耐辐射奇球菌类胡萝卜素合成途径相关基因的研究以及两个新种的多相分类鉴定
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
耐辐射奇球菌(Deinococcus radiodurans R1)是一株红色的细菌,对电离辐射、紫外线、干燥以及许多化学诱变剂和强氧化剂有很强的抗性。大量的研究表明,耐辐射奇球菌的超强抗性是特殊的细胞物质结构、活性氧(reactive oxygen species, ROS)的有效清除以及DNA损伤的高效修复等方面共同作用的结果。自然界中许多类胡萝卜素是天然的抗氧化剂。耐辐射奇球菌能产生大量红色的类胡萝卜素物质deinoxanthin,这种类胡萝卜素在抗氧化方面的生物学功能尚未完全阐明。
     本研究通过敲除crtB和crtl这两个类胡萝卜素合成途径的上游基因成功构建两个无色突变株,并将其与野生型进行比较。比较的结果显示无色突变株对电离辐射、紫外线以及H2O2的抗性较野生型有所降低,但对丝裂霉素C(MMC)的抗性无明显变化。利用电子自旋共振(electron spin resonance, ESR)和自旋捕捉技术,在UV-C照射耐辐射奇球菌悬浮液体系时观察到自由基信号,信号的强弱受体系中耐辐射奇球菌细胞内类胡萝卜素水平的影响。在耐辐射奇球菌crtB无色突变株的悬浮液体系中加入野生型的色素抽提物,能明显抑制自由基信号的出现。因此,细胞体内与体外两方面的实验证据均说明野生型合成的类胡萝卜素可以通过清除自由基而保护细胞。
     进而对耐辐射奇球菌无色突变株的菌悬液体系中产生的自由基信号的类型进行分析。在crtB突变株的菌悬液体系中加入羟自由基特异性清除剂D-甘露醇后自由基信号几乎完全消失,说明UV-C照射crtB突变株的过程中生成的自由基主要是羟自由基。不过,在该体系加入过氧化氢酶也能使大部分的自由基信号消失,说明过氧化氢是羟自由基产生的关键条件。从野生株中提取的类胡萝卜素能使crtB突变株体系的自由基信号消失,且在野生型的体系中这种自由基信号不会出现,说明野生株合成的类胡萝卜素能在细胞体内和体外清除羟自由基。此外,从耐辐射奇球菌野生型中抽提的类胡萝卜素还能明显地清除核黄素/EDTA体系产生的超氧阴离子自由基。综合这些结果,得出以下结论:耐辐射奇球菌野生型中的类胡萝卜素可以通过清除羟自由基和超氧阴离子参与细胞的活性氧防御机制。
     耐辐射奇球菌的主要类胡萝卜素组分deinoxanthin具有独特的结构,说明耐辐射奇球菌中催化其合成的酶和途径有独特之处,值得深入研究。本研究对耐辐射奇球菌类胡萝卜素合成途径的另外两个基因crtLm (DR0801,编码番茄红素环化酶)和crtO(DR0093,编码p-胡萝卜素酮化酶)进行敲除,得到两个不同颜色的突变株。然后对这两个突变株的类胡萝卜素组分作了初步检测,为进一步研究耐辐射奇球菌的类胡萝卜素合成途径奠定了基础。此外,本研究通过分子生物学手段成功地构建了crtB、crtl及crtO基因的重组表达质粒。其中crtO基因在大肠杆菌中得到高水平的表达,而crtB和crtI基因的表达在SDS-PAGE电泳图谱中无法检测到。
     另一方面,本研究从新疆维吾尔自治区吐鲁番地区的戈壁荒漠区域采集的土壤样品中分离到184个菌株。形态特征、16S rRNA基因序列、部分生理生化特性以及全细胞脂肪酸组分的初步鉴定结果表明这184株细菌分属于5个细菌门的31个属中,显示出较丰富的物种多样性。
     在分离菌株中有多个潜在的新分类单元存在。本研究通过形态观察,系统发育分析,生理生化特性检测,醌组分、全细胞脂肪酸组分和极性脂组分的分析,DNA G+C含量测定和DNA-DNA分子杂交等多相分类鉴定技术对分离菌株X14-1T、X19-1和ZLB-3T进行了详细的鉴定,并在国际权威的系统分类学期刊IJSEM上发表。其中菌株X14-1T与X19-1被确定为Pontibacter属的一个新种,命名为Pontibacter korlensis sp. nov., X14-1T为这个种的模式菌株;菌株ZLB-3T被确定为Hymenobacter属的一个新种,命名为Hymenobacter deserti sp. nov.。
Deinococcus radiodurans R1, a red-pigmented strain of the extremely radioresistant genus Deinococcus, showed high resistance to ionizing radiation, ultraviolet light, desiccation and many chemical agents. The high resistance of Deinococcus radiodurans R1 was attributed to the special cell structure, the scavenging ability of reactive oxygen species and efficient repair capability for DNA damage. Many carotenoids are the natural antioxidants. Deinococcus radiodurans R1 contains a major carotenoid namely deinoxanthin. Its possible antioxidant role in this strain has not been completely elucidated.
     In this study, two colorless mutants were constructed by knockout of crtB and crtl genes, respectively. Comparative analysis of the two colorless mutants and the wild type showed that the two colorless mutants were more sensitive to ionizing radiation, UV, and hydrogen peroxide, but not to mitomycin-C (MMC). With electron spin resonance (ESR) and spin trapping techniques, we observed that free radical signals occurred in the suspensions of UV irradiated Deinococcus radiodurans cells and the intensity of signals was influenced by carotenoids levels within the cells. We further showed that the carotenoid extract from the wild type could obviously scavenge the free radical signals generated by the irradiated crtB mutant cells. These results suggest that carotenoids in D. radiodurans R1 function as free radical scavengers.
     To define which type of free radicals was generated in the process of UV radiation of crtB mutant cells, D-mannitol, a commonly used hydroxyl radical scavenger, was added to the mixture before radiation. The presence of D-mannitol resulted in the evident decrease of the free radical signals, suggesting that the free radical signals generated in UV-irradiated crtB mutant cells were mainly hydroxyl radicals. Furthermore, when catalase was added to the mixture, the major signals of free radicals also disappeared. This result indicated that hydrogen peroxide production was a prerequisite to the generation of hydroxyl radicals in the process of UV radiation of crtB mutant cells. The results also demonstrated that carotenoid extract from the wild type could scavenge the free radical signals generated in UV-irradiated crtB mutant cells, and no obvious free radicals were generated in the UV-irradiated wild type. Thus, carotenoids of D. radiodurans R1 act as hydroxyl radical scavengers in vivo. The ESR assay in vitro indicated that carotenoids from D. radiodurans R1 were also capable of scavenging superoxide anion. Therefore, carotenoids of D. radiodurans R1 play an important role in the defense mechanism of this organism by scavenge free radicals including hydroxyl radicals and superoxide anion.
     Deinoxanthin, the major pigment in D. radiodurans R1, has particular structure which has not been found in other organisms. Thus, the genes in the carotenoid biosynthetic pathway should be much different and further study is required. The genes crtLm (DR0801, encoding lycopeneβ-cyclase) and crtO (DR0093, encodingβ-carotene ketolase) were knocked out and two colored mutants were obtained. The carotenoid extracts of these mutants were also tested by HPLC. The expression vectors of crtB, crtl and crtO genes were also constructed. However, onlyβ-carotene ketolase could be expressed in E. coli. The expression of crtB and crtl genes could not be detected in the SDS-PAGE gel electrophoresis.
     On the other hand,184 bacterial isolates were obtained from soil samples from Xinjiang Province, China. On the basis of morphological characteristics,16S rRNA gene sequences, partial physiological and biochemical features, and whole-cell fatty acid profiles, these isolates belonged to 31 genera within 5 phyla.
     Several strains of these isolates showed big differences with any recognized bacterial species and probably belonged to new species or new genera. And then three strains were identified by the approaches of polyphasic taxonomy. On the basis of phenotypic characteristics, chemotaxonomic data, phylogenetic analysis, DNA G+C content and DNA-DNA hybridization, strains X14-1T and X19-1 are considered to represent a novel species of the genus Pontibacter, for which the name Pontibacter korlensis sp. nov. is proposed. The type strain is X14-1T. Strain ZLB-3T is considered to represent a novel species of the genus Hymenobacter, for which the name Hymenobacter deserti sp. nov. sp. nov. is proposed.
引文
1.程池,杨梅,李金霞,姚粟,胡海蓉.Biolog微生物自动分析系统一细菌鉴定操作规程的研究.食品与发酵工业,2006,32(5):50—54.
    2.段永翔.API鉴定系统及其在细菌学检验中的应用.现代预防医学,2004,31(5):729-731.
    3.范永仙,许尧兴.微生物生产类胡萝卜素的研究进展.食品与发酵工业,2003,29(7):69-74.
    4.李福枝,刘飞,曾晓希,李小龙,张凤琴.天然类胡萝卜素的研究进展.食品工业科技,2007,28(9):1-6.
    5.林金明,屈锋,单孝全.活性氧测定的基本原理与方法.分析化学,2002,30(12):1507-1514.
    6. 冉翠香.细菌化学分类的化学物质.吕梁高等专科学校学报,2000,16(2):63-64.
    7.陶天申,杨瑞馥,东秀珠主编.原核生物系统学.化学工业出版社,2007,108-114.
    8. 田兵,高冠军,徐步进,华跃进.辐射对耐辐射球菌(Deinococcus radiodurans)抗氧化酶活性提高的影响.核农学报,2004,18(3):221-224.
    9.王庆伟.类胡萝卜素的研究进展与临床应用.中国药事,2000,14(1):58-60.
    10.王梓林.新疆地理地貌.科学大观园,2006,09:1-2.
    11.姚竹云,陈文新.多相分类技术在根瘤菌分类中的应用(综述).农业生物技术学报,1998,6(2):1-5.
    12.张彤,方汉平.微生物分子生态技术:16S rRNA/DNA方法.微生物学通报,2003,30(2):97-101.
    13.张建丽,张娟,宋飞,张军,范蕾,刘志恒.诺卡氏菌型放线菌细胞中脂肪酸的气相色谱分析.微生物学通报,2008,35(8):1219-1223.
    14.张志春,王满困,李慧,王楠,李娟,张国安.昆虫体内多胺的高效液相色谱(HPLC)测定.昆虫知识,2007,44(1):130-134.
    15.赵红霞,詹勇,许梓荣.类胡萝卜素的研究进展.中国饲料,2002,11:10-12.
    16.朱秀灵,车振明,徐伟,焦云鹏,熊华.β-胡萝卜素的生理功能及其提取技术的研究进展.广州食品工业科技,2004,20(2):158-162.
    17. Al-Bakri GH, Mackay MW, Whittaker PA, Moseley BEB. Cloning of the DNA repair genes mtcA, mtcB, uvsC, uvsD, uvsE and the leuB gene from Deinococcus radiodurans. Gene.1985,33:305-311.
    18. Anderson AW, Nordan HC, Cain RF, Parrish G, Duggan D. Studies on a radio-resistant micrococcus. I. The isolation, morphology, cultural characteristics and resistance to gamma radiation. Food Technol.1956,10:575-577.
    19. Anderson R, Hansen K. Structure of a novel phosphoglycolipid from Deinococcus radiodurans. J Biol Chem.1985,260(22):12219-12223.
    20. Anderson R, Huang Y. Fatty acids are precursors of alkylamines in Deinococcus radiodurans. J Bacteriol.1992,174(22):7168-7173.
    21. Asada S, Takano M, Shibasaki I. Deoxyribonucleic acid strand breaks during drying of Escherichia coli on a hydorohobic filter membrane. Appl Environ Microbiol.1979,37(2):266-273.
    22. Auda H, Emborg C. Studies on post-irradiation DNA degradation in Micrococcus radiodurans, strain R11 5. Radiat Res.1973,53 (2):273-280.
    23. Baik, KS, Seong CN, Moon EY, Park Y-D, Yi H, Chun J. Hymenobacter rigui sp. nov., isolated from wetland freshwater. Int J Syst Evol Microbiol. 2006,56:2189-2192.
    24. Bartley G, Scolnik P, Beyer P. Two Arabidopsis thaliana carotene desaturases, phytoene desaturase and zeta-carotene desaturase, expressed in Escherichia coli, catalyze a poly-cis pathway to yield pro-lycopene. Eur J Biochem.1999, 259:396-403.
    25. Bartley GE, Scolnik PA. Plant carotenoids:pigments for photoprotection, visual attraction, and human health. Plant Cell.1995,7(7):1027-1038.
    26. Battista JR. Against all odds:the survival strategies of Deinococcus radiodurans. Annu Rev Microbiol.1997,51:203-224.
    27. Baumeister W, Barth M, Hegerl R, Guckenberger R, Hahn M, Saxton WO. Three-dimensional structure of the regular surface layer (HPI layer) of Deinococcus radiodurans. J Mol Biol.1986,187,241-250.
    28. Bendich A. Beta-carotene and the immune response. Proc Nutr Soc.1991, 50(2):263-274.
    29. Bertram JS, Pung A, Churley M, Kappock TJ, Wilkins LR, Cooney RV. Diverse carotenoids protect against chemically induced neoplastic transformation. Carcinogenesis.1991,12(4):671-678.
    30. Boling ME, Setlow JK. The resistance of Micrococcus radiodurans to ultraviolet radiation. Ⅲ. A repair mechanism. Biochim Biophys Acta.1966,123(1):26-33.
    31. Bouvier F, d'Harlingue A, Hugueney P, Marin E, Marion-Poll A, Camara B. Xanthophyll biosynthesis. Cloning, expression, functional reconstitution, and regulation of beta-cyclohexenyl carotenoid epoxidase from pepper (Capsicum annuum). J Biol Chem.1996,271(46):28861-28867.
    32. Brooks BW, Murray RGE. Nomenclature for "Micrococcus radiodurans" and other radiation-resistant cocci:Deinococcaceae fam. nov. and Deinococcus gen. nov., including five species. Int J Syst Bacteriol.1981,31:353-360.
    33. Britton G. Overview of carotenoid biosynthesis. In:Britton G (ed) Carotenoids: biosynthesis and metabolism. Birkhauser, Basel, pp 13-147.
    34. Bruge F, Tiano L, Cacciamani T, Principi F, Littarru GP. Effect of UV-C mediated oxidative stress in leukemia cell lines and its relation to ubiquinone content. Biofactors.2003,18:51-63.
    35. Buczolits S, Denner EBM, Kampfer P, Busse H-J. Proposal of Hymenobacter norwichensis sp. nov., classification of'Taxeobacter ocellatus', 'Taxeobacter gelupurpurascens' and'Taxeobacter chitinovorans'as Hymenobacter ocellatus sp. nov., Hymenobacter gelipurpurascens sp. nov. and Hymenobacter chitinivorans sp. nov., respectively, and emended description of the genus Hymenobacter Hirsch et al.1999. Int J Syst Evol Microbiol.2006,56,2071-2078.
    36. Burrell, A. D., Feldschreiber, P.& Dean, C. J. DNA-membrane association and the repair of double breaks in X-irradiated Micrococcus radiodurans. Biochim. Biophys. Acta 247,38-53 (1971).
    37. Carbonneau MA, Rebeyrotte N, Rebeyrotte P. Polar lipids from the radiation resistant bacterium Deinococcus radiodurans:structural investigations on glucosaminyl and N-acetyl glucosaminyl lipids. Biochimie.1984,66(4):319-30.
    38. Carbonneau MA, Melin AM, Perromat A, Clerc M. The action of free radicals on Deinococcus radiodurans carotenoids. Arch Biochem Biophys.1989, 275:244-251.
    39. Carroll JD, Daly MJ & Minton KW. Expression of recA in Deinococcus radiodurans. J Bacteriol.1996,178:130-135.
    40. Carteni-Farina M, Porcelli M, Cacciapuoti G, De Rosa M, Gambacorta A, Grant WD, Ross HNM. Polyamines in halophilic archaebacteria. FEMS Microbiol Lett. 1985,28:323-327.
    41. Christensen H, Angen, O, Mutters R, Olsen JE, Bisgaard M. DNA-DNA hybridization determined in micro-wells using covalent attachment of DNA. Int J Syst Evol Microbiol.2000,50:1095-1102.
    42. Collins MD, Hutson RA, Grant IR, Patterson MF. Phylogenetic characterization of a novel radiation-resistant bacterium from irradiated pork:description of Hymenobacter actinosclerus sp. nov. Int J Syst Evol Microbiol.2000, 50:731-734.
    43. Collins MD, Jones D. Distribution of isoprenoid quinine structural types in bacteria and their taxonomic implications. Microbiol Rev.1981,45:316-354.
    44. Colwell RR. Polyphasic taxonomy of the genus Vibrio:numerical taxonomy of Vibrio cholerae, Vibrio parahaemolyticus, and related Vibrio species. J Bacteriol. 1970,104:410-433.
    45. Costas, M. Classification, identification, and typing of bacteria by the analysis of their one-dimensional polyacrylamide gel electrophoretic protein patterns. Adv Electrophor.1992,5:351-408.
    46. Cox MM, Battista JR. Deinococcus radiodurans-the consummate survivor. Nat Rev Microbiol.2005,3(11):882-892.
    47. Cunningham F, Gantt E. Genes and enzymes of carotenoid biosynthesis in plants. Annu Rev Plant Physiol Plant Mol Biol.1998,49:557-583.
    48. Cunningham F, Pogson B, Sun Z, Mcdonald K, Dellapenna D, Gantt E. Functional analysis of the beta and epsilon lycopene cyclase enzymes of Arabidopsis reveals a mechanism for control of cyclic carotenoid formation. Plant Cell.1996,8:1613-1626.
    49. Daly MJ. A new perspective on radiation resistance based on Deinococcus radiodurans. Nat Rev Microbiol.2009,7(3):237-245.
    50. Daly MJ, Gaidamakova EK, Matrosova VY, Vasilenko A, Zhai M, Leapman RD, Lai B, Ravel B, Li SM, Kemner KM, Fredrickson JK. Protein oxidation implicated as the primary determinant of bacterial radioresistance. PLoS Biol. 2007,5(4):0769-0779.
    51. Daly MJ, Gaidamakova EK, Matrosova VY, Vasilenko A, Zhai M, Venkateswaran A, Hess M, Omelchenko MV, Kostandarithes HM, Makarova KS, Wackett LP, Fredrickson JK, Ghosal D. Accumulation of Mn(II) in Deinococcus radiodurans facilitates y-radiation resistance. Science.2004,306:1025-1028.
    52. Daly MJ, Minton KW. An alternative pathway of recombination of chromosomal fragments precedes recA-dependent recombination in the radioresistant bacterium Deinococcus radiodurans. J Bacteriol.1996,178,4461-4471.
    53. Daly MJ, Ouyang L, Fuchs P, Minton KW. In vivo damage and recA-dependent repair of plasmid and chromosomal DNA in the radiation-resistant bacterium Deinococcus radiodurans. J Bacteriol.1994,176(12):3508-3517.
    54. Daly MJ, Ouyang L, Minton KW. Interplasmidic recombination following irradiation of the radioresistant bacterium Deinococcus radiodurans. J Bacteriol 1994,176:7506-7515.
    55. Dose K, Bieger-Dose A, Kerz O, Gill M. DNA-strand breaks limit survival in extreme dryness. Orig Life Evol Biosph.1991,21(3):177-187.
    56. Eisenreich W, Rohdich F, Bacher A. Deoxyxylulose phosphate pathway to terpenoids. Trends Plant Sci.2001,6:78-84.
    57. Emde B, Wehrli E, Baumeister W. The topography of the cell wall of Micrococcus radiodurans. Electron Microsc.1980,2:460-461.
    58. Englander J, Klein E, Brumfeld V, Sharma AK, Doherty AJ, Minsky A. DNA toroids:framework for DNA repair in Deinococcus radiodurans and in germinating bacterial spores. J Bacteriol.2004,186(18):5973-5977.
    59. Evans DM, Moseley BEB. Deinococcus radiodurans UV endonuclease-beta DNA incisions do not generate photoreversible thymine residues. Mutat Res. 1988,207:117-119.
    60. Ezaki T, Hashimoto Y, Yabuuchi E. Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane-filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol.1989, 39:224-229.
    61. Fernandez-Gonzalez B, Sandmann G, Vioque A. A new type of asymmetrically acting beta-carotene ketolase is required for the synthesis of echinenone in the cyanobacterium Synechocystis sp. PCC 6803. J Biol Chem.1997,272:9728-9733.
    62. Fernandez Zenoff V, Sineriz F, Farias ME. Diverse responses to UV-B radiation and repair mechanisms of bacteria isolated from high-altitude aquatic environments. Appl Environ Microbiol.2006,72:7857-7863.
    63. Fischer W, Rosel P, Koch HU. Effect of alanine ester substitution and other structural features of lipoteichoic acids on their inhibitory activity against autolysins of Staphylococcus aureus. J Bacteriol.1981,146:467-475.
    64. Fraser PD, Bramley PM. The biosynthesis and nutritional uses of carotenoids. Prog Lipid Res.2004,43(3):228-265.
    65. Funayama T, Narumi I, Kikuchi M, Kitayama S, Watanabe H, Yamamoto K. Identification and disruption analysis of the recN gene in the extremely radioresistant bacterium Deinococcus radiodurans. Mutat Res.1999, 435(2):151-161.
    66. Galhardo RS, Rosenberg SM.Extreme genome repair. Cell.2009, 136(6):998-1000.
    67. Ghosal D, Omelchenko MV, Gaidamakova EK, Matrosova VY, Vasilenko A, Venkateswaran A, Zhai M, Kostandarithes HM, Brim H, Makarova KS, Wackett LP, Fredrickson JK, Daly MJ. How radiation kills cells:survival of Deinococcus radiodurans and Shewanella oneidensis under oxidative stress. FEMS Microbiol Rev.2005,29:361-375.
    68. Gutman PD, Carroll JD, Masters CI, Minton KW. Sequencing, targeted mutagenesis and expression of a recA gene required for the extreme radioTesistance of Deinococcus radiodurans. Gene.1994,141(1):31-37.
    69. Haber JE. Partners and pathways repairing a double-strand break. Trends Genet. 2000,16:259-264.
    70. Hansen MT. Multiplicity of genome equivalents in the radiation-resistant bacterium Micrococcus radiodurans. J Bacteriol.1978,134(1):71-75.
    71. Harsojo, Kitayama S, Matsuyama A. Genome multiplicity and radiation resistance in Micrococcus radiodurans. J Biochem.1981,90(3):877-880.
    72. Hirsch P, Ludwig W, Hethke C, Sittig M, Hoffmann B, Gallikowski CA. Hymenobacter roseosalivarius gen. nov., sp. nov. from continental Antarctic soils and sandstone:bacteria of the Cytophaga/Flavobacterium/Bacteroides line of phylogenetic descent. Syst Appl Microbiol.1998,21:374-383.
    73. Kajiwara S, Fraser PD, Kondo K, Misawa N. Expression of an exogenous isopentenyl diphosphate isomerase gene enhances isoprenoid biosynthesis in Escherichia coli. Biochem J.1997,324 (2):421-426.
    74. Kajiwara S, Kakizono T, Saito T, Kondo K, Ohtani T, Nishio N, Nagai S, Misawa N. Isolation and functional identification of a novel cDNA for astaxanthin biosynthesis from Haematococcus pluvialis, and astaxanthin synthesis in Escherichia coli. Plant Mol Biol.1995,29:343-352.
    75. Kanofsky JR, Sima PD. Synthetic carotenoid derivatives prevent photosensitised killing of retinal pigment epithelial cells more effectively than lutein. Exp Eye Res.2006,82(5):907-914.
    76. Kim JI, Cox MM. The RecA proteins of Deinococcus radiodurans and Escherichia coli promote DNA strand exchange via inverse pathways. Proc Natl Acad Sci USA.2002,99:7917-7921.
    77. Kim JI, Sharma AK, Abbott SN, Wood EA, Dwyer DW, Jambura A, Minton KW, Inman RB, Daly MJ, Cox MM. RecA protein from the extremely radioresistant bacterium Deinococcus radiodurans:expression, purification, and characterization. J Bacteriol.2002,184:1649-1660.
    78. Kitayama S. Adaptive repair of cross-links in DNA of Micrococcus radiodurans. Biochim Biophys Acta.1982,697(3):381-384.
    79. Kitayama S, Narumi I, Kikuchi M, Watanabe H. Mutation in recR gene of Deinococcus radiodurans and possible involvement of its product in the repair of DNA interstrand cross-links. Mutat Res.2000,461(3):179-187.
    80. Knox KW, Wicken AJ. Immunological properties of teichoic acids. Bacteriol Rev. 1973,37:215-257.
    81. Kobayashi I, Tamura T, Sghaier H, Narumi I, Yamaguchi S, Umeda K, Inagaki K. Characterization of monofunctional catalase KatA from radioresistant bacterium Deinococcus radiodurans. J Biosci Bioeng.2006,101 (4):315-321.
    82. Kohlmeier L, Hastings SB. Epidemiologic evidence of a role of carotenoids in cardiovascular disease prevention. Am J Clin Nutr.1995,62(6):1370S-1376S.
    83. Kolodner R. Biochemistry and genetics of eukaryotic mismatch repair. Genes Dev.1996,10(12):1433-1442.
    84. Kolodner RD, Marsischky GT. Eukaryotic DNA mismatch repair. Curr Opin Genet Dev.1999,9(1):89-96.
    85. Komori M, Ghosh R, Takaichi S, Hu Y, Mizoguchi T, Koyama Y, Kuki M. A null lesion in the rhodopin 3,4-desaturase of Rhodospirillum rubrum unmasks a cryptic branch of the carotenoid biosynthetic pathway. Biochemistry.1998,37: 8987-8994.
    86. Krasin F, Hutchinson F. Repair of DNA double-strand breaks in Escherichia coli, which requires recA function and the presence of a duplicate genome. J Mol Biol. 1977,116(1):81-98.
    87. Krubasik P, Takaichi S, Maoka T, Kobayashi M, Masamoto K, Sandmann G. Detailed biosynthetic pathway to decaprenoxanthin diglucoside in Corynebacterium glutamicum and identification of novel intermediates. Arch Microbiol.2001,176:217-223.
    88. Kuzminov A. Recombinational repair of DNA damage in Escherichia coli and bacteriophage lambda. Microbiol Mol Biol Rev.1999,63(4):751-813.
    89. Lecointe F, Shevelev IV, Bailone A, Sommer S, Hubscher U. Involvement of an X family DNA polymerase in double-stranded break repair in the radioresistant organism Deinococcus radiodurans. Mol. Microbiol.2004,53:1721-1730.
    90. Lee PC, Schmidt-Dannert C. Metabolic engineering towards biotechnological production of carotenoids in microorganisms. Appl Microbiol Biotechnol.2002, 60(1-2):1-11.
    91. Lemee L, Peuchant E, Clerc M, Brunner M, Pfander H. Deinoxanthin:A new carotenoid isolated from Deinococcus radiodurans. Tetrahedron.1997, 53:919-926.
    92. Levin-Zaidman S, Englander J, Shimoni E, Sharma AK, Minton KW, Minsky A. Ringlike structure of the Deinococcus radiodurans genome:a key to radioresistance? Science.2003,299:254-256.
    93. Liu Y, Zhang Q, Fang C, Zhu S, Tang Y, Huang S. EVect of glutathione on UV induction of prophage lambda. Arch Microbiol.2005,183:444-449.
    94. Liu Y, Zhou J, Omelchenko MV, Beliaev AS, Venkateswaran A, Stair J, Wu L, Thompson DK, Xu D, Rogozin IB, Gaidamakova EK, Zhai M, Makarova KS, Koonin EV, Daly MJ. Transcriptome dynamics of Deinococcus radiodurans recovering from ionizing radiation. Proc Natl Acad Sci USA.2003, 100:4191-4196.
    95. Makarova KS, Aravind L, Wolf YI, Tatusov RL, Minton KW, Koonin EV, Daly MJ. Genome of the extremely radiation-resistant bacterium Deinococcus radiodurans viewed from the perspective of comparative genomics. Microbiol Mol Biol Rev.2001,65(1):44-79.
    96. Marin E, Nussaume L, Quesada A, Gonneau M, Sotta B, Hugueney P, Frey A, Marion-Poll A. Molecular identification of zeaxanthin epoxidase of Nicotiana plumbaginifolia, a gene involved in abscisic acid biosynthesis and corresponding to the ABA locus of Arabidopsis thaliana. EMBO J.1996,15(10):2331-2342.
    97. Markillie LM, Varnum SM, Hradecky P, Wong KK. Targeted mutagenesis by duplication insertion in the radioresistant bacterium Deinococcus radiodurans: radiation sensitivities of catalase (katA)and superoxide dismutase (sodA) mutants. J Bacteriol.1999,181:666-669.
    98. Marklund S. Spectrophotometric study of spontaneous disproportionate of superoxide anion radical and sensitive directassay for superoxide dismutase. J Biol Chem.1976,251:7504-7507.
    99. Matsumura H, Takeyama H, Kusakabe E, Burgess J, Matsunaga T. Cloning, sequencing and expressing the carotenoid biosynthesis genes, lycopene cyclase and phytoene desaturase, from the aerobic photosynthetic bacterium Erythrobacter longus sp. strain OCH101 in Escherichia coli. Gene.1997, 189:169-174.
    100.Mattimore V, Battista JR. Radioresistance of Deinococcus radiodurans:functions necessary to survive ionizing radiation are also necessary to survive prolonged desiccation. J Bacteriol.1996,178(3):633-637.
    101.Melin AM, Peuchant E, Perromat A, Clerc M. Sensitivity to oxidative damage of two Deinococcus radiodurans strains. Journal of Applied Microbiology.1998, 84:531-537.
    102.Mennecier S, Coste G, Servant P, Bailone A, Sommer S. Mismatch repair ensures fidelity of replication and recombination in the radioresistant organism Deinococcus radiodurans. Mol Genet Genomics.2004,272(4):460-469.
    103.Milborrow BV. The pathway of biosynthesis of abscisic acid in vascular plants:a review of the present state of knowledge of ABA biosynthesis. J Exp Bot.2001, 52(359):1145-1164.
    104.Minton KW. DNA repair in the extremely radioresistant bacterium Deinococcus radiodurans. Mol Microbiol.1994,13(1):9-15.
    105.Misawa N, Nakagawa M, Kobayashi K, Yamano S, Izawa Y, Nakamura K, Harashima K. Elucidation of the Erwinia uredovora carotenoid biosynthetic pathway by functional analysis of gene products expressed in Escherichia coli. J Bacteriol.1990,172(12):6704-6712.
    106.Misawa N, Yamano S, Ikenaga H. Production of beta-carotene in Zymomonas mobilis and Agrobacterium tumefaciens by introduction of the biosynthesis genes from Erwinia uredovora. Appl Environ Microbiol.1991,57(6):1847-1849.
    107.Modrich P, Lahue R. Mismatch repair in replication fidelity, genetic recombination, and cancer biology. Annu Rev Biochem.1996,65:101-133.
    108.Moseley BE, Mattingly A. Repair of irradiation transforming deoxyribonucleic acid in wild type and a radiation-sensitive mutant of Micrococcus radiodurans. J Bacteriol.1971,105(3):976-983.
    109.Mortimer RK. Radiobiological and genetic studies on a polyploid series (haploid to hexaploid) of Saccharomyces cerevisiae. Radiat Res.1958,9(3):312-326.
    110.Moseley BE. The isolation and some properties of radiationsensitive mutants of Micrococcus radiodurans. J Gen Microbiol.1967,49:293-300.
    111.Moseley BEB, Evans DM. Isolation and properties of strains of Micrococcus (Deinococcus) radiodurans unable to excise ultraviolet lightinduced pyrimidine dimers from DNA:evidence for two excision pathways. J Gen Microbiol.1983, 129:2437-2445.
    112.Narumi I. Unlocking radiation resistance mechanisms:still a long way to go. Trends Microbiol.2003,11:422-425.
    113.Narumi I, Satoh K, Cui S, Funayama T, Kitayama S, Watanabe H. PprA:a novel protein from Deinococcus radiodurans that stimulates DNA ligation. Mol Microbiol.2004,54:278-285.
    114.Narumi I, Satoh K, Kikuchi M, Funayama T, Kitayama S, Yanagisawa T, Watanabe H, Yamamoto K. Molecular analysis of the Deinococcus radiodurans recA locus and identification of a mutation site in a DNA repair-deficient mutant, rec30. Mutat Res.1999,435(3):233-243.
    115.Nedashkovskaya OI, Kim SB, Suzuki M, Shevchenko LS, Lee MS, Lee KH, Park MS, Frolova GM, Oh HW, Bae KS, Park H-Y, Mikhailov VV. Pontibacter actiniarum gen. nov., sp. nov., a novel member of the phylum 'Bacteroidetes', and proposal of Reichenbachiella gen. nov. as a replacement for the illegitimate prokaryotic generic name Reichenbachia Nedashkovskaya et al. (2003). Int J Syst Evol Microbiol.2005,55:2583-2588.
    116.Neudert U, Martinez-Ferez IM, Fraser PD, Sandmann G. Expression of an active phytoene synthase from Erwinia uredovora and biochemical properties of the enzyme. Biochim Biophys Acta.1998,1392(1):51-58.
    117.Ogura K, Koyama T. Enzymatic aspects of isoprenoid chain elongation. Chem Rev.1998,98:1263-1276.
    118.Ohshima H, Iida Y, Matsuda A, Kuwabara M. Damage induced by hydroxyl radicals generated in the hydration layer of gamma-irradiated frozen aqueous solution of DNA. J Radiat Res.1996,37:199-207.
    119.Ouchane S, Picaud M, Vernotte C, Reisshusson F, Astier C. Pleiotropic effects of puf interposon mutagenesis on carotenoid biosynthesis in Rubrivivax gelatinosus-a new gene organization in purple bacteria. J Biol Chem.1997,272:1670-1676.
    120.Raisig A, Bartley G, Scolnik P, Sandmann G. Purification in an active state and properties of the 3-step phytoene desaturase from Rhodobacter capsulatus overexpressed in Escherichia coli. J Biochem.1996,119:559-564.
    121.Resnick MA. Similar responses to ionizing radiation of fungal and vertebrate cells and the importance of DNA double-strand breaks. J Theor Biol.1978, 71:339-346.
    122.Rissanen T, Voutilainen S, Nyyssonen K, Salonen JT. Lycopene, atherosclerosis, and coronary heart disease. Exp Biol Med (Maywood).2002,227(10):900-907.
    123.Rohmer M. The discovery of a mevalonate-independent pathway for isoprenoid biosynthesis in bacteria, algae and higher plants. Nat Prod Rep.1999, 16:565-574.
    124.Rothfuss H, Lara JC, Schmid AK, Lidstrom ME. Involvement of the S-layer proteins Hpi and SlpA in the maintenance of cell envelope integrity in Deinococcus radiodurans R1. Microbiology.2006,152(9):2779-2787.
    125.Ruiz-Hidalgo M, Benito E, Sandmann G, Eslava A. The phytoene dehydrogenase gene of Phycomyces:regulation of its expression by blue light and vitamin A. Mol Gen Genet.1997,253:734-744.
    126.Ruther A, Misawa N, Boger P, Sandmann G. Production of zeaxanthin in Escherichia coli transformed with different carotenogenic plasmids. Appl Microbiol Biotechnol.1997,48(2):162-167.
    127.Sandmann G Carotenoid biosynthesis and biotechnological application. Arch Biochem Biophys.2001,385(1):4-12.
    128.Sandmann G, Albrecht M, Schnurr G, Knorzer O, Boger P. The biotechnological potential and design of novel carotenoids by gene combination in Escherichia coli. Trends Biotechnol.1999,17(6):233-237.
    129.Sandmann G, Misawa N. New functional assignment of the carotenogenic genes crtB and crtE with constructs of these genes from Erwinia species. FEMS Microbiol Lett.1992,69(3):253-257.
    130.Satoh K, Narumi I, Kikuchi M, Kitayama S, Yanagisawa T, Yamamoto K, Watanabe H. Characterization of RecA424 and RecA670 proteins from Deinococcus radiodurans. J Biochem (Tokyo).2002,131:121-129.
    131.Schmidhauser T, Lauter F, Russo V, Yanofsky C. Cloning, sequence, and photoregulation of al-1, a carotenoid biosynthetic gene of Neurospora crassa. Mol Cell Biol.1990,10:5064-5070.
    132.Schofield MJ, Hsieh P. DNA mismatch repair:molecular mechanisms and biological function. Annu Rev Microbiol.2003,57:579-608.
    133.Servant P, Jolivet E, Bentchikou E, Mennecier S, Bailone A, Sommer S. The ClpPX protease is required for radioresistance and regulates cell division after gamma-irradiation in Deinococcus radiodurans. Mol Microbiol.2007, 66(5):1231-1239.
    134.Servinsky MD, Julin DA. Effect of a recD mutation on DNA damage resistance and transformation in Deinococcus radiodurans. J Bacteriol.2007, 189(14):5101-5107.
    135.Shahmohammadi HR, Asgarani E, Terato H, Saito T, Ohyama Y, Gekko K, Yamamoto O, Ide H. Protective roles of bacterioruberin and intracellular KCl in the resistance of Halobacterium salinarium against DNA-damaging agents. J Radiat Res.1998,39:251-262.
    136.Sherman MM, Petersen LA, Poulter CD. Isolation and characterization of isoprene mutants of Escherichia coli. J Bacteriol.1989,171 (7):3619-3628.
    137.Slade D, Lindner AB, Paul G, Radman M. Recombination and replication in DNA repair of heavily irradiated Deinococcus radiodurans. Cell.2009, 136(6):1044-1055.
    138.Stackebrandt E, Ebers J. Taxonomic parameters revisited:tarnished gold standards. Microbiol Today.2006,33:152-155.
    139.Stackebrandt E, Frederiksen W, Garrity GM, Grimont PAD, Kampfer P, Maiden MCJ, Nesme X, Rossello-Mora R, Swings J, Truper HG, Vauterin L, Wards AC, Whitman WB. Report of the ad hoc committee for the re-evaluation of the species definition in bacteriology. Int J Syst Evol Microbiol.2002,52:1043-1047.
    140.Stackebrandt E, Goebel BM. Taxonomic note:a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol.1994,44:846-849.
    141.Suresh K, Mayilraj S, Chakrabarti T. Effluviibacter roseus gen. nov., sp. nov., isolated from muddy water, belonging to the family "Flexibacteraceae". Int J Syst Evol Microbiol.2006,56:1703-1707.
    142.Sweet DM, Moseley BE. The resistance of Micrococcus radiodurans to killing and mutation by agents which damage DNA. Mutat Res.1976,34(2):175-186.
    143.Tabor CW, Tabor H. Polyamines in microorganisms. Microbiol Rev.1985, 49:81-99.
    144.Tatsuzawa H, Maruyama T, Misawa N, Fujimori K, Nakano M. Quenching of singlet oxygen by carotenoids produced in Escherichia coli-attenuation of singlet oxygen-mediated bacterial killing by carotenoids. FEBS Lett.2000, 484:280-284.
    145.Thompson BG, Murray RG. Isolation and characterization of the plasma membrane and the outer membrane of Deinococcus radiodurans strain Sark. Can J Microbiol.1981,27(7):729-734.
    146.Tjoelker LW, Chew BP, Tanaka TS, Daniel LR. Effect of dietary vitamin A and beta-carotene on polymorphonuclear leukocyte and lymphocyte function in dairy cows during the early dry period. J Dairy Sci.1990,73(4):1017-1022.
    147.Tian B, Wu Y, Sheng D, Zheng Z, Gao G, Hua Y. Chemiluminescence assay for reactive oxygen species scavenging activities and inhibition on oxidative damage of DNA in Deinococcus radiodurans. Luminescence.2004,19(2):78-84.
    148.Tian B, Xu Z, Sun Z, Lin J, Hua Y. Evaluation of the antioxidant effects of carotenoids from Deinococcus radiodurans through targeted mutagenesis, chemiluminescence, and DNA damage analyses. Biochim Biophys Acta.2007, 1770:902-911.
    149.Umeno D, Tobias AV, Arnold FH. Diversifying carotenoid biosynthetic pathways by directed evolution. Microbiol Mol Biol Rev.2005,69:51-78.
    150.Vandamme P, Pot B, Gillis M, de Vos P, Kersters K, Swings J. Polyphasic
    taxonomy, a consensus approach to bacterial systematics. Microbiol Rev.1996,
    60(2):407-438.
    151.Varghese AJ, Day RS. Excision of cytosine-thymine adduct from the DNA of ultraviolet-irradiated Micrococcus radiodurans. Photochem Photobiol.1970, 11(6):511-517.
    152.Verdoes J, Misawa N, Van Ooyen A. Cloning and characterization of the astaxanthin biosynthetic gene encoding phytoene desaturase of Xanthophyllomyces dendrorhous. Biotechnol Bioeng.1999,63:750-755.
    153.Wang C, Oh M, Liao J. Engineered isoprenoid pathway enhances astaxanthin production in Escherichia coli. Biotechnol Bioeng.1999,62:235-241.
    154.Wang P, Schellhorn HE. Induction of resistance to hydrogen peroxide and radiation in Deinococcus radiodurans. Can J Microbiol.1995,41(2):170-176.
    155.Wayne LG, Brenner DJ, Colwell RR, Grimont PAD, Kandler O, Krichevsky MI, Moore LH, Moore WEC, Murray RGE, Stackebrandt E, Starr MP, Truper HG. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol.1987,37:463-464.
    156.Weller GR, Kysela B, Roy R, Tonkin LM, Scanlan E, Della M, Devine SK, Day JP, Wilkinson A, d'Adda di Fagagna F, Devine KM, Bowater RP, Jeggo PA, Jackson SP, Doherty AJ. Identification of a DNA nonhomologous end-joining complex in bacteria. Science.2002,297:1686-1689.
    157.White O, Eisen JA, Heidelberg JF, Hickey EK, Peterson JD, Dodson RJ, Haft DH, Gwinn ML, Nelson WC, Richardson DL, Moffat KS, Qin H, Jiang L, Pamphile W, Crosby M, Shen M, Vamathevan JJ, Lam P, McDonald L, Utterback T, Zalewski C, Makarova KS, Aravind L, Daly MJ, Minton KW, Fleischmann RD, Ketchum KA, Nelson KE, Salzberg S, Smith HO, Venter JC, Fraser CM. Genome sequence of the radioresistant bacterium Deinococcus radiodurans R1. Science. 1999,286:1571-1577.
    158.Wieland B, Feil C, Gloriamaercker E, Thumm G, Lechner M, Bravo J, Poralla K, Gotz F. Genetic and biochemical analyses of the biosynthesis of the yellow carotenoid 4,4'-diaponeurosporene of Staphylococcus aureus. J Bacteriol.1994, 176:7719-7726.
    159. Wilson RW, Bloomfield VA. Counterion-induced condesation of deoxyribonucleic acid, a light-scattering study. Biochemistry.1979, 18(11):2192-2196.
    160. Wolf G. Retinoids and carotenoids as inhibitors of carcinogenesis and inducers of cell-cell communication. Nutr Rev.1992,50(9):270-274.
    161.Woodall AA, Lee SW, Weesie RJ, Jackson MJ, Britton G. Oxidation of carotenoids by free radicals:relationship between structure and reactivity. Biochim Biophys Acta.1997,1336(1):33-42.
    162.Work E, Griffiths H. Morphology and chemistry of cell walls of Micrococcus radiodurans. J Bacteriol.1968,95:641-657.
    163.Xu G, Wang L, Chen H, Lu H, Ying N, Tian B, Hua Y. RecO is essential for DNA damage repair in Deinococcus radiodurans. J Bacteriol.2008,190(7):2624-2628.
    164.Yamamoto S, Shinoda S, Kawaguchi M, Wakamatsu K, Makita M. Polyamine distribution in Vibrionaceae:norspermidine as a general constituent of Vibrio species. Can J Microbiol.1983,29:724-728.
    165.Yamasaki H. Gap junctional intercellular communication and carcinogenesis. Carcinogenesis.1990, 11(7):1051-1058.
    166.Yoshinaka T, Yano K, Yamaguchi H:Cell lysis and superoxide dismutase activities of highly radioresistant bacteria. Agric Biol Chem.1976,40:227-229.
    167.Zahradka K, Slade D, Bailone A, Sommer S, Averbeck D, Petranovic M, Lindner AB, Radman M. Reassembly of shattered chromosomes in Deinococcus radiodurans. Nature.2006,443(7111):569-573.
    168.Zimmerman JM, Battista JR. A ring-like nucleoid is not necessary for radioresistance in the Deinococcaceae. BMC Microbiol.2005,5:17.
    169.Zhang Q, Liu C, Tang Y, Zhou G, Shen P, Fang C, Yokota A. Hymenobacter xinjiangensis sp. nov., a radiation-resistant bacterium isolated from the desert of Xinjiang, China. Int J Syst Evol Microbiol.2007,57:1752-1756.
    170.Zhou Y, Wang X, Liu H, Zhang KY, Zhang YQ, Lai R, Li WJ. Pontibacter akesuensis sp. nov., isolated from a desert soil in China, Int J Syst Evol Microbiol. 2007,57:321-325.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700