生防细菌菌株AbⅢ745-6的筛选、鉴定及其产生的抑菌活性物质的初步研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本试验旨在从植物根际土壤中分离并筛选出对水稻稻瘟病菌等造成地上部病害的病原菌有良好颉颃效果的生防细菌,探求用于植物病害生物防治的新资源,并对其产生的抑菌活性物质进行初步的研究和分析。
    通过对分离得到的117株细菌的发酵液进行抑菌活性测定,筛选出对稻瘟病菌和小麦全蚀病菌有一定抑菌效果的原始菌株11个。其中对稻瘟病菌抑制率达50%以上的菌株有8个,占总颉颃菌株数的72.73%;对水稻稻瘟病菌和小麦全蚀病菌的抑制效果均达50%以上的菌株有AbⅢ745、AbⅢ763和AbⅢ716,尤以AbⅢ745的颉颃活性最强。依据颉颃活性测定结果,确定AbⅢ745的单孢分离后代AbⅢ745-6为最优菌株,其对稻瘟病菌的抑制率可达96.88%。经初步鉴定,AbⅢ745-6属于假单胞菌科假单胞菌属荧光假单胞杆菌。
    菌株AbⅢ745-6的抑菌谱测定结果表明:该菌株抑菌谱较广,其发酵液(108-9 cfu/ml)对多种病原菌有很高的颉颃活性,对稻瘟病菌、番茄枯萎病菌、番茄早疫病菌、黄瓜枯萎病菌及小麦全蚀病菌的抑制效果均达90%以上;对番茄灰霉病菌、烟草赤星病菌、梨黑星病菌及小麦根腐病菌的抑制率在60%以上;对番茄叶霉病菌、玉米大斑病菌、小麦赤霉病菌和茄青枯病菌也有一定的颉颃作用。
    通过温室盆栽试验,对颉颃菌株的最佳应用途径及使用方法做了初步探索,发现利用发酵液混以载体进行种子包衣处理防治稻瘟病效果最佳(病情指数降低22.54,病叶抑制率可达75.36%),且适于大面积推广;土壤处理也有良好效果;叶面喷雾效果相对较差,防治效果仅为45.68%,病情指数下降14.38。
    以番茄、水稻、烟草和黄瓜为供试植物,就菌株AbⅢ745-6对植物的促生效应进行了初步研究。试验结果显示:AbⅢ745-6发酵液(108-9 cfu/ml)在不同浓度下对植物生长可表现促进或抑制两个方面的效应,总体趋势是较低浓度下促进幼苗生长,而在较高浓度下则有抑制幼苗生长的倾向。发酵液稀释1100X时促生效果最好,尤以对番茄和水稻幼苗的根长及株高影响较大。由此可见,AbⅢ745-6菌株兼具防治植物病害和促进植物生长的潜能。
    从菌株AbⅢ745-6的发酵液中提取具有强抑菌活性的物质,经纯化后对活性最强组分中含量较高的单一化合物进行化学分析和结构鉴定,初步命名为苯胺基甲基乙酸,这是在荧光假单胞杆菌中发现的一种新抑菌活性物质。
This research aimed at isolating and screening of antagonistic bacteria with great ability to suppress above-ground-plant-disease-causing agents such as Pyricularia orazye, searching for new resources for plant disease biological control, studying and analyzing the inhibitory substances produced by them preliminarily.
    Eleven antagonistic bacterial strains showing inhibiting effect on Pyricularia oryzae and Gaeumannomyces graminis were screened out of 117 bacteria strains isolated from rhizosphere soil on the basis of their suppressiveness in the in-vitro bioassay. A result of over 50% suppression of Pyricularia oryzae was obtained by eight of those suppressive original strains with the treatment of their fermentation filtrate, which amounted to 72.83% of the total antagonistic ones. Among those eight strains, there were three strains(namely AbⅢ745,AbⅢ763 and AbⅢ716) showing an inhibiting rate of over 50% against both indicator pathogens, AbⅢ745 particularly. According to the result of the suppression assay, strain AbⅢ745-6,the single-cell isolated offspring of AbⅢ745,was selected as the idealest one. It could inhibit the mycelium growth of Pyricularia oryzae by 96.88% and was preliminarily identified as Pseudomonas Fluorescens.
    The determination of suppression spectrum by strain AbⅢ745-6 showed that this bacterial strain possessed a wide inhibiting spectrum. It inhibited many pathogens with high antagonistic effect, with over 90% inhibition against Pyricularia oryzae, Fusarium oxysporum f.lycopersici(sacc).snyder et Hanse, Altermaria solani, Fusarium oxysporum(scho).f.sp.cucumbrum Owen and Gaeumannomyces graminis; over 60% against Botrytis cirerea, Alternaria alternata, Venturia nashicola and Bipolaris sorokiniana. Also, it showed certain suppression of other indicator pathogens involved in this assay.
    Tests were taken in this study to figure out the best way for application of strain AbⅢ745-6. Practice showed that seed-treatment with bacterial fermentation filtrate was the most effective and convenient way, with an inhibiting rate of 75.36% and a decrease of 22.54 in disease index against rice blast disease. Disease-controlling effect was fair with soil-treatment but not so good with leaf-spraying treatment with which the inhibiting rate was only 45.68% and decrease in disease index 14.38.
    Preliminary study on growth-promoting effects of strain AbⅢ745-6 were conducted, with tomato, rice, tobacco and cucumber plants as tested plants. The results indicated that the
    
    
    bacterial fermentation(108-9cfu/ml) had different or even contrary effects on plant growth as different concentration treatments. There was a tendency of growth-promoting effects when treated with low concentrations while grow-inhibiting effects when the concentration was high enough. As a whole, the growth-promoting effect was the best when treated with fermentation diluted by 1100 times and it performed better on tomato and rice seedlings with their root length and plant height. One could easily tell that strain AbⅢ745-6 possesses both plant disease control and plant growth-promoting potential based on above bioassay results.
    Substances with strong inhibiting activity were extracted from the filtrate of strain AbⅢ745-6. After further purified, a single compound predominant in the fraction showing the most desirable suppressive activity was selected for closer study. It was primarily named Phenaminomethylacetic based on chemical analysis and structural identification, which turned out to be a new kind of inhibitory substance ever found in Fluorescent Pseudomonas spp..
引文
[1] 安德荣.生物制药的原理及方法-抗生素的制备.第一版.北京:中国科学文化出版社,2002.
    [2] 何礼远. 细菌在植物病害生物防治上应用研究的进展.生物防治通报, 1985, 1(3): 28-31
    [3] 高菊芳(译).生物农药的作用、应用与功效(三)-活体微生物农药.世界农药, 2001, 23(3):11-19
    [4] 刘琼光,李忠,唐孜,等.拮抗细菌和土壤添加剂防治烟草青枯病.中国生物防治, 1999, 15(2):94-95
    [5] 陈卫良,龚鸿飞,林福呈,等. 拮抗细菌Bacillus subticis A30对水稻病原菌的抑制作用.浙江农业大学学报,1997,23(6):649-654
    [6] 王金生. 细菌素在植物细菌病害生防中的应用.生物防治通报,1985,1(2):36-40
    [7] 陈希萍,邵宝富. 一株新的拮抗细菌短杆菌M菌株及其在作物上应用的效果初探. 浙江农业大学学报,1991,17(4):427-430
    [8] 陈志谊,高太东,严大富,等. 枯草芽孢杆菌B-916防治水稻纹枯病的田间试验. 中国生物防治,1997,13(2):75-78
    [9] 纪明山,王英姿,程根武, 西瓜枯萎病拮抗菌株筛选及田间防效试验. 中国生物防治,2002,18(2):71-74
    [10] 罗鹏,许煜泉,张霞, 等.荧光假单胞杆菌M18产PCA发酵条件研究.上海农业学报, 2002, 18(2):66-71
    [11] 晓岚摘译. 农用生物农药展望.农药译丛,1994,16(2):7-17
    [12] 彭于发,陈善铭. 荧光假单胞杆菌Tn5诱变菌株防治小麦全蚀病的初步研究.植物病理学报, 1990,38(1):1-5
    [13] 段灿星,张青文,徐静. 杀虫荧光假单胞工程菌对棉铃虫的离体及活体生物测定. 中国生物防治,2002,18(2):67-70
    [14] 蓝希钳,胡军华,文红秀, 一株抗生素产生菌的研究初报.等.微生物学通报, 2002, 29(5):30-33
    [15] 驹田旦. 利用拮抗微生物防治土壤病害. 农药译丛,1987,9(1):44-49
    [16] 周德庆主编.微生物学实验手册[M].第一版.上海科学技术出版社,1986.
    [17] R.E.布坎南,N.E.吉本斯等.伯杰细菌鉴定手册[M].第八版.北京:科学出版社,1984.
    [18] 张纪忠. 微生物分类学. 上海: 复旦大学出版社, 1990.
    [19] 任赓夫.抗生素的分离和纯化.微生物学杂志,1987,7(4):72-77
    [20] 方纲,王华敦,张维西,等.纸层离技术在筛选抗菌素工作中的应用.微生物学报,
    
    
    1960, 8(2):205-210
    [21] 王金生.病原植物细菌学. 中国农业出版社(第一版),2000
    [22] 方中达.植病研究方法.中国农业出版社(第三版),1998
    [23] 李爱荣,安德荣.两株生防荧光假单胞杆菌的室内筛选初报.微生物学杂志, 2003, 23(4): 11-13
    [24] 汪来发,邱德勋.Pseudomonas sp.A03 处理种子防治杉木和云杉幼苗立枯病(Rhizoctonia solani).四川农业大学学报,1994,12(2):240-247
    [25] 吴磊明,余晓冬.影响抗生素效价的研究.实用医学杂志,1996,12(7):486-487
    [26] 林文良.新抗生素筛选的基本原理.海峡药学,1994,6(4): 51-53
    [27]方常福,于秀莲,于占洋.抗病毒抗生素的筛选. 微生物学杂志,1996,16(3):41-46
    [28] 胡海峰,朱宝泉,龚炳永.微生物来源的胆固醇生物合成酶抑制剂:Ⅳ.抗生素SIPI -8926-Ⅱ的研究.中国抗生素杂志,1996,21(3):173-179
    [29] 姚天爵.抗细菌抗生素筛选方法的研究.国外医药抗生素分册,1995,16(1): 1-4
    [30] 刘树良,鲍秀芬,王志等.农用抗生素7072可湿性粉剂的研究.微生物学杂志,1994,(1): 20-21
    [31] 胡海峰,朱宝泉,龚炳永.微生物来源的胆固醇生物合成酶抑制剂研究:抗生素SIPI -8926-Ⅱ的研究.中国医药工业杂志,1995,26(11):484-486
    [32] 朱昌雄,陈守文,刘放等.我国发酵微生物农药的发展概况与趋势.生物加工过程, 2003, 1(1):37-41
    [33] 王翔.细菌抗生素后效应期的研究进展.国外医药抗生素分册,1996,17(4): 273-276
    [34] 林璧润,谢双大,姚汝华.半合成农用抗生素.中国生物防治,1999,15 (4) 174-177
    [35] 韩斯琴,徐梅,白震等.番茄灰霉病菌拮抗菌D2-4 发酵条件的研究. 东北农业大学学报, 2004,35(1): 93-98
    [36] 丁立孝,方善康.防治烟草赤星病农用抗生素筛选模型的研究.中国抗生素杂志,1996, 21(4):249-252
    [37] 何培青,田黎,李光友等.海洋细菌B-9987胞外代谢产物的纯化及抑菌机理初探.海洋与湖沼, 2002, 33(5):492-498
    [38] 胡金川.基因工程技术在肽抗生素制备中的应用进展. 医学研究生学报, 2003, 16(8):611-613
    [39] 张丽萍,张贵云.微生物农药研究进展.北京农业科学, 2000,18(4):22-24
    [40] 李秀敏.细菌耐药机制研究进展. 中国新药杂志,2003,12(1):29-31
    [41] 许煜泉,张彦,俞吉安等.一株拮抗稻瘟病菌的产荧光假单胞杆菌.上海交通大学学报, 1998,32(3):111-115
    [42] 顾金刚,方敦煌,李天飞等.荧光假单胞杆菌RB-42、RB-89促烟草生长机理初探. 植物营养与肥料学报,2002 ,8(4) :493-496
    
    [43] 李隽,胡卓逸,蔡萍.二氢嘧啶酶产生菌的筛选及发酵条件的研究.药物生物技术, 1996(2):90-94
    [44] 朱伟光. 西瓜枯萎病菌拮抗菌的筛选. 浙江农业大学学报, 1990, 16(4): 345-350
    [45] 左常智,陈丽,肖永昌等.球形芽孢杆菌1593株的发酵条件.生物防治通报,1986,2(4):170-172
    [46] 朱伟光,李德葆,葛起新.植物病原细菌拮抗菌及其拮抗物质测定.浙江农业大学学报, 1990,16(4):345-350
    [47] 赵白鸽,孔建,王文夕等.枯草芽孢杆菌B-903对苹果轮纹菌的抑制作用及其对病害的控制效果.植物病理学报,1997,27:213-214
    [48] 仝赞华,王学士.大豆根腐病拮抗菌的室内筛选及温室测定.中国生物防治, 1997, 14(1):25-27
    [49] 袁虹霞,李洪连,王振跃等.利用土壤拮抗微生物防治棉花枯萎病. 中国生物防治, 1998, 14(4):156-158
    [50] 马平,李社增,陈新华等.利用拮抗菌防治棉铃疫病. 中国生物防治, 1998, 14(2): 65-67
    [51] 胡炳福.两种抗生细菌防治林木病害研究初报.生物防治通报,1988,4(4):172-175
    [52] 王金生,何晨阳,方中达.软腐欧氏杆菌产细菌素菌株的筛选和细菌素类型的研究. 生物防治通报,1988,4(2):55-58
    [53] 缪卫国,田逢秀.两种益微菌对枯萎病菌抑制能力的离体和活体测定. 中国生物防治, 1998,14(1):32-34
    [54] 陈志谊,陆凡,赵天俊等.杀菌剂对水稻种子表面拮抗细菌的影响. 中国生物防治, 1998,14(2):72-74
    [55] 阮红,陈卫良等.水稻白叶枯病菌拮抗细菌B56菌株的拮抗活性研究.浙江大学学报(农业与生命科学版),1999,25(6)573-577
    [56] 刘永锋,高渊,黄建华等.拮抗细菌B-916及其分泌物对几种植物病原菌的毒力分析. 中国生物防治,2002,18(1):45-46
    [57] 彭化贤,刘波微,陈小娟等.水稻稻瘟病拮抗细菌的筛选与防治初探. 中国生物防治, 2002,18(1):25-27
    [58] 易图永,高必达,洪艳云.四种拮抗细菌对水稻纹枯病菌的抑制因子. 中国生物防治, 2002,18(3):135-138
    [59] 牛桂兰,闫建平,郑大胜等.高毒效杀甜菜夜蛾苏云金芽孢杆菌WY-190. 中国生物防治, 2002,18(4):166-170
    [60] T.Egli,E.Sturm.细菌性植物病害的防治.农药译丛,1982,4(2):35-40
    [61] Bruce Carlton.生物农药的安全性和专一性. 农药译丛,1985,7(4):47-48
    [62] Johan Dekker.农用抗生素抗性发展. 农药译丛,1985,7(6):12-17
    [63] 陈延熙,陈璧,潘贞德等.增产菌的应用与研究.生物防治通报,1985,1(2):22-23
    
    [64] D.E.Mathre,Earl D.Hansing.种子处理用杀菌剂的评价. 农药译丛, 1988, 10(4): 45-48
    [65] 山口勇.微生物农药在未来植物保护中的展望. 农药译丛,1988,10(2):19-20
    [66] A.A.Powell,S.Matthews.种子处理的发展与前景. 农药译丛,1990,12(1):7-12
    [67] A.N.Mukhopadhyay,S.M.Shrestha等.种子生物处理防治土传植物病原菌. 农药译丛, 1993, 15(3):28-31
    [68] 高菊芳(译).生物农药的作用、应用与功效(一)-活体微生物农药.世界农药, 2001, 23(1): 1-6
    [69] 方勇军,张炳欣. 种子细菌处理防治番茄苗期病害.生物防治通报, 1990, 6(1): 31-34
    [70] 程亮,游春平,肖爱萍.拮抗细菌的研究进展.江西农业大学学报, 2003, 25(5): 732-737
    [71] 林文良.新抗生素筛选的基本原理.海峡药学,1996,6(4):51-53
    [72] 罗宽,何昆,匡传福,等.三株拮抗细菌对烟青枯病的抑制效果.中国生物防治, 2002, 18(4): 185-18
    [73] Kerr,A..Biological control of crown gall through production of agrocin 84.Plant Disease, 1980, 64:25-30
    [74] Linda S. Thomashow,and David M.Weller. Role of a Phenazine Antibiotic from Pseudomonas fluorescens in Biological control of Gaeumannomyces graminis var.trici. J. Bacteriol. 1988,170(8):3499-3508
    [75] D.M.Weller,and R.T.Cook..Suppression of Take-All of Wheat by Seed Treatments with Fluorescent Pseudomonas.Phytopathology. 1983,73(3):463-469
    [76] Shoda,M.,Asaka,O.,Kurosa,K.1997. Biocontrol of Rhizoctonia solani damping-off of tomato with Bacillus subtilis RB14. Appl Environ Microbiol 62: 4081-4085
    [77] Burr,T.J.,and A. Caesar. Beneficial plant bacteria. Crit. Rev. Plant Sci.2:1-20
    [78] Smiley,R.W..Wheat rhizosphere Pseudomonas as antagonists of Gaeumannomyces graminis.Soil Biol.Biochem. 1979,11:371-376
    [79] Cook,R.J.,and Rovira,A.D..The role of bacteria in the biological control of Gaeumannomyces graminis by suppressive soils. Soil Biol.Biochem. 1976,8:269-273
    [80] Sivasithamparam,K.,and Parker,C.A..Effect of certain isolates of bacteria and actinomycetes on Gaeumannomyces graminis var.trici. and take-all of wheat.Aust.J.Bot. 1978, 2:773-782
    [81] Robert F. Bonsall, David M. Weller, and Linda S. Thomashow. Quantification of 2,4-diacetylphloroglucinol produced by Fluorescent Pseudomonas spp. in vitro and in the rhizosphere of wheat. Appl. Environ. Microbiol, 1997,63(3):951-955
    [82] W.J.Janisiewicz.et al.Biological control of blue mold and gray mold on apple and pear
    
    
    with Pseudomonas cepacia. Postharvest Pathology and Mycotoxins, 1988, 78(1): 1697- 1700
    [83] James N.Roitman. et al. A new chlorinated Phenylpyrrole antibiotic produced by the antifungal bacterium Pseudomonas cepacia. J. Agric. Food Chem.1990,38(2):538-541
    [84] D.S.Hill. et al. Cloning of genes involved in the synthesis of pyrrolnitrin from Pseudomonas fluorescens and role of pyrrolnitrin synthesis in biological control of plant disease. Appl. Environ. Microl.1994,60(1): 78-85
    [85] Jian-Hua Guo, Hong-Ying Qi,et al: Biocontrol of tomato wilt by plant growth-promoting rhizobacteria. Biological Control. 2004,29:66-72
    [86] N. Bano, J. Musarrat.Characterization of a novel carbofuran degrading Pseudomonas sp.with collateral biocontrol and plant growth promoting potential. FEMS MicrobiologyLetters. 2004,231:13-17
    [87] Gurusiddaiah S and Gealy D G , Isolation and Characterixation of Metabolites from Pseudomonas fluorescens-D7 for control of Downy Brome(Bromus tectorum),Weed Science, 1994,42:492-501
    [88] Imran A. Siddiqui, S. Shahid Shaukat. Effects of Pseudomonas aeruginosa on the diversity of culturable microfungi and ematodes associated with tomato:impact on root-knot disease and plant growth. Soil Biology & Biochemistry.2003,35: 1359–1368
    [89] Angela Boari and Maurizio Vurro. Evaluation of Fusarium spp. and other fungi as biological control agents of broomrape (Orobanche ramosa). Biological Control. 2004, 30: 212-219
    [90] J. Hwang and D.M. Benson. Expression of induced systemic resistance in poinsettia cuttings against Rhizoctonia stem rot by treatment of stock plants with binucleate Rhizoctonia. Biological Control .2003,27: 73-80
    [91] Valery V. Smirnov., Elena A. Kiprianova. et al. Fluviols, bicyclic nitrogen-rich antibiotics produced by Pseudomonas fluorescens. FEMS Microbiology Letters.1997, 153: 357-361
    [92] John Davison. Genetic Exchange between Bacteria in the Environment. Plasmid. 1999, 42: 73–91
    [93] Matthew Spencera, Choong-Min Ryub. Induced defense in tobacco by Pseudomonas chlororaphis strain O6 involves at least the ethylene pathway. Physiological and Molecular Plant Pathology. 2003,63:27–34
    [94] F.I. Andreoglou et al.Influence of temperature on the motility of Pseudomonas ryzihabitans and control of Globodera rostochiensis. Soil Biology & Biochemistry. 2003, 35: 1095–1101
    [95] R. Hirsch et al. Occurrence of antibiotics in the aquatic environment. The Science of the
    
    
    Total Environment.1999,225:109-118
    [96] J.T. de Souza, J.M. Raaijmakers. Polymorphisms within the prnD and pltC genes from pyrrolnitrin and pyoluteorin-producing Pseudomonas and Burkholderia spp. FEMS Microbiology Ecology .2003,43:21-34
    [97] A. Ramette et al. Prevalence of Fluorescent Pseudomonads producing antifungal phloroglucinols and/or hydrogen cyanide in soils naturally suppressive or conducive to tobacco black root rot. FEMS Microbiology Ecology. 2003,44:35-43
    [98] Baumbery,S.et al. Microbial products. New approaches, Cambridge University press, 1989
    [99] J.I.A. Campbell et al. Species variation and plasmid incidence among Fluorescent Pseudomonas strains isolated from agricultural and industrial soils. FEMS Microbiology Ecology. 1995,18:51-62
    [100] I.A. Siddiqui et al. Suppression of Meloidogyne javanica by Pseudomonas aeruginosa IE-6St in tomato: the influence of NaCl, oxygen and iron levels. Soil Biology & Biochemistry. 2003,35:1625–1634
    [101] I.A. Siddiqui, S.S. Shaukat. Suppression of root-knot disease by Pseudomonas fluorescens CHA0 in tomato: importance of bacterial secondary metabolite 2,4-diacetylpholoroglucinol. Soil Biology & Biochemistry. 2003,35:1615–1623
    [102] J. Mercado-Blanco et al. Suppression of Verticillium wilt in olive planting stocks by root-associated. Fluorescent Pseudomonas spp.. Biological Control.2004,30: 474-486
    [103] R .W.Fedeniuk ,P.J . Shand. Theory and methodology of antibiotic extraction from biomatrices. J . Chromatogr . A. 1998,812:3-15
    [104] Z. Huang et al. Transformation of Pseudomonas fluorescence with genes for biosynthesis of phenazine-1-carboxylic acid improves biocontrol of rhizoctonia root rot and in situ antibiotic production. FEMS Microbiology Ecology. 2004,47:524-531
    [105] Morten Hentzer, Inhibition of quorum sensing in Pseudomonas aeruginosa biofilm bacteria by a halogenated furanone compound. Microbiology .2002,148: 87–102
    [106] Raaijmakers J.M, LreemanM, van Oorschot.M. P, et al. Dose-response relationships in biological control of Fusarium wilt of radish by Pseudomonas spp. Phytopathology, 1995, 85: 1075-1081
    [107] Leeman M , van Polt J. A , Hendridlex M. J, et al. Biocontrol of Fusarium wilt of radish in commercial greenhouse trials by seed treatment with Pseudomonas fluorescens WC374. Phytopathology, 1995,85:1302-1305
    [108] Leeman M , van Polt J. A , Hendridlex M. J, et al. Iron availability affects induction of systemic resistance to Fusarium wilt of radish by Pseudomonas fluoresens. Phytopathology, 1996, 86:149-155
    
    [109] Duffy B K. Combination of Trichodermakoning ii with fluoresent Pseudomonas for control of take-all on wheat. Phytopathology, 1996, 86: 188-194
    [110] Wei. G, Klopper. J. W , Tuzun S, et al. Induced systemic resistance to cucumber diseases and increased plant growth by plant growth-promoting rhizobacteria under field conditions. Phytopathology.1996, 86:221-224
    [111] Howell C. R. Suppression of Pythium ultimum induced damping off cotton seedlings by Pseudomonas fluorescence and its antibiotics pyoluteorin. Phytopathology, 1980, 70: 712-715
    [112] Yo shihisa. Production of antibiotics by Pseudomonas cepacia as an agent for bio logical control of soil borne plant pathogens. Soil Biol. Biochem , 1989, 21(5): 723-728
    [113] Hoffland, E., Hakulinen, J., and Van Pelt, J. A. Comparison of systemic resistance induced by avirulent and nonpathogenic Pseudomonas species. Phytopathology 1996,86: 757-762
    [114] Kloepper, J. W., Tuzun, S., Liu, L., and Wei, G.. Plant growth-promoting rhizobacteria as inducers of systemic disease resistance. Pest Management: Biologically Based Technologies. R. D. American Chemical Society Books, Washington,DC. 1993: 156-165
    [115] Bakker PAHM, van Peer R and Schippers B. Suppression of soil-borne plant pathogens by fluorescent Pseudomonads: mechanisms and prospects. BeemsterABRet al. (eds) Biotic Interactions and Soil-Borne Diseases. Elsevier Scientific Publishers, Amsterdam.1991:217–230
    [116] De Meyer G, Capieau K, Audenaert K, Buchala A, Metraux J-P and Hofte M.Nanogram amounts of salicylic acid produced by the rhizobacterium Pseudomonas aeruginosa 7NSK2 activate the systemic acquired resistance pathway in bean. Mol. Plant–Microbe Interact. 1999, 12: 450–458
    [117] Kloepper J.W.Lifshitz R,Sdaroth M.N. Pseudomonas inoculants to benefit plant production. ISL.Atlas of Sci., Animal and Plant Sci. ,Inst. For Public Information. Philaelphia USA.1988:60-64
    [118] Smirnov, V.V. and Kiprianova, E.A. Bacteria of the Pseudomonas Genus (in Russian), Naukova Dumka, Kiev. 1990:100-121
    [119] Korth, H. Pseudomonas fluorescens var. pseudo-iodinum. Zbl. Bakteriol. I Abt. Orig. 1970, 215: 461-465
    [120] Lindner, H.J. and Schaden, G. Pyrazolo-[4,3-e]-as-tri-azine, einneues eterocyclisches System aus Pseudomonas fluorescens var. pseudo-iodinum. Chem. Ber. 1972, 105: 1949- 1955
    [121] Marmur, J. and Doty, P. Determination of the base composition of DNA from its
    
    
    thermal denaturation temperature. J. Mol. Biol. 1962,5:109-118
    [122] Levanova, G.F., Novova, E.V., Sorokina, V.N. and Kiprianova, E.A. Spectrophotometric method of molecular DNA-DNA hybridization evaluation in application to the bacteria of Pseudomonas genus. Biol. Nauk. 1984,8: 23-26
    [123] Van Damme, P.A., Johannes, A.G., Cox, H.C. and Berends,W. On toxofavin, the yellow poison of Pseudomonas cocovenenans. Rec. Trav. Chim. 1960,79: 255-257
    [124] Navashin, S.M., Fomina, I.P., Koroleva, V.G., Terentieva, T.G. and Stegelman, L.A. Experimental study of antibiotic reumycin antitumour activity. Antibiotiki 1967,12: 892-898
    [125] Esipov, S.E., Kolosov, M.N. and Saburova, L.A. The structure of reumycin. J. Antibiot. 1973, 26:537-538
    [126] Sorensen, J., Skouv, J., Jorgensen, A. and Nybroe, O. Rapid identification of environmental isolates of Pseudomonas aeruginosa, P. jluorescens and P. putida by SDS-PAGE analysis of whole-cell protein patterns. FEMS Microbiol. Ecol. 1992, 101: 41-50
    [127] Gill, P.R. and Warren, G.J. An iron-antagonized fungistatic agent that is not required for iron assimilation from a fluorescent rhizosphere Pseudomonad. J. Bacterial. 1988, 170: 163-170
    [128] Wickham, G.S. and Atlas, R.M. Plasmid frequency fluctuations in bacterial populations from chemically stressed soil communities. Appl. Environ. Microbial. 1988,54:2192-2196
    [129] King, E.O., Ward, M.K. and Raney, D.E. Two simple media for the demonstration of pyocyanin and fluorescin. J.Lab. Clin. Med. 1954,44:301-307
    [130] Jacoby, G.A. Properties of R plasmids determining gentamicin resistance by acetylation in Pseudomonas aeruginosa. Antirnicrob. Agents Chemother. 1974,6:239-252
    [131] Smit, E., Venne, D. and van Elsas, J.D. Mobilization of a recombinant IncQ plasmid between bacteria on agar and in soil via cotransfer or retrotransfer. Appl. Environ. Microbiol. 1993,59:2257-2263
    [132] Sands, D.C. and Rovira, A.D. Pseudomonas fluerescens biotype G, the dominant fluorescent Pseudomonad in South Australian soils and wheat rhizospheres. J. Appl. Bacterial. 1971,34:261-275
    [133] de Weger, L.A., van Boxtel, R., van der Burg, B., Gruters, R.A., Geels, F.P., Schippers B. and Lugtenberg, B. Siderophores and outer membrane proteins of antagonistic, plant-growth-stimulating, root-colonizing Pseudomonas spp.J. Bacterial. 1986,165:585-594
    [134] Campbell, J.I.A., Scahill, S., Gibson, T. and Ambler, R.P. The phototrophic bacterium
    
    
    Rhodopseudomonas capsuluta sp. 108 encodes an indigenous class A p-lactamase.Biochem. J. 1989, 260:803-812
    [135] Zuniga, M.C., Durham, D.R. and Welch, R.A. Plasmid-and chromosome-mediated dissimilation of naphthalene and salicyclate in Pseudomonas putida PMD-1. J. Bacterial. 1981, 147: 836-843
    [136] Henschke, R.B. and Schmidt, F.R.J. Screening of soil bacteria for plasmids carrying antibiotic resistance. Biol. Fertil. Soils 1990,9:257-260
    [137] Boronin, A.M. Diversity of Pseudomonas plasmids: To what extent FEMS Microbial. L&t. 1992,100:461-468
    [138] Geogakopoulos, D.G.et al. Analysis of expression of a phenazine biosynthesis locus of Pseudomonas aerofaciens PGS12 on seed with a mutant carrying a phenazine biosynthesis locus-ice nucleation reporter gene fusion. Applied and Environmental Microbiology 1994, 60: 4573–4579
    [139] Hasky-Gu¨nther, K.et al. Resistance against the potato cyst nematode Globodera pallida systemically induced by the rhizobacteria Agrobacterium radiobacter (G12) and Bacillus sphaericus (B43). Fundamental and Applied Nematology. 1998,21:511–517
    [140] Keel, C.et al.. Suppression of root diseases by Pseudomonas fluorescens CHA0: importance of the bacterial secondary metabolite 2,4-diacetylphloroglucinol. Molecular Plant-Microbe Interaction 1992,5: 4-13
    [141] Keel, C. et al. Conservation of the 2,4-diacetylphloroglucinol biosynthesis locus among Fluorescent Pseudomonas strains from diverse geographic locations. Applied and Environmental Microbiology. 1996,62:552–563
    [142] Kloepper, J.W. et al. Plant root–bacterial interactions in biological control of soilborne diseases and potential extension to systemic and foliar diseases. Australasian Plant Pathology1999,28:21–26
    [143] Kraus, J., Loper, J.E. Lack of evidence for a role of antifungal metabolite production by Pseudomonas fluorescens Pf-5 in biological control of Pythium damping-off of cucumber. Phytopathology. 1992,82:264–271
    [144] Mazzola, M. et al. Contribution of phenazine antibiotic biosynthesis to the ecological competence of Fluorescent Pseudomonads in soil habitats. Applied and Environmental Microbiology 1992,58:2616–2624
    [145] Meyer, S.L.F. et al. Association of the plant-beneficial fungus Verticillium lecanii with soybean roots and rhizosphere. Journal of Nematology 1998,30:451–460
    [146] Milner, J.L.et al. Culture conditions that influence accumulation of swittermicin A by Bacillus cereus UW85. Applied Microbiology and Biotechnology 1995,43:685–691
    [147] Milner, J.L.et al. Production of kanosamine by Bacillus subtilis UW85. Applied
    
    
    Microbiology and Biotechnology.1996,62:3061–3065
    [148] Notz, R. et al. Biotic factors affecting expression of the 2,4-diacetylphloroglucinol biosynthesis gene phl in Pseudomonas fluorescens biocontrol strain CHA0 in the rhizosphere. Phytopathology 2001,91:873–881
    [149] Notz, R.et al. Fusaric acid-producing strains of Fusarium oxysporum alter 2,4-diacetylphloroglucinol biosynthesis gene expression in Pseudomonas fluorescens CHA0 in vitro and in the rhizosphere of wheat. Applied and Environmental Microbiology. 2002, 68:2229–2235
    [150] Reitz, M.et al. Lipopolysaccharides of Rhizobium etli strain G12 act in potato roots as an inducing agent of systemic resistance to infection by the cyst nematode Globodera pallida. Applied and Environmental Microbiology 2000,66:3515–3518
    [151] Schnider, U. et al. Amplification of the house-keeping sigma factor in Pseudomonas fluorescens CHA0 enhances antibiotic production and improves biocontrol abilities. Journal of Bacteriology 1995,177:387–5392
    [152] Schnider, U.et al. Autoinduction of 2,4-diacetylphloroglucinol biosynthesis in the biocontrol agent Pseudomonas fluorescens CHA0 and repression by the bacterial metabolites salicylate and pyoluteorin. Journal of Bacteriology2000,182:1215–1225
    [153] Sharifi-Tehrani,A .et al. Biocontrol of soil-borne fungal plant diseases by 2,4-diacetylphloroglucinol-producing Fluorescent Pseudomonads with different restriction profiles of amplified 16s rDNA. European Journal of Plant Pathology 1998,104:631–643
    [154] Siddiqui, I.A., Ehteshamul-Haque, S.. Suppression of the root rot-root knot disease complex by Pseudomonas aeruginosa in tomato: the influence of inoculum density, nematode populations, moisture and other plant-associated bacteria. Plant Soil. 2001, 237: 81–89
    [155] Siddiqui, I.A., Shaukat, S.S.. Rhizobacteria-mediated induction of systemic resistance (ISR) in tomato against Meloidogyne javanica.Journal of Phytopathology. 2002, 150: 469–473
    [156] Meyer, J.M.et al. Iron metabolism in Pseudomonas: salicylic acid, a siderophore of Pseudomonas Fluorescens CHAO. Biofactors. 1992,4:23-27
    [157] Bradfor,M. A rapid and sensitive method for quantitation of protein utilizing the principle of protein-dye binding. Anal.Biochem.1976,72:248-254

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700