journal of Multiphase Flow, 1996, 22: 21~66
    [8] A.Sokolichin, G.Eigenberger. Dynamic numerical simulation of gas-liquid two-phase flows Euler/Euler versus Euler/Lagrange[J]. Chemical Engineering Science, 1997, 52(4): 611~626
    [9] E.Delnoij, F.A.Lammers, J.A.M.Kuipers et al. Dynamic simulation of dispersed gas-liquid two-phase flow using a discrete bubble model[J]. Chemical Engineering Science, 1997, 52(9): 1429~1458
    [10] Vivek V.Buwa, Dhanannjay S.Deo, Vivek V.Ranade. Characterization of dynamics of gas-liquid flows in rectangular bubble columns[J]. AIChE Journal, 2004, 50(10): 2394~2407
    [11] Yue P T, James J.F, Christopher A. An arbitrary Lagrangian-Eulerian method for simulating bubble growth in polymer foaming[J]. Journal of Computational Physics, 2007, 226: 2229~2249
    [12] D.Darmana, D.G.Deen, J.A.M.Kuipers. Parallelization of an Euler-Lagrange model using mixed domain decomposition and a mirror domain technique: Application to dispersed gas-liquid two-phase flow[J]. Journal of Computational Physics, 2006, 220(1): 216~248
    [13] Vivek V.Buwa, Dhanannjay S.Deo, Vivek V.Ranade. Euler-Lagrangian simulations of unsteady gas-liquid flows in bubble columns[J]. International Journal of Multiphase Flow, 2006, 32(7): 864~885
    [14] Li G, Yang X G, Gance D. CFD simulation of gas-liquid flow in bubble column[J]. Journa of Chemical Industry and Engineering, 2008, 59(8): 1958~1965
    [15] Chen P, Dudukovic M P, Sanyal J. Three-dimensional simulation of bubble column flows with bubble coalescence and breakup[J]. AIChE Journal, 2005, 51(3): 696~712
    [16]江帆,Fluent高级应用与实例分析[M],北京:清华大学出版社,2008
    [17] Hirt C W, Nichols B D. Volume of Fluid method for the dynamic of free boundaried[J]. Journal of Computational Physics, 1981, 39: 201~225
    [18] Zhu X, Sui P C, Djilali Ned. Three-dimensional numerical simulations of water droplet dynamics in a PEMFC gas channel[J]. Journal of Power Sources, 2008, 181(1): 101~115
    [19]孙东亮,陶文铨,高密度和高黏度比率下气液两相流动的数值模拟,中国工程热物理学会第十二届学术会议,2006
    [20] Chen L, Li Y. A numerical method for two-phase flows with an interface[J]. Environmental model&software, 1998, 13(3): 247~255
    [21]沈志恒,何玉容,刘文铁等,VOF方法研究气液流化床内单个气泡的运动特性,中国工程热物理学会第十一届学术会议,2005
    [22] Li Y, Zhang J P, Fan L S. Discrete-phase simulation of single bubble rise behavior at elevated pressures in a bubble column[J]. Chemical Engineering Science, 2000, 55(20): 4597~4609
    [23] Li Y, Zhang J P, Fan L S. Numerical studies of bubble dynamics in gas-liquid-solid fluidization at high pressures[J]. Power Technology, 2001, 116(2): 246~260
    [24] G.Q.Yang, Bing Du, L.S.Fan. Bubble formation and dynamics in gas-liquid-solid fluidization—A review[J]. Chemical Engineering Science, 2007, 62(1): 2~27
    [25] M.van Sint Annaland, N.G.Deen,J.A.M.Kuipers. Numerical simulation of gas bubbles behaviour using a three-dimensional volume of fluid method[J]. Chemical Engineering Science, 2005, 60(11): 2999~3011
    [26] Li Y, Zhang J P, Fan L S. Numerical simulation of gas-liquid-solid fluidization systems using a combined CFD-VOF-DPM method:bubble wake behavior[J]. Chemical Engineering Science, 1999, 54(21): 5101~5107
    [27] Zhang J P, Li Y, Fan L S. Discrete phase simulation of gas-liquid-solid fluidization systems:single bubble rising behavior[J]. Power Technology, 2000, 113(3): 310~326
    [28]张同旺,靳海波,何广湘等,加压大型气液鼓泡床中气含率的实验和关联[J],过程工程学报,2002,2(6):481~484
    [29]张同旺,靳海波,何广湘等,加压大型气液鼓泡床中气泡上升速率的研究[J],石油化工,2003,32(2):129~132
    [30]张同旺,靳海波,何广湘等,加压大型鼓泡床反应器内大小气泡气含率研究[J],化学工程,2004,32(5):29~33
    [31]王铁峰,王金福等,三相循环流化床中气泡上升速度的实验研究[J],高校化学工程学报,2000,14(4):334~339
    [32]王铁峰,王金福,杨卫国等,三相循环流化床中气泡大小及其分布的实验研究[J],化工学报,2001,52(3):197~203
    [33] Krishna R., Ellenberger J., Sie S.T. Reactor development for conversion of natural gas to liquid fuels:A scale-up strategy relying on hydrodynamic analogies[J]. Chemical Engineering Science, 1996, 5(10): 2041~2050
    [34] Clift Roland, Grace John R., Weber Martin E. Bubbles,Drops,and Particles[M]. New York: Academic Press, 1978
    [35] Wraith A E. Two stage bubble growth at a submerged plate orifice[J]. Chemical Engineering Science, 1971, 26: 1659~1671
    [36] Rabiger N, Vogelpohl A. Bubble formation in stagnant and flowing Newtonian liquids[J]. German Chemical Engineering, 1982, 5: 314~323
    [37] Chen F, Peng Y, Song Y Z et al. Formation of a single bubble under adiabatic condition in electric field[J]. Journal of Chemical Industry and Engineering, 2007, 58(7): 1706~1712
    [38] Nahra H K, Kamotani Y. Bubble formation from wall orifice in liquid cross-flow under low gravity[J]. Chemical Engineering Science, 2000, 55(20): 4653~4665
    [39]胡强,周慧,沈伟,鼓泡床内气泡直径的分布[J],四川化工,2004,7(4):6~8
    [40]梁斌,胡强,周慧等,单孔及微孔曝气低气速鼓泡床内气泡行为比较[J],化工学报,2005,56(10):1880~1886
    [41]沈雪松,沈春银,李光等,大孔径高气速单孔气泡形成[J],化工学报,2008,59(9):2220~2225
    [42]赵学辉,刘春江,吕晓龙,粘性液体中气泡流体力学特性的模拟研究[J],天津工业大学学报,2007,26(4):28~31
    [43] Vivek V.Buwa, D.Gerlach, F.Durst et al. Numerical simulations of bubble formation on submerged orifices: Period-1 and Period-2 bubble regimes[J]. Chemical Engineering Science, 2007, 62(24): 7119~7132
    [44] D.Gerlach, N.Alleborn, V.Buwa et al. Numerical simulation of periodic bubble formation at a submerged orifice with constant gas flow rate[J]. Chemical Engineering Science, 2007, 62(7): 2109~2125
    [45] D.Gerlach, G.Tomar, G.Biswas et al. Comparison of volume-of-fluid methods for surface tension-dominant two-phase flows[J]. International Journal of Heat and Mass Transfer, 2006, 49(3): 740~754
    [46]刘明言,杨扬,薛娟萍等,气液固三相流化床反应器测试技术[J],过程工程学报,2005,5(2):217~222
    [47] Marsuura A, Fan L S. Distribution of bubble properties in a gas-liquid-solid fluidized bed[J]. AIChE J, 1984, 30: 894~903
    [48]梁五更,张书良,俞芷青等,液固循环流化床的研究(I)相含率及颗粒循环速率[J],化工学报,1993,44(6):666~671
    [49]许联峰,陈刚,李建中等,气液两相流中气泡运动速度场的PIV分析与研究[J],实验力学,2002,17(4):458~463
    [50] Deen N G, Sint Annaland M V, Kuipers J A. Detailed computational and experimental fluid dynamics of fluidized beds[J]. Applied mathematical modeling, 2006, 30(11): 1459~1471
    [51]姜凡,刘石,王海刚,电容层析成像技术在流化床气固两相流测量中的应用[J],2004,24(6):831~835
    [52]沈熊,蓬勃发展的激光测速技术[J],实验力学,1987,2(2):123~126
    [53]王树立,张敏卿,范敏英,鼓泡塔内气液两相流速度分布[J],抚顺石油学院学报,1997,17(3):27~30
    [54]刘爱华,倪冰,罗志国等,高速摄像技术在研究板坯结晶器水膜内气泡运动的应用[J],材料与冶金学报,2008,7(3):159~163
    [55]张建生,吕青,孙传东等,高速摄影技术对水中气泡运动规律的研究[J],光子学报,2000,29(10):952~955
    [56]陶文铨,数值传热学(第二版)[M],西安:西安交通大学出版社,2001
    [57]王福军,计算流体力学分析—CFD软件原理与应用[M],北京:清华大学出版社,2004
    [58] Osher S, Sethian. Front propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations[J]. Compute Physics, 1988, 78: 12~49
    [59] Zhaoyuan Wang, Jianming Yang, Bonguk Koo et al. A coupled level set and volume-of-fluid method for sharp interface simulation of plunging breaking waves[J]. International Journal of Multiphase Flow, 2009, 35(3): 227~246
    [60] Harlow F H, Welch J F. Numerical calculations of time dependent viscous incompressible flow of fluid with free surface[J]. Physical Fluids, 1965, 8: 182~218
    [61] Jinsong Hua, Jan F.Stene, Ping Lin. Numerical simulation of 3D bubbles rising in viscous liquids using a front tracking method[J]. Journal of Computational Physics, 2008, 227: 3358~3382
    [62]陈斌,高黏度流体中上升气泡的直接数值模拟[J],工程热物理学报,2006,27(2):255~258
    [63] Unverdi S Q, Tryggvason G. A front-tracking method for viscous incompressible multi-fluid flows[J], J Comput Phys, 1992, 100(1): 25~37
    [64] Abid Akhtar M, Tade Moses, Pareek Vishnu. Simulations of bubble columnreactors using a volume of fluid approach:Effect of air distributor[J]. Canadian Journal of Chemical Engineering, 2007, 85(3): 290~301
    [65] Youngs D L. Time-dependent multi-material flow with large fluid distortion[M]. New York:Academic, 1982, 273~285
    [66] Donghong Gao, Neil B.Morley, Vijay Dhir. Understanding magnetic field gradient effect from a liquid metal droplet movement[J]. Journal of fluids engineering, 2004, 126(1): 120~124
    [67] Brack Bill, J U Kothe, D B Zemach. A Continuum Method for Modeling Surface Tension[J]. Journal of Computational Physics, 1992, 100: 335~354
    [68]刘建华,气液固循环流化床自组织结构可视化研究:[硕士学位论文],天津;天津大学,2008
    [69] Giusti A, Lucci F, Soldati A. Influence of the lift force in direct numerical simulation of upward/downward turbulent channel flow laden with surfactant contaminated microbubbles[J]. Chemical Engineering Science, 2005, 60(22): 6176~6187
    [70] Akio TOMIYNMA, Akira SOU, Hisato MINAGAWA. Numerical analysis of a single bubble by VOF method[J]. J KSME, 1993, 36(1): 51~56
    [71]刘红,解茂昭,韩景东等,粘性液体中锐孔处气泡的形成[J],热科学与技术,2005,4(3):262~266
    [72] Ramkrishnan S, Kumar R, Kuloor N R. Studies in bubble formation(I): Bubble formation under constant flow conditions[J]. Chemical Engineering Science, 1969, 24: 731~747
    [73] Khurana A K, Kumar R. Studies in bubble formation(III)[J]. Chemical Engineering Science, 1969, 24: 1711~1723
    [74] R.Krishna and J.M.van Baten. Rise Characteristics of gas in a 2D rectangular column: VOF simulations VS Experiments[J]. Heat Mass Transfer, 1999, 26(7): 965~974
    [75]刘儒勋,王志峰,数值模拟方法和运动界面追踪[M],合肥:中国科学技术大学出版社,2001
    [76] Ashgriz N, Poo J Y. FLAIR: Flux line-segment model for advection and interface reconstruction[J]. J. Comput Phys, 1991, 39: 449~468

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700