巴西橡胶树棒孢霉落叶病病菌MAPK基因(CCK1)和毒素基因(ct)克隆与功能鉴定
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
巴西橡胶树是重要的热带作物之一,其产品天然橡胶与钢铁、石油、煤炭并列为四大工业原料。多主棒孢菌[Corynespora cassiicola(B.&C.)Wei]是重要的植物病原真菌,可为害300多种植物,由其侵染引起的巴西豫胶树棒孢霉落叶病是影响天然橡胶生产的主要病害之一。目前国内外对该病害的研究集中在病原菌生物学、病害流行学和防治技术等方面,对病原菌致病机理,特别是致病相关功能基因及其调控等方面的研究很少。以巴西橡胶树棒孢霉落叶病作为研究对象,开展病原菌致病相关功能基因及其调控等方面的研究,对揭示该病原真菌的致病机理、了解该病原菌与寄主之间的互作机制具有重要的学术价值,同时也有助于我们发展新的防治措施。
     本研究工作运用基因同源克隆技术,从巴西橡胶树棒孢霉落叶病菌(C.cassiicola)中克隆了蛋白激酶(MAPK)同源基因CCKl和毒素编码基因ct的全长序列,通过潮霉素基因hygB插入突变和PEG介导的原生质体转化,获得了它们的基因敲除突变体,并对其表型做了测定。主要结果如下:
     1.根据真菌中已发现的MAPK蛋白的保守序列设计一对简并引物,从C.cassiicola基因组DNA中扩增获得了一段PMKl类MAPK同源基因片段,利用SEFA-PCR技术经两步扩增获得了该片段的5’端(1802bp)和3′端(652bp)侧翼序列,拼接校正后的DNA全长2710bp,命名为CCKl。将所得CCKl的DNA序列与GenBank中PMK1类MAPK同源基因的cDNA序列比对后,从内含子外侧设计引物,以C.cassiicola基因组RNA为模板经RT-PCR扩增获得了一段1065bp的cDNA片段,比对已获得的CCKl基因的DNA和cDNA序列,发现起始密码子ATG位于第1227~1229bp处,附近序列符合Kozak规则,即ACCATGT,终止密码子TAA位于第2502~2504bp处,自ATG到TAA的DNA全长1278bp,其中含5个外显子和4个内含子,外显子大小分别为110bp、196bp、382bp、348bp和29bp(位于第1227~1336,1390~1585,1640~2021,2072~2419和2476~2504碱基处),内含子大小分别为53bp、54bp、50bp和56bp(位于第1337~1389,1586~1639,2022~2071和2420-2475碱基处);推测开放阅读框编码354个氨基酸残基,分子量约40.98kDa,等电点(PI)为6.43,是一种微酸性蛋白质。经过在GenBank数据库搜索CCK1的相似蛋白和系统聚类分析,发现CCK1与丝状真菌禾谷类叶枯病病菌(Phaeosphaeria nodorum)的MAK2(XP_001793869.1),油菜黑胫病病菌(Letosphaeria maculans)的MAPK(AAM89501.1),稻胡麻斑病病菌Cochliobolusmiyabeanus)的BMKl(AB180104.1),玉米小斑病病菌(Cochliobolus heterostrophus)的CHK1(AF178977.1),稻瘟病病菌(Magnaporthe grisea)的PMK1(U70134.1),番茄枯萎病病菌(Fusarium oxysporum f.sp. lycopersici) FMKl(AF286533.1)等PMKl类基因编码的蛋白高度同源,相似性分别为99%、99%、98%、98%、93%和93%,而且含有一个参与双重磷酸化作用的MAPK蛋白激活域TEY(182AA·184AA)和Ser/Thr蛋白激酶保守结构域。因此可以推测本试验获得的CCKl基因为C.cassiicola的PMKl类MAPK基因,序列已提交GenBank(GU373808.1)。
     2.采用在pMD18-T Vector的T克隆位点、Sph I和Sal Ⅰ酶切位点,先后依次插入CCKl基因5′端、3′端和潮霉素基因hygB三个片段,成功构建了C.cassiicola的CCKl基因敲除载体pFHB,从该载体上扩增一段插有hygB基因的重组CCKl基因片段,转化C.cassiicola原生质体,对所得转化子经过PDA平板初筛、PCR验证和Southern杂交证实,确定得到的编号为FHB4的菌株是多主棒孢菌蛋白激酶基因CCKl的敲除突变体。表型测定结果表明:与野生型菌株相比,CCKl突变体完全失去了产孢能力,菌落颜色由棕灰色变为墨绿色,紧贴培养基生长,气生菌丝显著减少,菌丝生长速率明显下降,菌丝刚直、分支和隔膜数减少,菌丝细胞中色素沉积多,颜色加深呈深褐色,原生质浓缩明显;菌丝更耐高温;对酸碱环境的最适范围变窄;对多种盐的渗透胁迫反应减弱;对多菌灵和甲基硫菌灵更敏感;用菌饼接种嫩叶完全不能致病,但用粗毒素测定致病性时却表现出弱致病力;产漆酶时间相对延后,但漆酶相对产量提高,纤维素酶的相对产量也明显提高;在菌丝生长方面,外源Ca2+的促进作用和cAMP的抑制作用对突变体的影响更大。说明蛋白激酶CCKl在巴西橡胶树棒孢霉落叶病菌菌丝的生长、发育、分化、色素的沉着,分生孢子、毒素、漆酶和纤维素酶的产生,对环境的适应性和对寄主的致病性方面可能起着重要的调控作用,而且有些调控作用可能是与钙信号或cAMP途径相互协调共同完成的。
     3.根据NCBI网站EF667973.1序列设计一对引物,用同样的方法从C.cassiicola中克隆了1个毒素基因ct,DNA全长2800bp,cDNA全长180bp,起始密码子ATG位于第802~804bp处,终止密码子TAA位于第1095~1097bp处,白ATG到TAA的DNA序列全长296bp,存在3个外显子和2个内含子,外显子大小分别为105bp、60bp和15bp(位于第802~906,974~1033和1083~1097碱基处),内含子大小分别为67bp和49bp(位于第907~973和1034~1082碱基处),推测开放阅读框编码59个氨基酸序列,分子量约5.92kDa,等电点(PI)为5.70,是一种酸性蛋白质,与C. cassiicola pro-cassiicolin(ABV25895.1)的氨基酸序列相似性达85%。因此初步确定本试验获得的ct基因是预期的C.cassiicola的毒素基因,序列已提交GenBank (GU373809.1)。
     4.用pMD18-T Simple Vector做启始载体,将含全部编码序列的-段毒素基因片段克隆在该载体的T克隆位点上,经Sal I酶切后反向插入hygB基因,成功构建了C.cassiicola毒素基因敲除载体pCTH。以该载体为模板,扩增获得一段插有hygB基因的重组ct基因片段,转化巴西橡胶树棒孢霉落叶病菌原生质体,对所得转化子经过PDA平板初筛、PCR验证和Southern杂交证实,确定得到的是多主棒孢菌毒素基因ct基因的敲除突变体。表型测定表明:与其野生型CC004相比,毒素突变体在菌落和菌丝形态、生长,产孢量、孢子萌发,菌丝生长对温度、pH要求,产生漆酶和纤维素酶的能力方面基本未发生明显的改变。用菌饼接种嫩叶,致病性虽有减弱但仍很强,用粗毒素测定致病性时症状却明显减轻。说明毒素是巴西橡胶树棒孢霉落叶病菌的一个重要的毒力因子,但不是唯一的因子。
Hevea rubber (Hevea brasiliensis) was an important tropical crop, and its product was one of the four major industrial raw materials along with steel, petroleum, and coal. Corynespora cassiicola (Bert.&Curt.) Wei, an important plant pathogenic fungus, infected more than300kinds of host plants. The Corynespora Leaf Fall (CLF) caused by C. cassiicola in Hevea rubber was a major disease influencing the production of natural rubber. Currently, foreign and local studies mainly focused on pathogen biology and disease epidemiology as well as control. However, little research had been directed to pathogeneisis mechanisms, especially pathogen-related genes and their regulations. Resaerch on the pathogeneisis-related genes in Hevea-C. corynespora system would be of great academic value in terms of revealing the pathogenesis and understanding the interaction mechanism between C.corynespora and its hosts. Furthermore, the findings would be beneficial to developing new control methods.
     In this research, full-length sequences of CCKl gene, a MAPK homologous gene, and a toxin gene ct, encoding cassiicolin toxin, were obtained using homology-based cloning method from the genome of C. cassiicola isolated from Hevea rubber. The disrupted genes were designed by insertion mutation with the hygromycin B phosphotransferase gene (hygB), and gene knockout mutants were obtained through protoplast transformation mediated by poly ethylene glycol (PEG), and the phenotypes of disruptants were also determined. The results were mainly as follows:
     1. According to the conserved amino acid sequence in some filamentous fungal MAPKs, a pair of degenerate primers was designed, and a MAPK homologous gene fragment of PMKl was amplified from the genomic DNA of C. cassiicola. With SEFA-PCR(Self-Formed Adaptor PCR), the5end (1802bp) and3end (652bp) segments flanking the sequences were obtained by two-step amplification. The spliced and corrected DNA was2710bp in size and named CCKl. After comparing the sequences of the CCKl DNA and the cDNA of the homologous gene PMKl, a pair of primers were designed from an external intron. A1065bp cDNA fragment was amplified from the genomic RNA of C. cassiicola by RT-PCR. The initiation codon ATG was found located within1227bp and1229 bp and the neighboring sequence conforms to the Kozak rule, which was the ACCATGT. The stop codon TAA was within2502bp and2504bp. The sequence from ATG to TAA was1278bp, including5exons with110bp,196bp,382bp,348bp, and29bp, respectively (being within the1227-1336,1390-1585,1640-2021,2072-2419, and2476-2504bases), and4introns with56bp,54bp,50bp, and56bp, respectively (being within the1337-1389,1586-1639,2022-2071, and2420-2475bases). The amino acid sequence of the open reading frame was inferred to be354, with a molecular weight of40.98kDa and an isoelectric point of6.43, being a slightly acidic protein. After searching for proteins similar to CCKl in the GenBank database and conducting a phylogenetic tree analysis, CCKl was found to be highly homologous to MAK2from Phaeosphaeria nodorum (XP_001793869.1), MAPK from Letosphaeria maculans (AAM89501.1), BMK1from Cochliobolus miyabeanus (AB180104.1), CHK1from Cochliobolus heterostrophus (AF178977.1), and PMK1from Magnaporthe grisea, and FMK1from Fusarium oxysporum f.sp. lycopersici and other proteins of the PMKl-type proteins, with similarities of99%,99%,98%,98%,93%, and93%, respectively. Furthermore, a TEY (182AA-184AA) of the MAPK protein activation domain-participating dual phosphorylation and Ser/Thr protein kinase-conserved domain were included. Therefore, the CCKl gene acquired from C. cassiicola in this experiment was an MAPK gene of PMK1type. The sequence had been submitted to GenBank (GU373808.1).
     2. The pMD18-T vector T cloning site, Sph I, and Sal I enzyme cutting sites were successively inserted into the CCKl gene5end fragment,3end fragment, and hygB gene, thus, successfully constructing the CCKl gene knockout vector pFHB. A recombined CCKl gene fragment from the knockout vector containing the hygB gene was amplified, and used to transform the C. cassiicola protoplast.After PDA agar plate screening, PCR verification, and Southern blot hybridization,the mitogen activated protein kinase gene CCKl knockout mutant was confirmed. Compared with the wild-type strain, the CCKl mutant losed sporulation capacity and the color of the colony changes from brown and gray to blackish green. Aerial mycelial mass significantly reduced, and mycelial growth rate obviously decreased. The hypha was firm and straight with less branches and septa, whereas the puce pigmentation intensifies with evident protoplasm concentration. The mycelium was more capable of withstanding high temperature and the optimal range of environment pH narrowed, whereas osmotic stress response to a variety of salts weakened. The fungus was more sensitive to carbendazim and thiophanate-methyl, as well. Meanwhile, the leaves of the rubber tree inoculated with mycelia plugs did not develop disease but the mutant demonstrates weak virulence when crude toxin was tested. Laccase production was relatively postponed with a relative increase in production. Cellulase production was significantly increased. The growth promoting effects of exogenous Ca2+and the growth inhibiting effects of exogenous cAMP on mycelial growth of the CCK1mutant were significantly higher than that of the wide type. All of the above demonstrated that the mitogen activated protein kinase CCK1might be play a vital regulatory role in mycelial growth, development, cell differentiation, and pigmentation, as well as conidium formation, toxin, laccaes and cellulase production, adaptability to the environment, and pathogenicity of C. cassiicola in Hevea rubber, and might be involve in mycelial growth together with Ca2+or cAMP signaling pathway.
     3. According to the cas gene sequence (EF667973.1) in NCBI, a pair of degenerate primers was designed, and a toxin encoding ct gene was amplified from the genomic DNA of C. cassiicola by the same method as the CCK1gene. The spliced and corrected DNA was2800bp in size and contained the entire180bp open reading frame. The initiation codon ATG was found located within802bp and804bp and the stop codon TAA was within1095bp and1097bp. The sequence from ATG to TAA was296bp, including3exons with105bp,60bp, and15bp, respectively (being within the802-906,974-1033, and1083-1097bases), and2introns with67bp and49bp, respectively (being within the907-973and1034-1082bases). The amino acid sequence of the open reading frame encoding was inferred to be59, with a molecular weight of5.92kDa and an isoelectric point of5.70, being an acidic protein. After searching for proteins similar to CT in the GenBank database, CT was found to be hightly homologous with pro-cassiicolin from Corynespora cassiicola (ABV25895.1) with similarities of85%. Therefore, the ct gene acquired from C. cassiicola in this experiment might be a toxin encoding gene. The sequence had been submitted to GenBank (GU373809.1).
     4. The pMD18-T simple vector T cloning site were successively inserted into the toxin encoding ct gene fragment, and then the hygB gene were inserted in antisense orientation into the ct sequence to the engineened Sal Ⅰ site, thus, successfully constructing the ct gene knockout vector pCTH. A recombined ct gene fragment from the knockout vector inserted with the hygB gene was amplified, and used to transform C. cassiicola protoplast by the PEG method. After PDA agar plate screening, PCR verification, and Southern blot hybridization,the toxin encoding ct knockout mutant was confirmed. There were no obvious difference in the colony color, mycelia morphology and growth, sporulation quantity, conidial germination, requirement of temperature and pH, and laccase and cellulase production between the mutant and the wild type. Meanwhile, the leaves of the rubber tree inoculated with mycelia plugs can cause typical symptoms but demonstrate weak virulence. However, when crude toxin was tested for pathogenicity, it displayed weaker virulence. All of the above demonstrated that the toxin was a impotant virulence factor but not a unique factor in the pathogenicity of C. cassiicola in Hevea rubber.
引文
1. 蔡海滨,胡彦师,黄华孙,程汉.巴西橡胶树CBF2基因的克隆和表达分析[J].热带农业科技,2008,31(3):1-5,12.
    2. 蔡吉苗,陈瑶,潘羡心,黄贵修.海南橡胶树棒孢霉落叶病病情调查与病原鉴定[J].热带农业科学,2008,28(5):17,10.
    3. 陈国华,肖罗,张双庆,杨宇红,谢丙炎.南方根结线虫促分裂原活化蛋白激酶(MAPK)基因的RNAi效应分析[J].植物病理学报,2008,38(5):509-513.
    4. 陈丽星.真菌毒素研究进展[J].河北工业科技,2006,23(2):124-126.
    5. 陈娅斐,冯斌,赵小明,白雪芳,杜昱光.MAPK级联途径在植物信号转导中的研究进展[J].植物学通报,2005,22(3):357-365.
    6. 陈照,蒲金基,张欣,漆艳香,谢艺贤,张辉强.杀菌剂对巴西橡胶棒孢霉落叶病菌的室内毒力测定[J].现代农药,2007,6(2):41-43.
    7. 戴媛媛,汤致强.新型多靶点蛋白激酶抑制剂-—舒尼替尼[J].中国药房,2008,19(9):1504-1506.
    8. 董金皋,史有艳,姜虎山.真菌毒素生物测定方法研究概况——细胞及细胞器水平的生物测定[J].河北农业大学学报,1993,16(3):94-98.
    9. 范永山,刘颖超,谷守芹,桂秀梅,董金皋.植物病原真菌的MAPK基因及其功能[J].微生物学报,2004,44(4):547-551.
    10.范永山.玉米大斑病菌MAPK基因的克隆与功能分析[D].河北农业大学,2004.
    11.范永山,谷守芹,董金皋,董娜MAPK途径对玉米大斑病菌HT一毒素产生和生物学活性的调控作用[J].中国农业科学2008,41(1):86-92.
    12.韩珊,朱天辉,李芳莲.植物病原真菌毒素作用机理研究进展[J].四川林业科技,2008,29(6):26-30.
    13.何健,黄星,顾立锋,蒋建东,李顺鹏.盐单胞菌属BYS21四氢嘧啶合成基因ectABC克隆及其盐激表达[J].微生物学报,2006,46(1):28-32.
    14.谷守芹.调控玉米大斑病菌生长发育和致病性的STK1基因的克隆与功能分析,河北农业大学[D],2007.
    15.管莉菠,蔡天明,李波等.Pseudomonas putida GM6多聚磷酸盐激酶(ppk)基因的克隆及表达[J].土壤学报,2007,44(4):727-733.
    16.关国经,张中义,梁贵林,李继新,张长华,李晓.贵州烤烟棒孢霉叶斑病的发生与发展[J].烟草科技,2007(8):56-60.
    17.柯佑鹏,过建春.应高度重视天然橡胶安全问题[J].中国热带农业,2007,1:7-9.
    18.南亚办.中国天然橡胶五十年[M].中华人民共和国农业部农垦局和农业部发展南亚热带作物办公室,2005
    19.李超萍,潘羡心,农卫东,罗大全,黄贵修.广西橡胶树棒孢霉落叶病病情调查与病原鉴定[J].广 西热带农业,2007,(6):26-29.
    20.李德葆,金庆超,董海涛.稻瘟病菌附着胞发育相关信号传递研究进展[J].浙江大学学报(农业与生命科学版)2006,32(3):257-264.
    21.李明远,李兴红,张涛涛,王靖,严红.辽宁发生茄子棒孢叶斑病[J].植物保护,2001,27(6):48-49.
    22.林春花,彭建华,时涛,刘先宝,蔡吉苗,黄贵修.橡胶树多主棒孢病菌毒素的纯化[J].热带作物学报,2010,31(6):984-988.
    23.刘先宝,蔡吉苗,潘羡心,高宏华,彭华,黄贵修.橡胶树多主棒孢菌rDNA-ITS区的分子鉴定及检测[J].热带作物学报,2008,29(4):489-493.
    24.卢昕,彭建华,张科立,黄贵修.巴西橡胶树主要种质对棒孢霉落叶病抗性评价[J].热带作物学报,2007,28(4):73-77.
    25.吕佩珂.中国蔬菜病虫原色图谱续集.远方出版社,2004.pp158
    26.潘羡心,彭建华,刘先宝,蔡吉苗,高宏华,黄贵修.不同来源橡胶树多主棒孢病菌致病性及基础生物学特性的比较[J].热带作物学报,2008,29(4):494-500.
    27.彭建华,郑春耀,潘羡心,李超萍,蔡吉苗,黄贵修.橡胶树多主棒孢病菌强致病菌株的筛选及产毒条件优化[J].热带作物学,2009,30(4):520-524.
    28.蒲金基.环境pH感应信号转导途径参与调控胶孢炭疽菌对芒果的致病性[D].海南大学,2008.pp61-62.
    29.祁高富,杨斌,叶建仁.植物病原真菌毒素研究进展[J].南京林业大学学报,2000(2):66-70.
    30.漆艳香.中国巴西橡胶树棒孢霉落叶病病原学研究[D].广西大学,2010.pp.85-89.
    31.任璐,刘慧平,韩巨才.番茄早疫病菌Hogl MAPK同源基因AsHogl的表达特性及其与抗药性的关联性[J].菌物学报,2010,29(4):542-547.
    32.孙广宇,宗兆峰主编.植物病理学实验技术[M].中国农业出版社,2002.pp144.
    33.宋文静,调控玉米大斑病菌分生孢子萌发和附着胞形成的PKC基因的克隆[D].河北农业大学,2008.
    34.石凤梅.植物病原真菌毒素的研究进展[J].黑龙江农业科学,2006(2):70-73.
    35.万春鹏,周寿然,左爱仁.RNA干扰机制及其应用研究进展[J].现代医学研究进展,2008,8(2):372-375.
    36.王承海.中国棒孢菌分类研究[D].山东农业大学,2006.pp23-35.
    37.王冬,曲音波,高培基.腺苷三磷酸和环腺苷单磷酸对丝状真菌纤维素酶合成的调节[J].微生物学报,1996,32(1):12-18.
    38.王嘉渊,陈捷.玉米弯孢叶斑病菌Clml基因的克隆及其功能验证[J].植物病理学报,2011,41(5):464-472.
    39.武晓波.玉米大斑病菌MAPK级联途径STK2基因的功能研究[D].河北农业大学,2009.
    40.徐长山,张宏瑞,张珍荫.云南木蠹象的危险性分析[J].中国森林病虫,2004,23(4):30-32.
    41.许海平,傅国华.我国天然橡胶产业发展[J].中国热带农业,2007,(2):15-16.
    42.闫培生,曹立新,王凯,王琢.真菌毒素生物防治研究进展[J].中国农业科技导报,2008,10(6):89-94.
    43.杨叶,王兰英,王磊,郑肖兰.混合杀菌剂对两种橡胶叶斑病的联合作用研究[J].现代农药,2009,8(3):47-49,51.
    44.杨光.辽宁省黄瓜棒孢菌叶斑病发生趋势预报[J].农药市场信息,2011,(28):47.
    45.叶子.云南天然橡胶产业概况[J].世界热带农业信息,2005,(9):18-19.
    46.于清溪.中国橡胶产业的发展[J].橡胶科技市场,2006,(24):1-6.
    47.张贺,蒲金基,张欣,漆艳香,谢艺贤,张辉强.巴西橡胶树棒孢霉落叶病病原菌的生物学特性[J].热带作物学报,2007,28(3):83-817.
    48.张贺,张欣,蒲金基,漆艳香,谢艺贤,张辉强.巴西橡胶树品系对棒孢霉落叶病的抗病性鉴定[J].植物保护,2008,34(04):54-56.
    49.张开明.橡胶树棒孢叶斑病[J].热带农业科技,2006,29(1):27-29.
    50.张欣,蒲金基,谢艺贤,漆艳香,符悦冠.巴西橡胶树棒孢霉落叶病发生情况调查[J].植物检疫,2007,21(6):372-373.
    51.张岳平.镰刀菌真菌毒素产生与调控机制研究进展[J].生命科学,2011,23(3):311-316.
    52.张震,杜新法,柴荣耀,王教瑜,邱海萍,毛雪琴,孙国昌.稻曲病菌PMK1类同源基因克隆及在稻瘟病菌遗传互补中的功能验证[J].微生物学报,2008,48(11):1473-1478.
    53.赵冠杰,杨志强,郭养浩.枇杷醇腈酶基因的克隆及结构分析[J].福州大学学报(自然科学版),2011,39(6):960-964.
    54.周斐红.玉米弯孢霉叶斑病菌Clkl基因的克降与功能分析[D].上海交通大学,2010.
    55.周志琦,刘强.真核生物的MAPK级联信号传递途径[J].生物化学与生物物理进展,1998,25(6):496503.
    56.朱文君,杨国红,林梦感,王奇巍,杨义芳.天然产物中蛋白酪氨酸激酶抑制剂的研究进展[J].中草药,2010,41(10):1739-1744.
    57. Atan S., Hamid N.H.. Differentiating races of Corynespora cassucola using RAPD and internal transcribed spacer markers [J]. Journal of Rubber Research,2003 (6): 58-64.
    58. Baker S.E., Kroken S., Inderbitzin P., Asvarak T., Li B.Y., Shi L., Yoder O.C., Turgeon B.G.. Two Polyketide Synthases are Required for Biosynthesis of the Polyketide Virulence Factor, T-toxin, by Cochliobolus heterostrophus [J]. Molecular Plant-Microbe Interaction,2006,19 (2): 39-149.
    59. Banuett F., Herskowitz I.. Identification of fuz7, a Ustilago maydis MEK/MAPKK homolog required for a-locus-dependent and independent steps in the fungal life cycle [J]. Genes Dev,1994,8(12):1367-1378.
    60. Banuett F..Signalling in the yeasts:an informational cascade with links to the filamentous fungi[J]. Microbiology and Molecular Biology Reviews,1998,62(2):249-2741.
    61. Barthe P., Pujade-Renaud V., Breton F., Gargani D., Thai R., Roumestand C., de Lamotte F.. Structural analysis of cassiicolin, a host-selective protein toxin from Corynespora cassiicola [J].Journal of Molecular Biology,2007,367(l):89-101.
    62. Bluhm B.H., Woloshuk C.P.. Fckl, a C-type cyclin-dependent kinase, interacts with Feel to regulate development and secondary metabolism in Fusarium verticillioides [J]. Fungal Genetics Biology, 2006, 44(3):146-54
    63. Bluhm B.H., Kim H., Butchko R.A., Woloshuk C,P.. Involvement of ZFR1 of Fusarium verticillioides in kernel colonization and the regulation of FST1, a putative sugar transporter gene required for fumonisin biosynthesis on maize kernels [J]. Molecular Plant Pathology,2008,9(2):203-211.
    64. Brachmann, A., Schirawski, J., Mueller, P., and Kahmann, R. An unusual MAP kinase is required for efficient penetration of the plant surface by Ustilago maydis [J]. European Molecular Biology Organization,2003,22(9): 2199-2210.
    65. Breton F.D., Auzac J., Garcia D. Recent researches on Corynespora cassiicola Hevea brasiliensis interaction[J]. Proceedings of the Workshop on Corynespora Leaf Fall Disease of Hevea Rubber,1996 (11) : 16-17.
    66. Breton F., Sanier C.D., Auzac J.. Role of cassiicolin, a host selective toxin in pathogenicity of Corynespora cassiicola, causal agent of a leaf fall disease of Hevea[J]. Journal of Rubber Research,2000,3 (2) : 115-128.
    67. Brewster, J.L. de Valoir, T., Dwyer, N.D., Winter, E., and Gustin,M.C.. An osmosensing signal transduction pathway in yeast [J]. Science .1993,259(5): 1760-1763.
    68. Brown D.W., Dyer R.B., McCormick S.P., Kendra D.F., Plattner R.D.. Functional demarcation of the Fusarium core trichothecene gene cluster[J]. Fungal Genetics Biology. 2004,41 (4):454-462.
    69. Bruno K.S, Tenjo F., Li L., Hamer J.E. and Xu J.R..Cellular Localization and Role of Kinase Activity of PMK1 in Magnaporthe grisea[J]. Eukaryotic Cell, 2004, 3(6):1525-1532.
    70. Camps M., Nichols A., Arkinstall S.. Dual specificity phosphatases: a gene family for control of MAP kinase funtion [J]. Journal of the American Societies for Experimental Biology,2000,14 (1) 6-16.
    71. Chee K.H.. Studies on sporulation, pathogenicity and epidemiology of Corynespora cassiicola on Hevea rubber[J].Journal of Natural Rubber Research,1988,31(1):21-29.
    72. Cheng Y.Q., Walton J.D.. A eukaryotic alanine racemase gene involved in cyclic peptide biosynthesis[J]. .Journal of biological chemistry,2000, 275(7):4906-4911.
    73. Cho Y., Robert A.,Cramer Jr., Kim K.H., Davis J., Mitchell T.K., Figuli P., Pryor B.M., Lemasters E., Lawrence C.B..The Fus3/Kssl MAP kinase homolog Amkl regulates the expression of genes encoding hydrolytic enzymes in Alternaria brassicicola[J].fungal Genetics and Biology,2007,44 (6):543-553.
    74. Choi YE, Shim WB. Functional characterization of Fusarium verticillioides CPP1, a gene encoding a putative protein phosphatase 2A catalytic subunit[J].Microbiology,2008, 154(l):326-336.
    75. Choi E.S., Chung H.J., Kim M.J., Park S.M., Cha B.J., Yang M.S., Kim D.H.. Characterization of the ERK homologue CpMK2 from the chestnut blight fungus Cryphonectria parasitica[J]. Microbiology,2005,151(5): 1349-1358.
    76. De Lamotte F., Duviau M.P., Sanier C., Thai R., Poncet J., Bieysse D., Breton F., Pujade-Renaud V.. Purification and characterization of cassiicolin, the toxin produced by Corynespora cassiicola, causal agent of the leaf fall disease of rubber tree[J]. Journal of chromatography B,Analytical technologies in the biomedical and life sciences,2007,849(l-2): 357-362.
    77. Dickman MB, Yarden O. Serine/threonine protein kinases and phosphatases in filamentous fungi[J]. Fungal Genetics and Biology,1999,26(2):99-117.
    78. Dixon K.P.,Xu J.R.,Smirnoff N. and Talbot N.J.. Independent signaling pathways regulate cellular turgor during hyperosmotic stress and appressorium-mediated plant infection by Magnaporthe grisea[J].Plant Cell,1999,11 (10) :2045-2058.
    79. Ding S.L., Zhou X.Y., Zhao X.H and Xu J.R.. The PMK1 MAP Kinase Pathway and Infection-Related Morphogenesis. Advances in Genetics, Genomics and Control of Rice Blast Disease[M] .2009, Part I.pp.13-21.
    80. Di Pietro A., Garcia-MacEira F.I., Méglecz E., Roncero M.I.. A MAP kinase of the vascular wilt fungus Fusarium oxysporum is essential for root penetration and pathogenesis [J]. Molecular Microbiology,2001,39(5):1140-1152.
    81. Dung P.T.. Studies on Corynespora cassiicola (Berk. & Curt.)Wei.on rubber.Thesis in Plant Protection (Extension and Development Division)[D]. University of Putra, Malaysia. 1995.
    82. Dung, P.T. and Hoan N.T.. Current statuses of Corynespora leaf fall on rubber in Vietnam. IRRDB Workshop on Corynespora leaf fall of rubber[C].6-14 June 2000, Kuala Lumpur, Malaysia and Medan, Indonesia.
    83. Durrenberger F., Kronstad J.. The ukcl gene encodes a protein kinase involved in morphogenesis, pathogenicity and pigment formation in Ustilago maydis [J].Molecular General Genetics, 1999,261(2):281-289.
    84. Dufresne M., Bailey J.A., Dron M., Langin T.. clkl, a serine/threonine protein kinase-encoding gene, is involved in pathogenicity of Colletotrichum lindemuthianum on common bean [J]. Molecular Plant-Microbe Interactions,1998,11(2):99-108.
    85. Fungal Database, 2011, http://nt.ars-grin.gov/fungaldatabases/
    86. Fujimura M., Ochiai N., Ichiishi A.. Fungicide resistance and osmotic stress sensitivity in mutants of Neurospora crassa[J]. Pesticide Biochemistry and Physiology,2000,67(2):125-133.
    87. Gustin M.C., Albertyn J., Alexander M., Davenport K.. MAP kinase pathways in the yeast Saccharomyces cerevisiae [J]. Microbiology and Molecular Biology Reviews,1998,62(4):1264-1300.
    88. Hashim I., Indran J.. Occurrence and identification of physiological races of Corynespora cassucola of hevea[C]. In: Chen Q B, Zhou J N. Proceedings of IRRDB Symposium 1999. Haikou:Publishing House, 2003,263-272.
    89. Hou Z.M., Xue C.Y.,Peng Y.L.. A mitoge-activated protein kinase gene (MGV1) in Fusarium graminearum is required for female fertility, heterokaryon formation and plant infection [J]. Molecular Plant-Microbe Interactions,2002,l5(11): 1119-1127.
    90. Idicula SP. Equipment for Corynespora leaf fall disease control. In: Corynespora leaf disease of Hevea basiliensis: Srategies for manangement (Ed C.Kuluvilla Jacob)[M].Rubber Research Institute of India, Kottayam, India, 2006a.pp.l58-173.
    91. Idicula S.P.. Corynespora leaf fall disease control through cultural practices. In: Corynespora leaf disease of Hevea basiliensis: Srategies for manangement (Ed C.Kuluvilla Jacob)[M].Rubber Research Institute of India, Kottayam, India, 2006b. pp.97-108.
    92. Igbaria A.,Lev S.,Rose M.S.,Lee B.N., Hadar R., Degani,O. and Horwitz B.A.. Distinct and combined roles of the MAP kinases of Cochliobolus heterostrophus in virulence and stress responses [J]. Molecular Plant-Microbe Interactions,2008,21 (6):769-780.
    93. Imazaki A., Tanaka A., Harimoto Y., Yamamoto M., Akimitsu K., Park P., Tsuge T.. Contribution of peroxisomes to secondary metabolism and pathogenicity in the fungal plant pathogen Alternaria alternata[J]. Eukaryot Cell, 2010,9(5):682-694.
    94. IRRDB. Corynespora leaf fall disease. In 'Annual Report for 2000'[R].Available at http://www.irrdb.com/IRRDB/AnnualReport/Report2000.htm#Corynespora
    95. Ismail, H., Jeyanayagi, I.. Occurrence and identification of physiological races of Corynespora cassiicola of Hevea. In Q. B. Chen & J. N. Zhou (Eds.) [C].Proceedings of the IRRDB Symposium.1999 (pp. 263-272). Haikou:Hainnan Publishing House.
    96. Johnson, R.D., Johnson, L., Itoh, Y., Kodama, M., Otani, H. and Kahmoto, K.. Cloning and characterization of a cyclic peptide synthetase gene from Alternaria alternate apple pathotype whose product is involved in AM-toxin synthesis and pathogenecity[J].Molecular Plant-Microbe Interactions,2000,13(7):742-753.
    97. Jayasinghe C.K.. Leaf fall disease: great threat to word NR industry [J]. Rubber Asia,1997,11 (6) 55-56.
    98. Jayasinghe C.K.. Corynespora leaf fall:Success story of the management in Sri Lanka and future of the world's leading rubber clones. In Preprints: International Natural Rubber Conference[C], Vietnam,13-14 November 2006, Ho Chi Minh City, Vietnam. (Comps.Mai Van Son, et al), IRRDB and Rubber Research Institute of Vietnam, 2006a.pp.413-418.
    99. Jayasinghe C.K.. Experience in Corynespora leaf disease control in Sri Lanka. In: Corynespora leaf disease of Hevea basiliensis: Srategies for manangement (Ed C.Kuluvilla Jacob)[C].Rubber Research Institute of India, Kottayam, India, 2006b.pp.169-173.
    100. Jacob C.K.. Corynespora leaf fall disease of Hevea basiliensis:a threat to natural rubber production. In:Corynespora leaf disease of Hevea basiliensis:Srategies for manangement (Ed C.Kuluvilla Jacob) [C].Rubber Research Institute of India, Kottayam, India, 2006a. pp.83-96.
    101. Jacob C.K.. Symptoms of Corynespora leaf fall disease on rubber (Hevea basiliiensis). In: Corynespora leaf disease of Hevea basiliensis:Srategies for manangement (Ed C.Kuluvilla Jacob) [M].Rubber Research Institute of India, Kottayam, India, 2006b.pp.83-96.
    102. Jean, W.P. Report of Cote d'Ivoire IRRDB Workshop on Corynespora leaf fall of rubber[C].6-14 June, 2000, Kuala Lumpurn, Malaysia and Medan,Indonesia.
    103. Jenczmionka N.J., Maier F.J., Losch A.P., Schafer W.. Mating, conidiation and pathogenicity of Fusarium graminearum, the main causal agent of the head-blight disease of wheat, are regulated by the MAP kinase gpmkl [J].Curr Genet,2003,43(2):87-95.
    104. Jenczmionka N.J. and Schafer W..The Gpmkl MAP kinase of Fusarium graminearum regulates the induction of specific secreted enzymes [J]. Current Genetics,2005,47 (1) :29-36.
    105. Kajornchaiakul, P., Kajornehaiakul, P.. Corynespora diseaseof Hevea in Thailand.Proeeedings of IRRDB Symposium on Pathology of Hevea brasiliensis [C].Chiang Mai,Thailand,1987,16-22.
    106. Kim H., Woloshuk C.P.. Role of AREA, a regulator of nitrogen metabolism, during colonization of maize kernelsand fumonisin biosynthesis in Fusarium verticillioides[J].Fungal Genet Biol, 2008, 46(6): 947-953.
    107. Kim Y.K., Kawano T., Li D., Kolattukudy P.E.. A Mitogen-Activated Protein Kinase Kinase Required for Induction of Cytokinesis and Appressorium Formation by Host Signals in the Conidia of Colletotrichum gloeosporioides [J].Plant Cell. 2000,12(8):1331-1344.
    108. Kimura M., Tokai T., O'Donnell K., Ward T.J., Fujimura M., Hamamoto H., Shibata T., Yamaguchi I.. The trichothecene biosynthesis gene cluster of Fusarium graminearum F15 contains a limited number of essential pathway genes and expressed non-essential genes [J]. FEBS Lett,2003, 539(3):105-110.
    109. Kimura M., Tokai T., Takahashi-Ando N., Ohsato S., Fujimura M.. Molecular and genetic studies of Fusarium trichothecenes biosynthesis:pathways, genes, and evolution[J]. Biosci Biotechnol Biochem.,2007,71(9):2105-2123.
    110. Kojima K., Takano Y., Yoshimi A., Tanaka C., Kikuchi T., Okuno T.. Fungicide activity through activation of a fungal signaling pathway [J]. Molecular Microbiology,2004,53(6):1785-1796.
    111. Kronstad J., De Maria A., Funnell D, Laidlaw R.D., Lee N.,-De SaM.M., Ramesh M.. Signaling via cAMP in fungi: interconnections with mitogen-activated protein kinase pathways[J]. Archives of Microbiology,1998,170(6): 395-404.
    112. Lev S., Sliaron A., Hadar R., Ma H. and Horwitz B. A.. A mitogen-activated protein kinase of the corn leaf pathogen Cochliobolus heterostrophus is involved in conidiation,appressorium formation,and pathogenicity: Diverse roles for mitogen-activated protein kinase homologs in foliar pathogens[J].Proc Natl Acad Sci USA,1999,96(23):13542-13547.
    113. Lev S. and Horwitz B.A.. A Mitogen-Activated Protein Kinase Pathway Modulates the Expression of Two Cellulase Genes in Cochchliobolus heterostrophus during Plant Infection[J].The Plant Cell, 2003,15(4): 835-844.
    114. Lev S., Tal H., Rose M.S. and Horwitz B.A.. Signaling by the Pathogenicity-Related MAP Kinase of Cochliobolus heterostrophus Correlates with Its Local Accumulation rather Than Phosphorylation [J]. Molecular Plant -Microbe Interactions, 2009,22 (9): 1093-1103.
    115. Li L, Xue C Y, Bruno K, Nishimura M and Xu J R. Two PAK Kinase Genes, CHM1 and MST20, Have Distinct Functions in Magnaporthe grisea [J]. Molecular Plant Microbe Interactions,2004,17 (5) : 547-556.
    116. Li A.N., Wang Y.L., Tao K., Dong S.M., Huang Q., Dai T.T., Zheng X.B., and Wang Y.C..PsSAKl, a Stress-Activated MAP Kinase of Phytophthora sojae, Is Required for Zoospore Viability and Infection of Soybean[J]. Molecular Plant-Microbe Interactions,2010,23(8):1022-1031.
    117. Lin, C H., and Chung KR.. Specialized and shared functions of the histidine kinase and HOGl MAP kinase-mediated signaling pathways in the filamentous fungus Alternaria alternata of citrus [J].Fungal Genetics and Biology,2010,47(10):818-827.
    118. Lin, C. H., Yang, S. L. Wang, NY. and Chung KR.. The FUS3 MAPK signaling pathway of the citrus pathogen Alternaria alternata acts independently and cooperatively with the fungal redox-responsive API regulator for diverse developmental, physiological and pathogenic functions[J]. Fungal Genetics and Biology,2010,47(4):381-391.
    119. Lorang J.M.,Tuori R.P.,Martinez J.P., Sawyer T.L., Redman R.S.. Green fluorescent protein is lighting up fungal biology [J].Applied and Environmental Microbiology, 2001,67(5): 1987-1994.
    120. Magee B.B, Legrand M., Alarco A.M., Raymond M., Magee P.T.. Many of the genes required for mating in Saccharomyces cerevisiae are also required for mating in Candida albicans [J]. Molecular Microbiology,2002, 46(5):1345-1351.
    121. Manju MJ. Chemical control of Corynespora leaf fall disease. In:Corynespora leaf disease of Hevea basiliensis: Srategies for manangement (Ed C.Kuluvilla Jacob) [M].Rubber Research Institute of India, Kottayam, India, 2006.pp.103-108.
    122. Mehrabi, R., Zwiers, L. H., de Waard, M. A., and Kema, G. H. MgHogl regulates dimorphism and pathogenicity in the fungal wheat pathogen Mycosphaerella graminicola [J]. Molecular Plant-Microbe Interactions,2006,19(l1):1262-1269.
    123. Marine D., Yanice B., Stephanie G., Angelique B., Daniel B., Frederic de L., Joel P, Veronique R, Francois B, Gerald O, Jerome F, Marc S, Thierry L, Patricia R-D, Valerie P-R.Characterization of a cassiicolin-encoding gene from Corynespora cassiicola, pathogen of rubber tree (Hevea brasiliensis) [J].Plant Science (October 2011).doi:10.1016/j.plantsci.2011.10.017
    124. MaroAa E.M and Scott E.G.. A MAP kinase encoded by the ubc3 gene of Ustilago maydis is required for filamentous growth and full virulence [J]. Molecular Microbiology,1999,34(3):485-497.
    125. Marcus L., Schejter A.. Single step chromatographic purification and characterization of the endopolygalacturonases and pectinesterases of the fungus, Botrytis cinerea Pers. [J]. Physiological Plant Pathology,1983,23(1):1-13.
    126. Mater F.J., Aner T.M., Hadeller B., Felk A, Salomon S, Lemmens M, Kassner H, Schafer W.. Involvement of trichothecenes in fusarioses of wheat, barley and maize evaluated by gene disruption of the trichodiene synthase (Tri5) gene in three field isolates of different chemotype and virulence [J]. Molecular Plant Pathology, 2006, 7(6): 449-461
    127. Mathew J.. Clonal resistance of Hevea brasiliensis to Corynespora leaf fall disease. In: Corynespora leaf disease of Hevea basiliensis:Srategies for manangement (Ed C.Kuluvilla Jacob)[M].Rubber Research Institute of India, Kottayam, India,2006.pp.83-96.
    128. Mayorga M.E.,Gold S.E.. Characterization and molecular genetic complementation of mutants affecting dimorphism in the fungus Ustilago maydis [J]. Fungal Genetics and Biology,1998,24(3): 364-376.
    129. Mey G, Oeser B, Lebrun MH, et al. The biotrophic, non-appressoria forming grass pathogen Claviceps purpurea needs a Fus3/Pmk1 homologous MAP kinase for colonization of rye ovarian tissue [J]. Molecular Plant-Microbe Interactions, 2002,15(4):303-312.
    130. Menotta M., Pierleoni R., Amicucci A., Sisti D., Cerasi A., Millo E., Chiarantini L., Stocchi V.. Characterization and complementation of a Fus3/Kss1 type MAPK from Tuber borchii [J]. TBMK. Molecular Gen Genomics, 2006, 276 (2) :126-134.
    131. Moriwaki, A., Kihara J., Mori C., and Arase S.. A MAP kinase gene, BMK1, is required for conidiation and pathogenicity in the rice leaf spot pathogen Bipolaris oryzae.Microbiol. Res.,2007,162 (2) :108-114.
    132. Moriwaki, A., Kubo, E., Arase, S., and Kihara, J.. Disruption of SRM1, a mitogen-activated protein kinase gene, affects sensitivity to osmotic and ultraviolet stressors in the phytopathogenic fungus Bipolaris oryzae[J]. FEMS (Fed. Eur. Microbiol. Soc.) Microbiol. Lett, 2006,257 (2) :253-261.
    133. Muller P., Aichinger C., Feldbrugge M., Kahmann R.. The MAP kinase Kpp2 regulates mating and pathogenic development in Ustilago maydis [J]. Molecular Microbiology,1999,34(5): 1007-1017.
    134. Miiller P., Weinzierl G.,Brachmann A., Feldbrugge M. and Kahmann R.. Mating and Pathogenic Development of the Smut Fungus Ustilago maydis Are Regulated by One Mitogen-Activated Protein Kinase Cascade[J]. Eukaryotic Cell,2003,2(6):1 187-1199.
    135. Mushrif S.K.. Morphology, physiology and survival of Corynespora cassiicola (Berk.& Curt.)Wei. In: Corynespora leaf disease of Hevea basiliensis:Srategies for manangement (Ed C.Kuluvilla Jacob)[M].Rubber Research Institute of India,Kottayam,India,2006.pp.26-32.
    136. Myung K., Li S., Butchko R.A., Busman M., Proctor R.H., Abbas H.K., Calvo A.M.. FvVEl regulates biosynthesis of the mycotoxins fumonisins and fusarins in Fusarium verticillioides [J]. J Agric Food Chem, 2009,57(11): 5089~94
    137. Newsam A. Plant Pathology Division Report. Rubber Research Institute of Malaysia[C].Kuala Lumpur, Malaysia,1961.pp.63~70.
    138.Nighia, N. A., Kadir, J., Sunderasan, E., Abdullah, M. P., Malik,A., Napis, S.. Morphological and Inter Simple Sequence Repeat (ISSR) markers analyses of Corynespora cassiicola isolates from rubber plantations in Malaysia[J]. Mycopathologia,2008,166(4):189-201.
    139. Nishida, E., and Gotoh, Y. The MAP kinase cascade is essential for diverse signal transduction pathways [J]. Trends Biochem. Sci,1993,18(4):128-131.
    140. Onesirosan P.,Mabuni C.T.,Durbin R.D.,Morin, R.B.,Rich, D.H.,Arny D.C.. Toxin production by Corynespora csssiicola[J]. Physiological Plant Pathology,1975,5(11): 289-295.
    141. Park S.M., Choi E.S., Kim M.J., Cha B.J., Yang M.S., Kim D.H. Characterization of HOG1 homologue, CpMK1, from Cryphonectria parasitica and evidence for hypovirusmediated perturbation of its phosphorylation in response to hypertonic stress[J]. Molecular Microbiology, 2004,51(5): 1267-1277.
    142. Park G, Bruno K.S., Staiger C.J., Talbot N.J., Xu J.R.. Independent genetic mechanisms mediate turgor generation and penetration peg formation during plant infection in the rice blast fungus [J].Molecular Microbiology,2004,53 (6) :1695-1707.
    143. Park, J.A., Kim, J.M, Park, S.M. and Kim, D.H.. Characterization of CpStell, a MAPKKK gene of Cryphonectria parasitica, and initial evidence of its involvement in the pheromone response pathway [J]. Molecular Plant Pathology, 2011,Article first published online:6 SEP 2011 | DOI: 10.1111/j.l364-3703.2011.00742.x.http://onlinelibrary.wiley.com/doi/10.1111/j.1364-3703.2011.00
    144. Philip M., Christian A., Michael F. and Regine K.. The MAP kinase Kpp2 regulates mating and pathogenic development in Ustilago maydis [J]. Molecular Microbiology,1999,34(5):1007-1017.
    145. Philip S.,Roy .Molecular characterization of Corynespora cassicola .In: A Laboratory Manual for International Training on Strategies for Management of Corynespora Leaf Disease of Hevea brasiliensis[M]. Rubber Research Institute of India. 2006.pp.8-16.
    146. Prem E.E. and Jacob C.K. Disease intensity assessment of Corynespora leaf fall disease. In: A Laboratory Manual for Corynespora leaf disease of Hevea basiliensis: Srategies for manangement [M]. Rubber Research Institute of India, Kottayam, India, 2006. pp.21-30.
    147. Pu J.J,Zhang X.,Qi Y.X, Xie Y.X., Zhang H.Q.,Zhang H.. First record of Corynespora leaf fall disease of Hevea rubber tree in China [J]. Australasian Plant Disease Notes,2007,2 (1) :35-36.
    148. Qi Y.X., Pu J.J., Zhang H.Q., Huang S. L. and Zhang H.. Detection of Corynespora cassicola in Hevea rubber tree from China [J]. Australasian Plant Disease Notes,2007,2 (1) :153-155.
    149. Qi Y.X., Zhang X., Pu J.J., Liu X.M., Lu Y., Zhang H., Zhang H.Q., Lv Y.C.,Xie Y.X.. Morphological and molecular analysis of genetic variability within isolates of Corynespora cassiicola from different hosts [J]. Eur J Plant Pathol,2011,130 (1) :83-95.
    150. Radziah N.Z., Siti H.S. and Shamsuri H.. The epidemiology of Corynespora leaf fall of Rubber in Malaysia: Conidia dispersal pattern. Proceedings of Workshop on Corynespora leaf fall of Hevea rubber [C].16-17 december,1996,Kuala Lumpur,Malaysia and Medan, Indonesia. 1996. pp.133-144.
    151. Radhakrishna T.S. and Pillay, P.N.R.. Handbook of Natural Rubber Production in India [M]. Rubb. Res. Inst. India. Kottayam.1980. pp.668
    152. Radziah N.Z., Siti Hawa Sulong and Shamsuri Hidir. The epidemiology of Corynespora leaf fall of Rubber in Malaysia: Conidia dispersal pattern. Proceedings of Workshop on Corynespora leaf fall of Hevea rubber[C], 16-17 December, 1996, Kuala Lumpur, Malaysia and Medan, Indonesia. pp.133-144
    153. Ramamoorthy V., Zhao X., Snyder A.K., Xu J.R., Shah D.M.. Two mitogen-activated protein kinase signaling cascades mediate basal resistance to antifungal plant defensins in Fusarium graminearum [J].Cellular Microbiology, 2007, 9(6): 1491-1506.
    154. Ramakrishnan T.S. and Pillay P.N.R...Leaf spot of rubber caused by Corynespora cassiicola (Berk&Curt) Wei[J].Rubber Board Belletin, 1961,5(l):32-35.
    155. Rajalakshmy V.K., Potty S.N., Koyhandaraman R. and Karthikakutty A.M. influences of nutrition on disease incidence glass house experiment to study the effect of N, P and K on leaf spot disease of rubber caused by Corynespora cassiicola [M]. Proc. Placrosym-II Ootacamund (in press) Indian Society for Plantation Crops, CPCR1, Kasaragod.1979
    156. Rauyaree,P., Ospina-Giraldo,MD., Kang S., Bhat RG.,Subbarao KV., Grant,S.J. and Dobinson,K.F..Mutations in VMK1, a mitogen-activated protein kinase gene, affect microsclerotia formation and pathogenicity in Verticillium dahliae [J] . Journal Curr. Genet. 2005, 48(2): 109-116.
    157. Rose M.S., Asvarak T, Yun S.H., Lu S.W., Yoder O.C., Turgeon B.G.. Functional Analysis of Two Closely Linked Genes at the ToxlB Locus of Cochliobolus heterostrophus [J]. Fungal Genetics Newsletter,2001,48: 217.
    158. Roy C.B.. Variability of Corynespora cassiicola as revealed through molecular analysis. In: Corynespora leaf disease of Hevea basiliensis:Srategies for manangement (Ed C.Kuluvilla Jacob)[M].Rubber Research Institute of India, Kottayam, India, 2006. pp.33-43.
    159. Rui O., Hahn M.. The Slt2-type MAP kinase Bmp3 of Botrytis cinerea is required for normal saprotrophic growth, conidiation, plant surface sensing and host tissue colonization [J].Molecular Plant Pathology,2007,8(2):173-184.
    160. Ruiz-Roldan MC, Maier FJ, Schafer W. PTKI, a mitogen-activated-protein kinase gene, is required for conidiation, appressorium formation, and pathogenicity of Pyrenophora teres on barley [J]. Molecular Plant Microbe Interaction,2001,14(2):116-125.
    161. Sagaram U.S., Butchko R.A.E., Shim W.B.. The putative monomeric G-protein GBP1 is negatively associated with fumonisin Bl production in Fusarium verticillioides [J]. Molecular Plant Pathology, 2006, 7(5): 381-389.
    162. Sagaram U.S, Shim W.B.. Fusarium verticillioides GBB1, a gene encoding heterotrimeric G protein βsubunit, is associated with fumonisin B1 biosynthesis and hyphal development but not with fungal virulence [J]. Molecular Plant Pathology, 2007, 8(4): 375-84
    163. Sailajadevi T, Manju MJ, Ramesh B., et.al. Influence of weather on the incidence of Corynespora leaf fall disease of Hevea in Mettana, Dakshina Kannada: A prelimnary report[C]. In: Proceedings of international natural rubber conference, 2005,Cochin, India.pp.505-509.
    164. Sailajadevi T.. Disease-weather relationship. In: Corynespora leaf disease of Hevea basiliensis: Srategies for manangement (Ed C.Kuluvilla Jacob)[M].Rubber Research Institute of India, Kottayam, India, 2006. pp.44-53.
    165. Schaeffer H.J., Webber M.J.. Mitogen-activated protein kinases:Specific messages from ubiquitous messengers [J]. Molecular Cell Biology,1999,19 (4) :2435-2444.
    166. Silva W.P.K., Deverall B.J., Lyon B.R.. Molecular, physiological and pathological characterization of Corynespora leaf spot fungal from plantations in Sri Lanka [J]. Plant Disease,1998,47(3):267-277.
    167. Silva WPK, Karunanayake E.H, Wijesundera R.L.C, Priyanka U.M.S., Karunanayake, E.H.. Genetic variation in Corynespora cassiicola: a possible relationship between host origin and virulence[J].Mycological Research,2003,107(5): 567-571.
    168. Soepena H. and Sinulingga W.. Chemical Control of Corynespora leaf disease. Proceedings of Workshop on Corynespora leaf fall of Hevea rubber[C].16-17 December 1996, Kuala Lumpur, Malaysia and Medan, Indonesia. Soepena and Sinulingga. 2000. pp.215-224.
    169. Spencer J.A. and Walters H.J.. Variation in certain Isolates of Corynespora cassiicola [J]. Phytopathology,1969,59: 58-60.
    170. Sinulingga W. and Suwarto Soepena F.H.. Current statuses of Corynespora leaf fall in Indonesia. Proceedings of Workshop on Corynespora leaf fall of Hevea rubber[C].16-17 December, 1996, Kuala Lumpur, Malaysia and Medan, Indonesia. pp.29-36.
    171. Situmorang A., Dan A., Budiman A.. Corynespora cassiicola (Berk. & Curt.)Wei. Penyedab penyakit gugurdaun pad karet[M]. Kumpulan Makalah Lokakarya Karet 1984, PN/PT Perkebunan Wiklayh-I dabn P4TM, 14-16 November 1974 di Medan. P4TM.pp.10.
    172. Sunderasan E., Kadir R.A., Pujade-Renaud V., De Lamotte F., Yeang H.Y., Nathan S.. Single-chain variable fragments antibody specific to Corynespora cassiicola toxin, cassiicolin, reduces necrotic lesion formation in Hevea brasiliensis[J]. Journal General Plant Pathology, 2009, 75(1): 19-26.
    173. Takano Y., Kikuchi T., Kubo Y., Hamer J.E., Mise K., Furusawa I.. The Colletotrichum lagenarium MAP kinase gene CMK1 regulates diverse aspects of fungal pathogenesis[J]. Molecular Plant-Microbe Interaction,2000,13(4): 374-383.
    174. Tanaka A.,Tsuge T.. Structural and functional complexity of the genomic region controlling AK-toxin biosynthesis and pathogenicity in the Japanese pear pathotype of Alternaria alternata[J]. Molecular Plant-Microbe Interaction,2000,13(9):975-986.
    175. Wang S.M.,He J.,Cui Z.L. and Li S.P.Self-Formed Adaptor PCR: a Simple and Efficient Method for Chromosome Walking[J]. Applied and Environmental Microbiology,2007,73(15):5048-5051.
    176. Xu J.R. and John E.H. MAP kinase and cAMP signaling regulate infection structure formation, and pathogemc growth in the rice blast fungus Magnaporthe grisea [J]. Genes & Development,1996,10: 2696-2706.
    177. Xu J.R. MAP kinases in fungal pathogens[J]. Fungal Genetics Biology,2000, 31 (3): 137-152.
    178. Xu JR,Staiger CJ,Hamer JE.Inactivation of the mitogen-activated protein kinase MPS1 from the rice blast fungus prevents penetration of host cells but allows activation of plant defense responses [J].Proc Natl A cad Sci USA,1998,95 (21) :12713-12718.
    179. Yago J.I., Lin C.H. and Chung K. R..The SLT2 mitogen-activated protein kinase-mediated signalling pathway governs conidiation, morphogenesis, fungal virulence and production of toxin and melanin in the tangerine pathotype of Alternaria alternata [J]. Molecular Plant Pathology,2011,12(7):653-655.
    180. Zhao X.H., Kim Y.S,Park G., Xu J.R.. A mitogen-activated protein kinase cascade regulating infection-related morphogenesis in Magnaporthe grisea[J].Plant Cell,2005,17(4):1317-1329.
    181. Zhang H., Xue C., Kong L., Li G, Xu J.R..A Pmkl-interacting gene is involved in appressorium differentiation and plant infection in Magnaporthe oryzae[J]. Eukaryot Cell. 2011,10(8):1062-1070.
    182. Zhang Z., Gurr, S.J.. Expression and sequence analysis of the Blumeria graminis mitogen-activated protein kinase genes, mpkl and mpk2[J]. Gene, 2001,266(l):57-65.
    183. Zhang Y., Lamm R., Pillonel C., Lam S., Xu J.R.. Osmoregulation and fungicide resistance: the Neurospora crassa os-2 gene encodes a HOG1 mitogen-activated protein kinase homologue[J].Applied and Environmental Microbiology, 2002,68(2): 532-538.
    184. Zheng L., Campbell M., Murphy J., Lam S., Xu J.R.. The BMP1 gene is essential for pathogenicity in the gray mold fumgus Botrytis ciherea [J]. Molecular Plant-Microbe Interaction, 2000, 13(7): 724-732.
    185. Zhou X., Heyera C., Choi Y.E., Mehrabi R. Xu J.R... The CIDl cyclin C-like gene is important for plant infection in Fusarium graminearum [J]. Fungal Genetics Biology, 2009, 47(2): 143-151.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700