AMTEC多级毛细泵数值模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
碱金属热电直接转换(Alkali Metal Thermal to Electric Converter- AMTEC)是一种新型的热电直接转换技术。具有热电转换效率高、无运动部件、低维护等优点。毛细泵是AMTEC的关键部件之一,它起着接收能量、传递热量、组织工质蒸发、提供工质循环动力的作用。本文将对不同条件下的AMTEC多级毛细泵进行数值模拟研究。
     本文在达西方程基础上建立了一个二维的、轴对称模型。利用该模型对AMTEC多级毛细泵内工质的流动、传热和蒸发现象进行了数值模拟。在数值模拟过程中,通过添加源相的方法解决了相变过程中质量、动量和能量的传递。同时,采用相位场方法对相变界面进行了捕捉。不仅分析了润湿角对数值模拟结果的影响,还研究了热流密度、进口温度、毛细泵材料和毛细孔径等因素分别对毛细泵的相变界面位置、温度分布、压力阶跃和质量流量的影响。
     模拟结果表明,随着热流密度的增加,汽液相变界面有向毛细泵内部侵入的趋势,质量流量也相应的提高。但是热流密度有一定的极限值,超过这个极限值,相变界面会侵入到输运段部分引起毛细泵整体的失效;随着进口温度的增加,相变界面也有向毛细泵内部侵入的趋势,质量流量有小量的增加。为避免了系统大的波动,可以通过只调节进口温度来调节AMTEC内工质的质量流量;文中对钼制、镍制和钛制的三种不同材质的毛细泵进行了模拟分析,发现材质的选择对相变界面位置影响较小,但会导致毛细泵通流能力的变化;另外,与单级毛细泵相比,多级毛细泵具有较高的输送工质能力。
AMTEC (Alkali Metal Thermal To Electric Converter) is a promising technology for converting heat energy to electric energy directly. It is characterized by high conversion efficiency, no moving parts and low maintenance requirements. Multi-level Capillary Artery Evaporator (MCAV) is one of most important components of the AMTEC. The working fluid absorbs heat energy and vaporizes in the MCAV ,and the capillary force forces the working fluid to move from the low pressure domains to the high pressure domains. So the MCAV properties will seriously affect the AMTEC performance.
     A axisymmetric two-dimensional mathematical model has been developed based on Dacy’s law to simulate the Working fluid flow, heat transfer and phase change phenomena in the MCAV.Source terms have been added in the Continuity equation,Momentum equation and Energy equation to simulate the processes of mass, momentum and energy transfer in the phase change. And the Phase Field Method has been used to track liquid-vapor interface. In this paper,it has not only analyzed the wetting angle on the impact of numerical simulation results, but also studied the heat heat flux, inlet temperature,capillary pump materials and capillary diameters on the capillary pump performance.
     The simulation results shows that with the increase in heat flux, vapor-liquid interface has the trend to move within the capillary pump, and mass flow is correspondingly improved. However, there is a certain heat flux limit, an overall failure of capillary pump will happen if beyond this limit. As the inlet temperature increases, phase-change interface is also penetrated inside the pump, but a small increase in mass flow. To avoid large fluctuations in the system, it can change the MCAV inlet temperature to adjust the pump performance. In this paper, three different materials capillary pump also has been considered, which are molybdenum, nickel and titanium.The results shows that the material has little impact on phase-change interface location ,but it will seriously affect the MCAV transport capacity because of the different heat transfer coefficients. Finally, the paper shows that MCAV has a higher transmission capacity compared with the single-level capillary pump.
引文
[1]Vining,C.B.;Williams,R.M.;Underwood,M.L.;Ryan,M.A.;Suitor,J.W.Reversi-ble thermodynamic cycle for AMTEC power conversion[J].Journal of the Electrochemical Society,1993,v140,n10,Oct:p2760-2763.
    [2] Ivanenok;Joseph F.III;Sievers, Robert K.;Radioisotope powered AMTEC systems;Proceedings of the Intersociety Energy Conversion Engineering Confe- rence vo1 1994.IEEE;Piscataway;NJ; USA; 94CH3478-5:p548-553.
    [3] Ivanenok, Joseph F.III; Hunt, Thomas K.;High voltage terrestrial AMTEC;Proceedings of the Intersociety Energy Conversion Engineering Confe- rence v 21994.IEEE;Piscataway;NJ;USA;94CH3478-5:p904-908.
    [4] Johnson G.A. Study of the rarefied sodium vapor flow in the Pluto Fast Flyby AMTEC cell ;AIP Conference Proceedings, n 301,pt.2,1994:p581-5.
    [5] Huang,ChengDong. Sievers,R.K.;Design of a multi-tube vapor-vapor AMTEC cell for the Pluto Express power system;Proceedings of the International Conference on Thermodynamic Analysis and Im-provement of Energy Systems,TAIES’97 1997.Int Acad Publ.P568-572.
    [6] Tournier,J.-M.and M.S.El-Genk;AMTEC Performance and Evaluation Analysis Model (APEAM):Comparison with Test Results of PX-4C,PX-5A,and PX-3A Cells;Proc.Space Technology and Applications International Forum (STAIF-98), AIP No.420(3),Albuquerque,NM,Jan.25-29,1998:p1576-1585.
    [7] Hendricks,Terry J.;Borkowski,Chris A.;Huang,Chendong;Development and experimental validation of a SINDA/FLUINT thermal/fluid/elec-trical model of a multi-tube AMTEC cell;AIP Conference Proceed-ings,1998,No.420:p1491-1501.
    [8] EL-GENK Mohamed S;TOURNIER Jean-Michel;Optimization of liquid- return artery in a vapor-anode,multitube AMTEC;Journal:AIP conferenceproceedings.19980420(1):p1586-1594.
    [9] Jack F.Mondt,Robert K. Sievers, Alkali Metal Thermal to Electric Converter -(AMTEC)Technology Development for Potential Deep Space Scientific Missions Canaveral Concil of Technical Societies, Fifth Space Congress-Horizons Unlimited;Cocoa Beach,FL;United States.
    [10] Jean-Michel Tournier and Mohamed S.El-Genkt;Sodium Vapor Pressure Losses in a Multitube,Alkali-Metal Thermal-to-Electric Converter[J].Journal of Thermophysics and Heat Transfer,v 13,n 1,Jan-Mar,1999:p 117-125.
    [11] Mohamed S.El-Genk,Jean-Michel P.Tournier;AMTEC/TE static con- verters for high energy utilization,small nuclear power plants[J].Energy Conversion and Management 45(2004):p511–535.
    [12] M.A.K. Lodhi;A.Mustafa;Use of waste heat of TIEC as the power source for AMTEC[J].Journal of Power Sources ,158(2006):p740–746.
    [13]张来福.钠钾工质碱金属热电转换器的基础研究[D].北京:中国科学院研究生院(中国科学院电工研究所),2002.
    [14] Khrustalev D.and Faghri A.,Heat Transfer in the Inverted Meniscus Type Evaporator at High Heat Fluxes[J].International Journal of Heat and Mass Transfer,1995,38(16):p3091-3101.
    [15] Demidov A.S.and Yatsenko E.S.,Investigation of Heat and Mass Transfer in the Evaporation Zone of a Heat Pipe Operating by the 'Inverted Meniscus' Principle[J].International Journal of Heat and Mass Transfer,1994,37(14):p2155-2163.
    [16] Kaya T.and Goldak J.,Numerical Analysis of Heat and Mass Transfer in the Capillary Structure of a Loop Heat Pipe[J].International Journal of Heat and Mass Transfer,2006.49(17-18):p3211-3220.
    [17] LaClair T.and Mudawar L;Thermal Transients in a Capillary Evaporator Prior to the Initiation of Boiling[J].International Journal of Heat and MassTransfer,2000,43(21):p3937-3952.
    [18] Liao Q.and Zhao T. S.,Evaporative Heat Transfer in a Capillary Structure Heated by a Grooved Block[J].Journal of Thermophysics and Heat Transfer,1999,13(1):p126-133.
    [19] Zhao T.S.and Liao Q.,On Capillary-Driven Flow and Phase-Change Heat Transfer in a Porous Structure Heated by a Finned Surface:Measurements and Modeling[J].International Journal of Heat and Mass transfer,2000,43(7):p1141-1155.
    [20] Liao Q,and Zhao T.S.,A Visual Study of Phase-Change Heat Transfer in a Two-Dimensional Porous Structure with a Partial Heating Boundary[J].International Journal of Heat and Mass Transfer,2000,43(7):p1089-1102.
    [21] Zhao T S and Liao Q,Rapid Vaporization of Subcooled Liquid in a Capillary Structure[J].International Journal of Heat and Mass Transfer; 2002; 45(1):p165-172
    [22] Cao Y and Faghri A.,Conjugate Analysis of a Flat-Plate Type Evaporator for Capillary Pumped Loops with Three-Dimensional Vapor Flow in the Groove[J].International Journal of Heat and Mass Transfer,1994,37(3):p401-409.
    [23] Cao Y and Faghri A.,Analytical Solutions of Flow and Heat Transfer in a Porous Structure with Partial Heating and Evaporation on the Upper Surface”[J].International Journal of Heat and Mass Transfer,1994,37(10):p1525-1533.
    [24]李劲东等.热管内部流动与传热问题的模化分析[J].中国空间科学技术,第3期.1997.
    [25] Y.H.Yan,J.M.Ochterbeck;Numerical investigation of the steady-state operation of a cymaricai capillary pumped loop evaporator[J].Journal of Electronic Packaging Vo1.125,2003.
    [26]牟其峥,屠传经.毛细抽吸两相回路蒸发器管内传热的理论分析[J].浙江大学学报(工学版)2000,34(5):p499-502.
    [27]牟其峥,屠传经.毛细抽吸两相回路蒸发器管内流动的理论分析[J].浙江大学学报(工学版),2000,34(3):p253-256.
    [28]钱吉裕,李强,宣益民.毛细泵回路蒸发器的数值研究[J].中国空间科学技术,2005年第1期.
    [29]俞平,张加迅,王维城.毛细抽吸两相环系统稳定性的实验研究[J].清华大学学报(自然科学版),1999,39(6):p86-89.
    [30]韩延民.毛细抽吸两相环路(CPL)理论研究与实验设计[D],华中科技大学,2003.
    [31]王强.平板式CPL系统仿真研究[D].硕士学位论文,华中科技大学,2004.
    [32]王强,刘伟,刘志春等.CPL蒸发器多孔芯温压变化的数值模拟[J].华中科技大学学报,2004,32(S):p87-89.
    [33]韩延民,刘伟,黄晓明.CPL冷凝器的多孔芯和槽道内蒸汽冷凝过程的分析[J].华中科技大学学报,2003,31(7):p58-60.
    [34] Y.M. Han,W Liu,X.M. Huang;The numerical simulation for the unsteady heat and mass transfer process in capillary pumped loops evaporator.[J].Journal of Astronautics,2003,24(4):p397-403.
    [35]黄晓明,刘伟,申盛等.CPL蒸发器非饱和多孔芯内流动与传热分析.中国工程热物理学会传热传质学学术会议论文集,上海:2002.
    [36] R.R. Riehl,Experimental investigation of the convective condensation heat transfer in micro channel fow,Proceedings of the ENCIT,Caxambu-MG, Brazil-Paper CIT02-0495,2002.
    [37] E.Begg,D.Khrustalev and A.Faghri,Complete condensation of forced convection two-phase flow in a miniature tube[J].ASME Journal heat transfer,1999,121(4):p904-915.
    [38] Gad Hetsroni,Flow and heat transfer in micro-channels,5th International Symposium on Multiphase Flow.[J].Heat Mass Transfer and Energy Conversion Xi'an,China,3-6 July,2005.
    [39] Satish G.Kandlikar,Effect of liquid-zhapor phase distribution on the heat transfer mechanisms during fow boiling in ninichannels and microchannels,5th International Symposium on Multiphase Flow.[J].Heat Mass Transfer and Energy Conversion,ISMF'OS Xi'an,China,3-6 July 2005.
    [40] C.B. Sobhan,S.V.Garimella and V.V. Unnikrshranm,A computational model for the transient analysis of fat heat pipes,Inter society conference on thermal phenomena,2000:p107-113
    [41] N.Zhu and K.Vafai,Analytical modeling of the startup characteristics of asymmetrical fat-plate and disk shape heat pipes[J].In. heat and mass transfer; 1998,141(17):p25-30
    [42] V.G. Pastukhov;Yu.F. Maidanik,C.V. Vershinin,M.A. Korukov;Miniature loop heat pipes for electronics cooling[J].Applied Thermal Engineering,2003 ,23(41):p1125-1135,
    [43]任川.环路热管毛细芯中多过程耦合传热现象的理论模型和数值研究.[D].合肥:中国科学技术大学,2007:13-29.
    [44]钱吉裕.毛细泵回路流动与换热机理研究[D].南京:南京理工大学,2005:p14-23.
    [45]刘志春,新型平板式CPL的理论分析与实验研究[D].武汉:华中科技大学,2006:p40-49.
    [46]黄晓明.多孔介质相变传热与流动及其若干应用研究[D].武汉:华中科技大学,2004.p83-100.
    [47] Huang X.M.,Liu W,Nakayama A.and Peng S.W.,Modeling for Heat and Mass Transfer with Phase Change in Porous Wick of CPL Evaporator[J].Heat and Mass Transfer,2005,41(7):p667-673.
    [48]邓芳芳,平板式CPL的数值模拟与系统仿真[D].武汉:华中科技大学,2005:p29-40
    [49]邓芳芳,刘伟,彭仕文,杨金国.平板多孔芯冷凝器内工质相变换热的EOF方法.工程热物理学报,2005,26(4):p644-646.
    [50] C.Figus and Y.Le Bray,Heat and Mass Transfer with Phase Change in a Porous Structure Partially Heated:Continuum Model and Pore Network Simulations[J].Int. J.Heat and Mass Transfer;1999,42(10):p2557-2569.
    [51] F. Plourde,M. Prat.,Pore network simulations of drying of capillary porous media influence of thermal gradients[J].International Journal of Heat and Mass Transfer.2003(46):p1293-1307.
    [52] Chen S,Merriman ,Osher S.A simple level set method for solving Stefan Problems.Joumal of Computational Physies,1997,135:8-29
    [53]张兆顺,崔桂香,许春晓著.湍流理论与模拟.清华大学出版社,1991:p200-231
    [54] Alnsden A,Harlow F H,The SMAC method:a numerieal teehnique for calculating income Pressible fluid flows,Los Alamos Seientifie Laboratory, Report LA-4370,1970
    [55] Tome M F,McKee S.GENSMAC:A Computational Marker and Cell Method for Free Surface Flows in General Domains.Joumal of Computational Physies,1994,110(l):171-186.
    [56] Faleovitz J,Birman A.A singularities traeking conservation laws scheme for Compressible duct flows.Jounalof Computational Physics,1994,115:431-439
    [57] Hilditeh J,Colella P.A front tracking method for compressible flames in one Dimension SIAMJ.Sei.ComPut,1995,16:755-772
    [58] Glinun J,GroveJ,Li X L.A Critical analysis of Rayleih-Taylor Growth Rates.Joumal of Computational Physies,2000,169:652-677
    [59] Glimm J , Graham M J , Grove J.Front tracking in two and threedimensions.J.Comput. Math,1998,35(7):1-12
    [60] Osher S , Sethian J.A Fronts Propagating with curvature-dependent speed:algorithm as based on Hamilton-Jaeobi formulations.Journal of ComPutational Physies,1988,79:12-49
    [61] Sussman M,Smereka P and Osher S.A level set approaeh for computing Solutions to incompressible two-Phaseflow , Joumal of ComPutational Physies,1994,114,146-159
    [62] Sethian J A.Theory,Algorithlns and applieations of level set methods for propagating inierface.Acta Numeriea,Cambridge UK:Cambridge Univ.Press, 1995
    [63] Hirt CW,Niehols B D.Volume of Fluid(VOF) methodf or the dynamics of free boundaries.Jomal of Computational Physies,1981,39:201-225
    [64] Tryggvason G,Bunner B,Esmaeeli A.A front-tracking method for the computations of multiphase flow.Journal of Computational Physies,2001,169:708-759
    [65] LIN P , LIU P L-F. Free Surface Tracking Methods and Their Applications to Wave Hydrodynamics [A].Philip L-F.Liu.Advances in Coastal and Ocean Engineering[M].Volume5,Singapore·New Jersey·London·HongKong.World Scientific.1999.213-240.
    [66] LIN Peng-zhi,L IU P L-F.A numerical study of breaking waves in the surf zone [J].J.Fluid Mech.,1998,359 :239-264.
    [67] LIU P L-F.LIN Peng-zhi ,CHAN G Kuang-an et al.Numerical model of wave interaction with porous st ructures[J].Journal of Waterway,Port, Coastal,and Ocean Engineering,1999,(Nov./Dec.):322-330.
    [68]王永学.无反射造波数值波浪水槽[J].水动力学研究与进展,A辑,199,9(2):205-214.
    [69]马福喜,牛文臣,孙东坡.三维水流河床变形数学模型.水动力学研究与进展,A辑,1996,11(3):241-250.
    [70] OSHER S , SETHAIN J A. Front s propagating with curvature dependent speed : algorithms based on Hamilton Jacobi formulations[J].J.Comp.Phys. 1988,79 ,12-49.
    [71] ENRIGHT D,EDKIW R , ERZIGER J , et al.A hybrid Particle Level Set method for improved interface capturing[J].Journal of Computational Physics ,2002 ,183:83-116.
    [72]廖海东,孙承纬,李永池,杨礼兵.有限厚度流体层界面运动Rayleigh-Taylor不稳定性的数值模拟.爆炸与冲击,1999,19(2):139-145.
    [73]梁晓云,罗立民,曾卫明.基于Level set方法的医学图像分割[J].电路与系统学报, 2003 , 8 (6) : 77-81.
    [74]陶建华,谢伟松.用L EVEL SET方法计算溃坝波的传播过程[J].水利学报,1999,(10):17-22.
    [75] Jean-Michel Tournier and Mohamed S.E1-Genk;RADIATION/ CONDUCTION MODEL FOR MULTITUBE AMTEC CELLS Space Technology and Applications International Forum-1998 DOE CONF-980103 1998;The American Institute of Physics;p1552-1563
    [76]马民.毛细现象的力学解释.阴山学刊,2000.6,15(4):p94-95
    [77]冯踏青.液态金属高温热管的理论和实验研究[D].浙江:浙江大学,1998:p10-13
    [78]孙世梅.高温热管换热强化传热及结构优化模拟[D].南京:南京化工大学,2004:p15-17
    [79]朱杰.多孔介质内相变传热传质过程研究[D].大连:大连理工大学,2006.P12-15.
    [80]中仿科技.COMSOL Multiphysics有限元法多物理场建模与分析[M].北京:人民交通出版社2009:p188-190
    [81] M.R.Davidson and M.Rudman,Volume-of-fluid calculation of heat or masstransfer across deforming interfaces in two-fuid fow,Numer Heat Transfer Part B Fundam 41,p291-308,2002.
    [82] M.G.Wohak and H.Beer,Numerical simulation of direct contact evaporation of a drop rising in a hot,less volatile immiscible liquid of higher density- possibilities and limits of the SOLA-VOF/CSF algorithm,Numerical Heat Transfer,A33,p561-582.1998.
    [83] Bradut Eugen Ghidersa,Finite volume-based volume-of-fuid method for the simulation of two-phase fows in small rectangular channels,Dissertation der Universitat Karlsruhe Genehmigte:26 June 2003.
    [84] D.K.Agarwa,S.W.J.Welch,G.Biswas.Planar simulation of bubble growth in fm boiling in near-critical water using a variant of the VOF method,Journal of Heat Transfer,Transactions of the ASME,Vol.126 2004.p329-338.
    [85] SALMAN N,LIU Chong-qing. Active contours and mumford-shah segmentation based on Level Sets[J].Journal of Shanghai Jiaotong University , 2003 , ( l ) :p8253.
    [86]梁晋洁.纯金属凝固过程的相场方法研究[D].西安:西北工业大学,2006,p45-60
    [87] Steven W.J. Sylvestre,A NUMERICAL STUDY OF AN AUTOTHERMAL REFORMER FOR THE PRODUCTION OF HYDROGEN FROM ISO-OCTANE. Degree of Master of Science; Department of Mechanical and Materials Engineering;2007:p71-81.
    [88]何雅玲,王勇等.格子Boltzmann方法的理论及应用[M].北京:科学出版社,2009,p12-15.
    [89]林瑞泰.多孔介质传热传质引论[M].北京:科学出版社,1995, p95-97.
    [90] J.贝尔.多孔介质流体力学[M].北京:中国建筑工业出版社,1983, p101-105
    [91]邓英尔,刘慈群,黄润秋等.高等渗流理论与方法[M].北京:科学出版社,2004,p25-35
    [92]于勇等.FLUENT入门与进阶教程[M].北京理工大学出版社.2008,p49-54,p156-p157.
    [93]王补宣.《工程传热传质学(下)》(第一版).北京:科学出版社, 2002.342-347.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700