双生病毒外壳蛋白和传毒相关蛋白基因介导的病毒抗性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
双生病毒在世界范围内广泛发生,严重危害多种重要经济作物。近年来,随着B型烟粉虱的入侵和扩散,番茄黄化曲叶病毒(tomato yellow leaf curl virus, TYLCV)在我国番茄产区不断蔓延传播且逐年加重,在部分地区大面积爆发,危害严重,难以防治,对农业生产构成严重的威胁。近年发展起来的RNA沉默(RNA silencing)技术可能是解决此问题的有效途径之一
     本研究以中国番茄黄化曲叶病毒Y10外壳蛋白2个不同氨基酸同源性150bp左右短片段和3个不同长度的外壳蛋白基因片段构建dsRNA植物表达载体,转化烟草和番茄,以求获得抗性强、抗性范围广的抗病转基因植株,并试图找出能诱导RNA介导的病毒抗性的最佳片段;同时,以B型烟粉虱传毒相关蛋白GroEL基因片段构建dsRNA植物表达载体,并转化烟草和番茄,探索利用RNAi切断病毒传播途径的可能性。本论文的研究为进一步构建双价基因,从病毒侵染和介体传毒两条途径切断双生病毒的侵染和流行,建立双生病毒分子调控技术体系打下基础。研究的结果和主要结论如下:
     1、利用中国番茄黄化曲叶病毒(tomato yellow leaf curl China virus, TYLCCNV)的CP基因片段构建dsRNA转化本氏烟和番茄及其抗病性研究
     1.1不同氨基酸同源性CP基因片段dsRNA介导的抗病性研究
     对大部分TYLCV的CP基因序列与TYLCCNV的CP的基因序列进行氨基酸同源性比对,分别选取同源性为94.94%的159bp的CP片段和81.32%的158bp的CP片段,成功构建含CP片段的dsRNA植物表达载体pBIN19-2HCP和pBIN19-2LCP,以本氏烟和番茄Moneymaker为转基因材料,通过农杆菌介导法分别将基因转入烟草和番茄中,得到含2HCP的转基因烟草56株、转基因番茄59株;得到含2LCP的转基因烟草43株、转基因番茄61株。通过对TO代扩繁株攻毒实验后表型观察和PCR检测发现,来自同一母株的TO代扩繁株抗性完全一致,转低同源CP片段dsRNA的转基因本氏烟TO代植株抗病型的比率为47.1%,而转高同源CP片段dsRNA的转基因本氏烟TO代植株抗病型的比率为72.7%。
     1.2不同长度CP基因片段dsRNA介导的抗病性研究
     分别选取长度约为150bp、300bp和450bp的CP片段,成功构建CP片段dsRNA植物表达载体pBIN19-2CP159(即pBIN19-2HCP)、pBIN19-2CP302和pBIN19-2CP457,以本氏烟和番茄Moneymaker为转基因材料,通过农杆菌介导法将基因转入烟草和番茄中,分别得到含2CP159、2CP302和2CP457转基因烟草56株、57株和38株,转基因番茄植株59株、77株和54株。通过对T0代扩繁株攻毒实验后表型观察和PCR检测发现,来自同一母株的T0代扩繁株抗性完全一致;但转3个不同长度CP片段dsRNA的转基因本氏烟T0代植株抗病性存在差异,分别为72.7%、80.7%和89.6%。我们从转pBIN19-2CP159 T0代转基因烟草抗病植株中随机选取4株繁殖,进行T1代抗病性分析,结果发现T1代植株抗病株比率分别为12.5%、22.5%、10.0%和17.5%。
     2、利用B型烟粉虱GroEL基因片段构建dsRNA转化本氏烟和番茄干扰烟粉虱传毒的研究
     随机选取长度约为300和500bp的GroEL基因片段,成功构建GroEL基因片段dsRNA植物表达载体pBIN19-2G502和pBIN19-26306。以本氏烟和番茄Moneymaker为转基因材料,通过农杆菌介导的转基因策略将基因转入并整合到烟草和番茄中,分别得到转基因烟草73株和46株,转基因番茄91株和66株;农杆菌介导的植株接种和烟粉虱传毒的接种方法对T0代扩繁株攻毒实验,表型观察和PCR检测结果表明,来自同一母株的T0代扩繁株抗性完全一致,转2个不同长度GroEL基因片段dsRNA的转基因本氏烟T0代中没有发现抗病型植株,两种不同接种方法所得的耐病型比率有一定差别,前一种接种方法得到的耐病型比率分别为56.6%和57.0%,而后一种接种方法得到的耐病型比率则分别为69.9%和65.0%。将带毒并在TO代转基因烟草扩繁株取食2天后的烟粉虱取食非转基因植株,通过PCR检查发现,转含26502和26306的转基因植株对烟粉虱的传毒能力干扰率分别为22.0%和16.0%。
     3在本氏烟中瞬时表达TYLCCNV CP基因dsRNA的抗病性初步分析
     为了初步确定TYLCCNV CP基因dsRNA能否诱导病毒抗性,减少基因操作的盲目性,我们构建植物表达载体pBIN19-GFP和pBIN19-CP-GFP,瞬时表达本氏烟,均可见GFP荧光。预先渗入pBIN19- 2CP457植物表达载体,然后再瞬时表达pBIN19-GFP和pBIN19-CP-GFP,前者GFP正常表达,而后者GFP荧光不可见;或渗入实验后16天用TYLCCNV Y10农杆菌侵染性克隆进行再接种,处理植株均表现为免疫。
Geminiviruses occurred worldwide, and cause severe diseases in several economically important crops. In recent years, with bio-invasion of B biotye Whitefly Tomato Yellow Leaf Curl Virus (TYLCV) has outbreaked in a large area of the tomato-producing areas, and serious threats had been posed to agricultural production. Whitefly is the transmission vector of TYLCV, and the GroEL chaperone protein, which produced by the symbiotic bacteria of vector, can protect the circulation of the virus in the insect. Once the disease occurs, it is difficult to control. Recently the development of RNA silencing technique in the plant may be an effective way to solve this problem.
     In this study, a comparison has been made between TYLCV Y10 coat protein and other isolates. Different sequences of two 150bp segments and about 3 different length coat protein gene segments of TYLCV are selected to construct dsRNA plant expression vector respectively, then they are transformed into tobacco and tomato, on the purpose of obtaining resistance plants with strong and wide resistance to TYLCV, furthermore, to find the optimal length of inducing RNA-mediated virus resistance. Furthermore, to explore the use of RNAi to cut off the transmission of the virus, dsRNA plant expression vector is also constructed using virus transfer-mediated or GroEL protein gene segments in Whitefly. These studies provided a basis for further construction of dual-gene, infection and epidemic are cut off in two ways, which are virus infection and virus-transferring mediator, thus laying the foundation work on establishing the technical system of molecular mechanism for geminivirus. Study results and main conclusions are as follows:
     1 RNA Mediated Transgenic Resistance to TYLCCNV by transforming N. benthamiana and tomato with the CP gene segments dsRNA
     1.1 Studies on different homologous in amino acid sequence of CP gene dsRNA-mediated virus resistance
     The homology of 94.94% of the 159bp segment and 81.32% of the 158bp segment of the CP were selectec for construnction of plant expression vector based on the comparision of mino acid homology of most CP gene sequence of TYLCV and TYLCCNV, CP segment is successfully constructed dsRNA expression vector pBIN19-2HCP plant and pBIN19-2LCP, And introduced into N. benthamiana and tomato via Agrobacterium tumefaciens-mediated transformation. After tissue culture we got 56 and 43 transgenic N. benthamiana,61and 56 transgenic tomato. Through PCR testing and observation of TO progeny phenotype after TYLCCNV inoculation, it revealed that the TO progeny from the same mother plants have exactly the same resistant.The resistance ratio of transgenic N. benthamiana of TO progeny to TYLCCNV is 47.1%and 72.7%, respectively.
     1.2 Studies on CP gene segment of different length dsRNA-mediated virus resistance
     About 150bp,300bp and 450bp length of the CP segment are selected, and The CP segment is successfully constructed dsRNA expression vector pBIN19-2CP159(pBIN19-2HCP), pBIN19-2LCP302 and pBIN19-2CP457. These vectors were further introduced into N. benthamiana and tomato via Agrobacterium tumefaciens-mediated transformation.56,57 and 38 transgenic N. benthamiana,59, 77 and 54 tomato plants were achieved. Through PCR testing and observation of TO progeny phenotype after TYLCCNV inoculation, it revealed that the TO progeny from the same mother plants have exactly the same resistant. The resistance ratio of transgenic N. benthamiana of TO progeny to TYLCCNV is 72.7,80.7%and 89.6%, respectively.Tl progeny from resistance plants are used to analyze the resistance, and it revealed that the resistant strain ratio of T1 progeny is 12.5%,22.5%,10%and 17.5%, respectively.
     2 RNAi interfere Whitefly transmission capacity by transforming N. benthamiana and tomato with the GroEL gene segments dsRNA
     About 300bp and 500bp of the GroEL gene segment are selected, GroEL gene segment is successfully constructed dsRNA expression vector pBIN19-2G502 and pBIN19-2G306, And introduced into N. benthamiana and tomato.via Agrobacterium tumefaciens-mediated transformation. After tissue culture we got 46 and 73 transgenic N. benthamiana,66 and 91 transgenic tomato. Through PCR testing and observation of TO progeny phenotype after TYLCCNV inoculation, it revealed that the TO progeny from the same mother plants have exactly the same resistant. No resistant type and higher rates of disease tolerance have been found in transgenic N. benthamiana of TO progeny, which has been transferred two different length of GroEL gene segment dsRNA, and contemporary, the ratio of the virus-tolerance plants is different in two inoculation method. Feed the whitefly two days with the infected in TO generation of transgenic tobacco first and then non-transgenic plants, and PCR examination showed that transgenic plants with transferred GroEL gene have a certain interference to whitefly's transmission capacity.
     3. The preliminary analysis of the resistance in the transient expression of dsRNA TYLCCNV CP gene in N. benthamiana
     In order to initially ensure whether TYLCCNV CP gene dsRNA can induce viral resistance, and prevent blindness of trans-gene. We were constructed successfully plant expression vector pBIN19-GFP and pBIN19-CP-GFP. These genes transiently expressed after agro-infiltration in N. benthamiana, GFP fluorescence was observed in N. benthamiana leaves. We first infiltrated A.tumefaciens with pBIN19-2CP457in N. benthamiana leaves, followed by infiltration of pBIN19-CP-GFP, the result was a shutdown of GFP expression; or followed, after 16 days, by inoculation of TYLCCNV, the result was immunity to TYLCCNV.
引文
[1]Fauquet CM, Bisaro DM, Briddon RW, et al. Revision of taxonomic criteria for species demarcation in the family Geminiviridae, and an updated list of begomovirus species [J]. Arch virol,2003,148(2):405-421
    [2]Stanley J, Bisaro DM, Briddon R, et al. Geminiviridae. In Virus Taxonomy Ⅷth Report of the International Committee on Taxonomy of Viruses, Fauquet CM, MayoMA, Maniloff J, Desselberger U&Ball LA, eds. London:Elsevier/Academic Press.2005, pp.301-326
    [3]Harrison BD, Robinson DJ. Natural genomic and antigenic variation in whitefly-transmitted geminiviruses(Begomoviruses) [J]. Ann Rev Phytopathol,1999, 37:369-398
    [4]Noueiry A, Lucas W, Gilbertson R. Two proteins of a plant DNA virus coordinate nuclear and plasmodesmal transport. Cell,1994,76:925-932
    [5]Hanley-Bowdoin L, Settlage SB, Orozco BM, et al. Geminiviruses:models for plant DNA replication, transcription, and cell cycle regulation [J]. Mol Biol,2000,35 (2):105-140
    [6]Dry IB, Krake LR, Rigden JE, et al. A novel subviral agent associated with a geminivirus: the first report of a DNA satellite [J]. Proc Natl Acad Sci USA,1997,94(13):7088-7093
    [7]Moriones E, Navas-Castillo J. Tomato yellow leaf curl virus, an emerging virus complexcausing epidemics worldwide[J]. Virus Res,2000,71(1-2):123-134
    [8]Yin Q, Yang H, Gong Q, et al. Tomato yellow leaf curl China virus:monopartite genome organization and agroinfection of plants [J]. Virus Res,2001,81(1-2):69-76
    [9]Brown JK, Frohlich DR, Rosell RC. The sweet potato or silver leaf whiteflies: biotypes of Bemisia tabaci or a species complex? [J]. Annu Rev Entomol,1995,40: 511-534
    [10]De Barro PJ. Bemisia tabaci biotype B:a review of its biology distribution and control [J]. Technical Paper, Division of Entomology, SCIRO, Canberra, Australia, 1995, p57
    [11]Oliveira MRV, Henneberry TJ, Anderson P. History, current status, and collaborative research projects for Bemisia tabaci [J]. Crop Prot,2001,20(9): 709-723
    [12]刘树生,张友军,罗晨,等.烟粉虱,重要农林外来入侵物种的生物性与控制.北京:科学出版社,2005,69-128
    [13]冯兰香,杨宇红,谢丙炎,等.警惕烟粉虱大暴发导致新的蔬菜病毒病流行[J].中国蔬菜,2001,(2):34-35
    [14]Bedford ID, Briddon R, Brown JK, et al. Geminivirus transmission and biological characterisation of Bemisia tabaci (Gennadius) biotypes from different geographic regions[J]. Ann Appl,1994,125(2):311-325
    [15]Saikia AK, Muniyappa V. Epidemiology and control of tomato leaf curl viruses in southern India [J]. Tropical Agri,1989,66(4):350-354
    [16]Costa HS, Brown JK. Variation in biological characteristics and esterase patterns among populations of Bemisia tabaci and the association of one population with silver leaf symptom induction Entomol [J]. Exp Appl,1991,61(3):211-219
    [17]Perring TM, Cooper AD, Kazmer DJ, et al. New strain of sweet potato whitefly invades California vegetables[J]. Calif Agric.,1991,45:10-12
    [18]Polston JE, Anderson PK. The emergence of whitefly-transmitted geminiviruses in tomato in the western hemisphere [J]. Plant Dis,1997,81(12):1358-1369
    [19]Rybicki EP, Pietersen G. Emerging plant viruses causing disease problems[J]. Adv liras Res,2000,21:165-171
    [20]Rybicki EP, Pietersen G. Plant virus disease problems in the developing world [J]. Adv liras Res,1999,53:127-175
    [21]VanRegenmortel MHV, Fauquet CM, Bishop DHL, et al. Virus:The Classification and Nomenclature of Viruses. (The Seventh Report of the International Committee on Taxonomy of Viruses). San Diego:Academic Press,2000,1167pp
    [22]Czosnek H, Ghanim H, Morin S, et al. Whiteflies:vectors, and victims (?), of geminiviruses[J]. Adv Trans Res,2001,57:291-322
    [23]Moffat AS. Geminiviruses emerge as serious crop threat [J]. Science,1999,286: 1835
    [24]张芝利,罗晨.我国烟粉虱的发生危害和防治对策[J].植物保护,2001,27(2):25-30
    [25]周雪平,崔晓峰,陶小荣.双生病毒—一类值得重视的植物病毒[J].植物病理学报,2003a,33(6):487-492
    [26]Harrison, BD., Barker H, Bock KR, et al. Plant virus with circular single-strand DNA[J]. Nature,1977,270:670-671
    [27]Moriones E, Navas-Castillo J. Tomato yellow leaf curl virus, an emerging virus complex causing epidemics worldwide[J]. Virus Res,2007,1(1-2):123-134
    [28]Morales FJ, Anderson PK. The emergence and dissemination of whitefly-transmitted geminiviruses in Latin America[J]. Arch Virol,2001,146(3):415-441
    [29]Crescenzi A, Comes S, Napoli C, et al. Severe outbreaks of tomato yellow leaf curl Sardinia virus in Calabria, Southern Italy [J]. Commun Agric Appl Bio Sci,2004, 69(4):575-580
    [30]Moffat AS. Geminiviruses emerge as serious crop threat [J]. Science,1999,286: 1835
    [31]Briddon RW, Markham PG. Cotton leaf curl virus disease [J]. Trans Res,2000, 71(1-2):151-159
    [32]Briddon RW, Bull SE, Amin I, et al. Diversity of DNA beta, a satellite molecule associated with some monopartite begomoviruses [J]. Virology,2003,312(1): 106-121
    [33]Czosnek H, Laterrot H. A worldwide survey of tomato yellow leaf curl viruses [J].Arch Virol,1997,142:1391-1406
    [34]Harrison BD, Robinson DJ. Natural genomic and antigenic variation in whitefly-transmitted geminiviruses (Begomoviruses)[J]. Annu Rev Phytopathol, 1999,37:369-398
    [35]Saunders K, Bedford ID, Briddon RW, et al. A unique virus complex causes Ageratum yellow vein disease. Proc Natl Acad Sci, USA,2000,97(12):6890-6895
    [36]Berrie LC, Rybicki EP, Rey ME. Complete nucleotide sequence and host of South African cassava mosaic virus:further evidence for recombination amongst begomoviruses [J]. Gen Virol,2001,82(I):53-58
    [37]Bananej K, Kheyr-Pour A, Salekdeh GH, et al. Complete nucleotide sequence of Iranian tomato yellow leaf curl virus isolate:further evidence for natural recombination amongst begomoviruses [J]. Arch Virol,2004,149(7):1435-1443
    [38]Padidam M, Sawyer S, Fauquet CM. Possible emergence of new geminiviruses by frequent recombination[J].Virology,1999,265(2):218-225
    [39]Zhou XP, Liu YL, Calvert L, et al. Evidence that DNA-A of a geminivirus associated with severe cassava mosaic disease in Uganda has arisen by interspecific recombination[J]. Gen Virol,1997,78(8):2101-2111
    [40]Mansoor S, Briddon RW, Zafar Y, et al. Geminivirus disease complexes:an emerging threat [J]. Trends Plant Sci,2003,8(3):128-134
    [41]Mansoor S, Zafar Y, Briddon RW. Geminivirus disease complexes:the threat is spreading [J]. Trends Plant Sci,2006,11(5):209-212
    [42]柯冲,孙芥菲,范怀忠.番茄黄顶病的初步研究[J].植物保护学报,1965,4:103-106
    [43]龚祖埙,沈菊英,郑巧兮,等,我国第一例双联病毒一烟草曲叶病病毒的分离及电镜检定[J].科学通报,1982,27(22):1393-1395
    [44]洪益国,蔡健和,王小凤,等.烟草曲叶双生病毒分子进化的初步研究[J].科学通报,1994b,39(2):165-167
    [45]Xie Y, Zhou XP, Zhang ZK, et al. Tobacco curly shoot virus isolated in Yunnan is a distinct species of Begomovirus [J]. Chin Sci Bull,2002,47(3):197-200
    [46]Zhou XP, Xie Y, Zhang ZK. Molecular characterization of a distinct begomovirus infecting tobacco in Yunnan, China[J]. Arch.Virol,2001,146(8):1599-606
    [47]刘玉乐,蔡健和,李冬玲,等.中国番茄黄化曲叶病毒—双生病毒的一个新种[J].中国科学((C辑),1998,28(2):148-153
    [48]何自福,虞皓,毛明杰,等.中国台湾番茄黄化曲叶病毒侵染引起广东番茄黄化曲叶病[J].农业生物技术学报,2007,15(1):119-123
    [49]洪益国,蔡健和,王小凤,等,中国南瓜曲叶病毒:一个双生病毒新种[J].中国科学(B辑).1994a,24(6):608-613
    [50]Xie Y, Zhou XP. Molecular characterization of squash leaf curl an virus, a new begomovirus and evidence for recombination [J]. Arch Virol,2003,148(10):2 047-2054
    [51]Wang X, Xie Y, Zhou X. Molecular characterization of two distinct begomoviruses from Papaya in China[J]. Irrus Genes,2004,29(3):303-309
    [52]江彤.云南杂草双生病毒的分子鉴定.浙江大学博士学位论文.2005
    [53]周雪平,彭燕,谢艳,等.赛葵黄脉病毒:一种含有卫星DNA的双生病毒新种[J].科学通报,2003b,48(16):1801-1805
    [54]熊庆.海南杂草双生病毒的分子鉴定及病毒致病性研究.浙江大学博士学位论文.2005
    [55]Huang JF, Zhou XP, Cai JH, et al. Molecular characterization of a new begomovirus infecting Senecio scandens in China[J]. Acta,2005,49(3):211-215
    [56]Xiong Q, Fan S, Guo X, Zhou X. leaf curl virus is a novel monop begomovirus species[J]. Arch Virol.,2005,150(11):2257-2270
    [57]车海彦,罗大全,杨旭光,等.海南岛番木瓜和扶桑上粉虱传双生病毒的检测及序列分析[J].中国病毒学,2005a,20(5):543-545
    [58]车海彦,罗大全,杨旭光,等.海南岛长茹母草和金腰箭上存在粉虱传双生病毒的侵染[J].热带作物学报,2005b,26(2):81-83
    [59]Czosnek H, Ghanim M, Morin S, et al. White-flies:vectors, and victims(?),of geminiviruses [J]. Adv Virus Res,2001,57:291-322
    [60]vanden Heuvel JFJM, Verbeek M, vander Wilk F. Endosymbiotic bacteria associated with circulative transmission of potato leaf roll virus by Myzuspersicae [J]. J. Gen Virol,1994,75(10):2559-2565
    [61]Morin S, Ghanim M, Zeidan M, et al. A GroEL homologue from endosymbiotic bacteria of the whitefly Bemisia tabaci is implicated in the circulative transmission of tomato yellow leaf curl virus [J]. Virology,1999,256(1):75-84
    [62]Morin S, Ghanim M, Sobol I, et al. The GroEL Protein of the whitefly Bemisia tabaci interacts with the coat protein of transmisible and nontransmissible begomovirous in the yeast two-hybrid system [J]. Virology,2000,276:404-416
    [63]Cogoni C, and Macino G. Conservation of transgene-induced posttranscriptional gene silencing in plants and fungi[J]. Trends Plant Sci,1997a,2:438-443
    [64]Cogoni C, and Macino G. Isolation of quelling-defective (qde) mutants impairedin posttranscriptional transgene-induced gene silencing in Neurospora crassa[J]. Proc Natl Acad Sci USA,1997b,94:10233-10238
    [65]Baulcombe D. Diced defence. Nature,2001,409:295-296
    [66]Matzke MA, Matzke AJ, Pruss GJ, et al. RNA-based silencing strategies in plants[J]. Curr Opin Genet Dev,2001,11:221-227
    [67]Cogoni C, Irelan JT, Schumacher M, Transgene silencing of all gene in vegetative cells of Neurospora is mediated by a cytoplasmic effector and does not depend on DNA-DNA interaction or DNA methylation[J]. EMBO J,1996,15:3153-3163
    [68]Fire A, Xu S, Montgomery MK, et al. Potent and specific genetic interference by double-stranded RNA in C. elegants[J]. Nature,1998,391:806-811
    [69]郭兴启,温孚江,宋云枝,等.翻译和非翻译马铃薯Y病毒外壳蛋白基因介导的抗病性比较[J].病毒学报,2001,17(4):360-366
    [70]朱俊华,竺晓平,温孚江,等.马铃薯Y病毒衣壳蛋白基因片段长度对RNA介导抗病性的影响[J].中国科学(C辑),生命科学,2004,34(1):23-30
    [71]Agrawal N, Dasaradhi PVN, Mohmmed A, et al. RNA interference:bilology, mechanism, and applications[J]. Microbiol Mol Biol Rev,2003,67:657-685
    [72]温孚江,朱常香.转录后基因沉没与植物的病毒抗性[J].生物工程学报,2001,17(3):213-235
    [73]Napoli C, Lemieux C, Jorgensen R. Introduction of a chimeric chalcone synthase gene into petunia results in reversible co-suppression of homologous gene in trans [J]. Plant cell,1990,2:279-289
    [74]Ingelbrecht LH, Van Houdt M, Van Montagu, et al.Post-transcriptional silencing of reporter transgenes in tobacco correlates with DNA methylation[J]. Proc Natl Acad Sci USA,1994,91:10502-10506
    [75]Vander Krol AR, Mur LA, Beld M, et al. Flavanoid genes in petunia:addition of limited number of gene copies may lead to a suppression of gene expression[J]. Plant Cell,1990,2:291-299
    [76]Kooter JM, Matzke MA, et al. Listening to silent gene arans gene silencing, gene regulation and pathogen control[J]. Trends Plant Sci,1999,4:340-347
    [77]Pang. Future impact of molecular biology and biotechnology on bacterial and viral diseases[J].Med J Malaysia,1993,48(2):101-106
    [78]Romano N, Macino G. Quelling:transient inactivation of gene expression in Neurosporacrassa by transformation with homologous sequences[J]. Mol Microbiol,1992,6:3343-3353
    [79]Napoli C, Lemieux C, Jorgensen R. Introduction of chimeric chalcone synthase gene into Petunia results in reversible cosuppression of homologous genes in trans[J]. Plant Cell,1990,2:279-289
    [80]Meins F Jr. RNA degradation and models for post-transcriptional gene silencing. Plant [J]. Mol Biol,2000,43:261-273
    [81]Waterhouse PM, Smith NA, Wang MB. Virus resistance and gene silencing:killing the messenger [J]. Trends Plant Sci,1999,4:452-457
    [82]Waterhouse PM, Graham, MW, Wang M-B. Virus resistance and gene silencing in plants can be induced by simultaneous expression of sense and antisense RNA [J]. Proc Natl Acad Sci USA,1998,95:13959-13964
    [83]Hamilton AJ, Brown S, Han Y, et al. A transgene with Repeated DNA causes high frequency, post-transcriptional suppression of ACC-oxidase gene expression in tomato[J]. Plant J,1998,15:737-746
    [84]Fire A, Xu S, Montgomery MK, et al. Potent and specific genetic interference by double stranded RNA in Caenorhabditis elegans[J]. Nature,1998,391:806-811
    [85]Sijen, T, J.Fleenor, F.Simmer, et al. On the role of RNA amplification in dsRNA-triggered gene silencing [J]. Cell,2001,107:465-476
    [86]Dalmay T, Hamilton A, Rudd S, et al. An RNA-dependent RNA polymerase gene in Arabidopsis is required for posttranscriptional gene silencing mediated by a transgene but not by a virus[J]. Cell,2000,101:543-553
    [87]Mourrain P, Beclin C, Elmayan T, et al. Arabidopsis SGS2 and SGS3 genes are required for posttranscriptional gene silencing and natural virus resistance [J]. Cell, 2000,101:533-542
    [88]Waterhouse PM, Graham MW, Wang MB. Virus resistance in gene silencing in plants can be induced by simultaneous expression of sense and antisense RNA[J]. Proc Natl Acad Sci USA,1998,95:13959-13964
    [89]Waterhouse. Total silencing by intron spliced hairpin RNA[J]. Nature,2000, 407:319-320
    [90]Nicholson AW. Function, mechanism and regulation of bacterial ribonucleases[J]. FEMS Microbiol Rev,1999,23:371-390
    [91]Bernstein EA, Caudy A, Hammond SM, et al. Role for a bidentate ribonuclease in the initiation step of RNA interference[J].Nature,2001,409:363-366
    [92]Zamore PD.Thirty-three years later, a glimpse at the ribonuclease III active site. Mol[J]. Cell,2001,8:1158-1160
    [93]Zamore PD, Tuschl T, et al. Bartel RNAi:double-stranded RNAd irects the ATP-dependent cleavage of mRNA at 21-to 23-nucleotide intervals[J]. Cell,2000, 101:25-33
    [94]Nykanen A, Haley B, Zamore PD. ATP requirements and small interfering RNA structure in the RNA interference pathway[J].Cell,2001,107:309-321
    [95]Hamilton AJ, Baulcombe DC. A species of small antisense RNA in posttranscriptional gene silencing in plants[J]. Science,1999,286:950-952
    [96]Tuschl T, Zamore PD, Lehmann R, et al. mRNA degradation by double-stranded RNA in vitro[J]. Genes Dev,1999,3:3191-3197
    [97]Elbashir SM, Lendeckel W, Tuschl T. RNA interference is mediated by 21-and 22-nucleotide RNAs[J].Genes Dev,2001,15:188-200
    [98]Zamore PD, Tuschl T, Sharp PA, et al. RNAi:double-stranded RNA d irects the ATP-dependent cleavage of mRNA at 21-to 23-nucleotide intervals[J]. Cell,2000, 101:25-33
    [99]Nykanen A, Haley B, Zamore PD. ATP requirements and small interfering RNA structure in the RNA interference pathway[J]. Cell,2001,107:309-321
    [100]Dalmay T, Horsefield R, Braunstein TH, et al. SDE3 encodes an RNA helicase required for post-transcriptional gene silencing in Arabidopsis[J]. EMBOJ,2001, 20:2069-2077
    [101]Ketting RF, Haverckamp THA, et al. Plasterkmut-7 of C. elegans, required for transposon silencing and RNA interference, is a homolog of Werner syndrome helicase and RNase D[J]. Cell,1999,99:133-141
    [102]Mourrain P, Beclin C, Elmayan T, et al. Arabidopsis SGS2 and SGS3 genes are required for posttranscriptional gene silencing and natural virus resistance[J]. Cell, 2000,101:533-542
    [103]Smardon A, Spoerke JM, Stacey SC, et al. EGO-1 is related to RNA-directed RNA polymerase and functions in germ-line development and RNA interference in C. elegans[J]. Curr Biol,2000,10:169-178
    [104]Cogoni C, Macino G. Posttranscriptional gene silencing in Neurospora by a RecQ DNA helicase[J]. Science,1999,286:2342-2344
    [105]Dalmay T, Hamilton A, Rudd S, et al.An RNA-dependent RNA polymerase gene in Arabidopsis is required for posttranscriptionalgene silencing mediated by a transgene but not by a virus[J]. Cell,2000,101:543-553
    [106]Mourrain P, Beclin C, Elmayan T, et al. Arabidopsis SGS2 and SGS3 genes are required for posttranscriptional genesilencing and natural virus resistance[J]. Cell, 2000,101:533-542
    [107]Fire, A. RNA triggered gene silencing[J]. Trends Genet,1999,15:358-363
    [108]Schiebel W, Pelissier T, Riedel L, et al. Isolation of an RNA directed RNA polymerase-specific cDNA clone from tomato [J]. Plant Cell,1998,10:2087-2101
    [109]Palauqui JC, Elmayan T, Pollien JM, et al. Systemic acquired silencing: Transgene specific posttranscriptional gene silencing is transmitted by graftingfrom silenced stocks to non silenced scions[J]. EMBOJ,1997,16: 4738-4745
    [110]Lipardi C, Wei Q, Paterrson BM. RNAi as random degradation PCR:siRNA primers convert mRNA into dsRNA that are degraded to generate new siRNAs[J]. Cell,2001,101:297-307
    [111]Sijen T, Fleenor J, Simmer F, et al. On the role of RNA amplification in dsRNA-triggered gene silencing[J]. Cell,2001,107:465-476
    [112]Zamore PD, Tuschl T, Sharp PA, et al. RNAi:double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21-to 23-nucleotide intervals[J]. Cell,2000, 101:25-33
    [113]Hannon G.J. RNA Interference[J].Nature,2002,418:244-251
    [114]Hammond SM, Berstein E, Beach D, et al. An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells[J]. Nature,2000, 404:293-296
    [115]Schwartz DS, Hutvagner G, et al. Evidence that siRNAs function as guides, not primers, in the Drosophila and human pathway Mol[J]. Cell,2002,10:537-548
    [116]赫然,刘秋云.RNA干涉与功能基因组田[J].生物技术通讯,2002,3:202-204
    [117]张大生,陈大元.RNA干涉及其应用前景[J].遗传,2003,25(3):341-344
    [118]汤富酬,薛友纺.RNA干涉与基因沉默[J].遗传,2001,23(2):167-172
    [119]袁婺洲,吴秀山.RNAi机制研究的最新进展[J].生命科学研究,2003,7(1):8-14
    [120]Fraser AG, Kamath RS, Zipperien P, et al.., Functional genomic analysis of Caenorhabditis elegans chromosome I by systematic RNA interference[J]. Nature, 2000,408:325-330
    [121]Gomczy P, Echeverri C, Oegema K, et al. Functional genomic analysis of cell division in Caenorhabditis elegans using RNAi of genes on Chromosome III[J]. Nature,2000,408:331
    [122]刘敏,曹毅,蒋彦.利用RNAi技术大规模分析基因功能的研究[[J].植物学通报,2002,19(4):491-495
    [123]纪宗玲,刘继中,陈苏民.基因功能的研究方法[[J].生物工程学报,2002,18(1):117-120
    [124]韩蓓,王秀敏,顾学范.双链RNA干涉技术(RNAi)在小同生物中应用的研究进展[J].遗传,2002,24(2):200-202
    [125]Chuang CF, and Meyerowitz EM. Specific and heritable genetic interference by double-stranded RNA in Arabidopsis thaliana[J]. Proc Natl Acad Sci USA,2000, 97:4985-4990
    [126]曲静,朱常香,温孚江,等.一个马铃薯X病毒分离物的外壳蛋白基因序列分析与株系鉴定[J].植物保护学报,2003,30(4):358-364
    .[127] Sasaya T, Torrance L, Cowan G. Aphid transmission studies using helper component proteins of potato virus Y expressed from a vector derived from potato virus X[J]. Gen Virol,2000,81:1115-1119
    [128]Kasschau KD, Carrington JC. A counter-defensive strategy of plant viruses: suppression ofpost-transcriptional gene silencing[J]. Cell,1998,95:461-470
    [129]周晓馥,王兴智.病毒诱导基因沉默一植物抗病的可能机制[J].松辽学刊,2001,8(3):5-8
    [130]魏志刚,杨传平,朱大群,等.植物RNA介导的病毒抗性研究进展[[J].东北林业大学学报,2002,30(3):56-59
    [131]于湄,叶长明.转基因植物中RNA介导病毒抗性[J].植物学通报,1999,16(2):127-130
    [132]牛颜冰,青玲,周雪平.RNA沉默机制及其抗病度应用[J].中国生物工程杂志,2002,24(2):76-79
    [133]刘杨,蒋彦,乔代蓉,等.转录后基因沉默的机制及其应用田[J].生物工程学报,2002,3:140-143
    [134]Waterhouse PM, Graham MW, Wang MB.Virus resistance and gene silencing in plants can be induced by simultaneous expression of sense and antisense RNA. Proc Natl Acad Sci,1998,95:13959-13964
    [135]Kalantidis K, Psaradakis S, Tabler M, et al.The occurrence of CMV-specific short RNAs in trangenic tobacco expressing virus-derived double-stranded RNA is indicative of resistance to the virus[J].Mol Plant Microbe In,2002,15 (8):826-833
    [136]Tenllado F, Dfaz, Rutz JRJ.RNAi targeting of DNA virus in plants[J]. Virus, 2001,75(24):12288-12297
    [137]Pandolfini T, Molesini B, Avesani L, et al. Expression of self-complementary hairpin RNA under the control of the rolC promoter conferssystemic disease resistance to plum pox virus without preventing local infection[J]. BMC Biotechnol,2003,3(1):7
    [138]Hohjoh H. Enhancement of RNAi activity by improved siRNA duplexes [J]. FEBS Lett,2004,557(1-3):193-197
    [139]牛颜冰,于翠,张凯,等.瞬时表达黄瓜花叶病毒部分复制酶基因和番茄花叶病毒移动蛋白基因的dsRNA能阻止相关病毒的侵染.农业生物技术学报,2004,(12)4:484-485
    [140]赵明敏,安德荣,黄广华,等.RNA干扰研究进展.生物化学与生物物理学报,2005,37(4):248-253
    [141]朱俊华,朱常香,温孚江.正向和反向重复介导的抗马铃薯Y病毒基因工程比较研究[J].植物病理学报,2004,34(2):133-140
    [142]Wang MB, Abbott DC, Waterhouse PM.A single copy of a virus-derived transgene encoding hairpin RNA gives immunity to barely yellow dwarf virus[J]. Mol Plant Pathol,2000, (1):347-356
    [143]Baulcombe DC.Viruses and gene silencing in plants[J]. Arch Virol Suppl,1999, 15:189-201
    [144]Stoutjesdijk PA, Singh SP, Liu Q, et al. hpRNA-mediated targeting of the Arabidopsis FAD2 gene gives highly efficient and stable silencing[J]. Plant Physiol,2002,129:1723-1731
    [145]KUN IK T, SALOMON R, ZAM IR D, et al. Transgenic tomato plants expressing the tomato yellow leaf curl virus capsid protein are resistant to the virus[J]. Biotechnology,1994,12:500-504
    [146]Brunettia,Tavazza M,Noris E, et al. High expression of truncated viral Rep protein confers resistance to tomato yellow leaf curl virus in transgenic tomato plants [J]. Mol Plant Microbe Interact,1997,10:571-579
    [147]Brunettia,Tavazza M,Noris E, et al. Transgenically expressed T-Rep of tomato yellow leaf curl Sardinia virus acts as atransdominant2negative mutant, inhibiting viral transcript-tion and replication[J].Virology,2001,75:10573-10581
    [148]Antignus Y, Vunsh R, Lachman O, et al. Truncated REP gene originated from tomato yellow leaf curl virus-Israel [Mild]confers strain2specific resistance in transgenic tomato [J]. Ann Appl Biol,2004,144(1):39-44
    [149]Akad F, Eybishtz A, Edelbaum D, et al. Making a friend from a foe:expressing a GroEL gene from the whitefly Bemisiatabaci in the phloem of tomato plants confers resistance to tomato yellow leaf curl virus[J]. Arch Virol,2007,152: 1323-1339
    [150]Edelbaum D, Gorivits R, Sasaki S, et al. Expressing a Whitefly GroEL protein in Nicotiana benthamiana plants confer tolerance to tomato yellow leaf curl virus and cucumber mosaic virus, but not to grapevine virus A or tobacco mosaic virus [J]. Arch Virol,2009,154:399-407
    [151]Fuentes A, Ramos P, Filallo E, et al. Intron-hairpin RNA derived from replication associated protein Cl gene confer immunity to tomato yellow leaf curl virus infection in transgenic tomato plants. Transgenic Res,2006,15:291-304
    [152]Zrachya A, Kumar P, Ramakrishan U, et al. Production of siRNA targeted against TYLCV coat protein transcripts leads to silencing of its expression and resistance to the virus[J] Transgenic Res,2007,16(3):385-398
    [153]Tuschl T, Elbashir SM, Harborth J, et al.The siRNA user guide, http://www. rockefeller, edu/labheads/tuschl/sirna. htmL,2004
    [154]Ziimnermann TS, Lee AC. RNAi-mediated gene silencing in non-human primates[J]. Nature,2006,441(7089):111-114
    [155]Segai G, Song R, Messing J.A new opaque variant of maize by a single dominant RNA-interference-inducing Transgene[J].Genetics,2003,165 (1):387-397
    [156]Liu Q, Singh SP, Green AG.High-stearic and high-oleic cotton seed oils produced by hairpin RNA-mediated post-transcriptional gene silencing[J]. Plant Physiol, 2002,129(4):1732-1743
    [157]李加瑞,赵伟,李全梓,等.Waxy基因的RNA沉默使转基因小麦种子中直链淀粉含量下降[J].遗传学报,2005,32(8):846-854
    [158]Ogita S, Uefuji H, Yamaguchi Y. et al. Producing decafeinated coffee plants[J].Nature,2003,423(6942):823-823
    [159]Sheng-ZhiPang, Fuh-Jyh Jarn, and Dennis Gonsalves.Nontarget DNA sequences reduce the transgene length necessary for RNA-mediated tospovirus resistance in transgenic plants[J].Proc Natl Acad Sci USA,1997,8261-8266
    [160]Schoppmeier M & Damen WGM.Double-stranded RNA interference in the spider Cupiennius salei:the role of Distal-less is evolutionarily conserved in arthropod appendage formation [J]. Dev Genes Evol,2001,211:76-82
    [161]Araujoa RN, Santosa A, Pintoa FS, et al. RNA interference of the salivary gland nitrophorin 2 in the triatomine bug Rhodnius prolixus (Hemiptera:eduviidae) by dsRNA ingestion or injection [J]. Insect Biochem Mol Biol,2006,36:683-693
    [162]Zhao T, Li GL, Mi SJ, et al.A complex system of small RNAs in the unicellular green alga Chlamydomosas reinhardtii[J]. Genes & Dev. Published online Apr 30, doi:10.1101/gad.1543507
    [163]Akad F, Dotan N, Czosnek H. Trapping of Tomato yellow leaf curl virus (TYLCV) and other plant viruses with a GroEL homologue from the whitefly Bemisia tabaci [J]. Arch Virol,2004,149:1481-1497
    [164]Kapila J, DeRycke R, vanMontagu M et al.Agrobacterium mediated transient gene expression system for intact leaves[J]. Plant Sci,1996,122:101-108

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700