柠檬酸转运子和果胶甲酯酶在植物耐铝中的作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
铝毒是限制酸性土壤上农作物生产的最主要的影响因子,植物的耐铝机制包括外部排斥和内部耐受,其中有机酸的分泌是植物重要的外部排斥机理,也是研究的热点。位于质膜上的有机酸转运子介导植物有机酸的分泌,是有机酸分泌的关键步骤。目前克隆到的有机酸转运子并不多,而且尽管有机酸分泌具有明显的A1诱导特征,但迄今还没有发现完全被铝诱导表达的有机酸转运子。我们实验室前期研究发现,A1胁迫可诱导饭豆根尖柠檬酸的分泌,且其分泌起始与施加A1胁迫之间有一个明显的滞后期。本研究通过同源克隆手段从饭豆中克隆得到了该柠檬酸转运子,并对其表达和功能进行了研究。另一方面,尽管有机酸的分泌是植物重要的耐铝机理,但不能解释水稻的铝耐性,本研究还以水稻为材料研究了果胶甲酯酶基因家族与铝诱导的根伸长受抑制间的关系。主要结果如下:
     1.从头合成的柠檬酸转运子VuMATE在饭豆铝耐性中的作用
     饭豆(Vigna umbellata)根系在铝胁迫下可专一性的分泌柠檬酸,并且分泌被延迟了数小时。本研究采用同源克隆和RACE技术从饭豆根尖中分离了一个从头合成(新合成)的柠檬酸转运子基因,由于其属于MATE基因家族的成员,将其命名为VuMATE。 VuMATE编码一个565个氨基酸的蛋白质。
     VuMATE与己知的柠檬酸转运子具有高度的序列相似性,都包含12个跨膜结构域,在跨膜域2和3之间都有一个位于细胞质中的环状结构,此结构也包含一段保守的氨基酸序列,推测其在柠檬酸转运方面具有重要作用。多序列比对显示,VuMATE与白羽扇豆的LaMATE亲缘关系最近。
     RT-PCR分析表明VuMATE在铝处理前没有表达,是第一个完全被铝诱导表达的有机酸转运子基因。VuMATE的表达部位仅限定在0-1cm根尖(铝毒的靶位),在1-2cm的根成熟区和叶片中都不表达。VuMATE的表达量随着A1处理浓度和处理时间的增加而增加,这与饭豆铝胁迫下根系柠檬酸的分泌模式相一致。VuMATE的表达不受二价金属Cd和Cu的诱导,三价金属La可以诱导VuMATE的表达,但同时加入A1会使表达量进一步提高。
     亚细胞定位显示VuMATE是一个膜蛋白。
     将VuMATE异源表达于爪蟾卵母细胞中的功能分析表明,VuMATE可以介导显著的跨越质膜的内向电流,内向电流的强度依赖于细胞外的H+离子(也可能是Na+)。注射14C标记的柠檬酸发现,VuMATE可以直接介导14C柠檬酸的转运,其转运能力也依赖于细胞外H+。
     通过转基因的方法在番茄中过表达VuMATE赋予了番茄分泌柠檬酸的能力,提高了番茄对铝的耐受性。
     所有这些结果说明VuMATE是饭豆中负责柠檬酸分泌的柠檬酸转运子。通过比较饭豆柠檬酸转运子与其它已知柠檬酸转运子的异同,发现了饭豆柠檬酸转运子具有不同于其它柠檬酸转运子的特点。2.水稻果胶甲酯酶基因与铝诱导的根伸长抑制相关
     水稻是小粒谷类中最耐铝的物种,但有机酸的分泌不能解释其强耐铝性,有研究表明铝主要和细胞壁果胶的负电荷结合,而果胶的负电荷的产生与果胶甲酯酶密切相关。为此,我们通过对水稻果胶甲酯酶基因家族的表达分析探讨了其与铝诱导根伸长抑制的关系。
     从DFCI数据库中下载了水稻果胶甲酯酶基因家族的35个成员,其cDNA序列的GC含量很高,每个成员具有不同的基因结构,所编码的蛋白质分为两组(一组只有PME结构域,一组在PME结构域前还有PMEI结构域),系统发生关系显示水稻果胶甲酯酶可以分为5类。
     当用25μM Al处理铝敏感水稻品种浙辐802("Zhefu802")3h,根伸长被抑制了40%,根尖细胞壁的PME活性提升了20%。这时,35个PME基因的表达变化分为4组:A组不表达,B组上调表达,C组下调表达,D组表达量不变。由于B组上调表达的8个PME基因与其酶活变化一致,我们初步认为这8个基因与铝诱导的根伸长抑制相关。
     我们进一步在铝耐性水稻品种日本晴("Nipponbare")中验证了筛选出的8个基因与铝胁迫的关系。结果表明:25μM Al处理3h不影响日本晴根伸长,此时,这8个基因的表达也不受影响;但当将Al处理浓度提高到50μM Al时,日本晴的根伸长受抑制也达到40%,此时,除了2个不表达的基因外,其它6个基因的表达都明显上调。由此,进一步证明了这8个基因与铝诱导的根伸长抑制相关。
     8个基因对其它金属胁迫的响应不同于铝胁迫,暗示着不同的PME基因对不同的金属胁迫做出响应。
     综上所述,我们从水稻果胶甲酯酶基因家族中筛选出了8个与铝诱导的根伸长抑制相关的基因,为从分子水平上研究细胞壁在抗铝胁迫中的作用提供了切入点。
Aluminum (Al) toxicity is one of the most important deleterious factors limiting crop production on acid soils. Al resistance mechanisms in plant have been classified into external exclusion and internal tolerance. Among them, secretion of organic acid anions is an important external exclusion mechanism. The transporter on the plasma membrane mediates the secretion of organic acid anion, which is the crucial step of the secretion. However, only a few organic acid anion transporters have been cloned by now, and transporter induced completely by Al stress hasn't been isolated although the secretion of organic acid anion has the obvious Al-induced characteristics. Our previous study showed that citrate secretion could be induced with a lag phase after the initiation of Al stress in rice bean. Therefore, the aim of this study was to clone the citrate transporter responsible for citrate efflux from rice bean. The function of the transporter was also investigated. On the other hand, the secretion of organic acid anion cannot explain the Al resistance mechanism in some plants. Thus, another focus of our research was to investigate the relationship between cell wall and Al resistance in rice as it had been demonstrated that Al-induced organic acid anions secretion was not involved in high Al resistance in rice. We tried to associate some specific pectin methylesterase genes with Al-induced root elongation inhibition in rice. The results were summarized as following:
     1. A de novo synthesis citrate transporter VuMATE confers aluminum resistance in rice bean(Vigna umbellata)
     Al specifically induces citrate efflux in rice bean, and the efflux is delayed for several hours. Here we conducted homologous cloning and RACE technology to isolate a gene encoding a de novo synthesis (newly synthesized) citrate transporter from the root tip of rice bean, which belongs to MATE gene family and was named as VuMATE(Vigna umbellata multidrug and toxic compound extrusion). The deduced protein of VuMATE comprised565amino acids.
     VuMATE showed high protein sequence homolog to the known citrate transporters. They all are twelve-span transmembrane proteins and share a common highly conserved amino acid sequences in intracellular loop between the2nd and3rd transmembrane domain. The intracellular loop is cytoplasmic and unique to the known citrate transporters of MATE family, so it is possible that the conserved sequences in the loop play an important role in citrate transport. Phylogenetic relationship analysis showed that VuMATE clustered most nearly with LaMATE from white lupin.
     In the absence of Al, the VuMATE mRNA transcription was not detected neither in root tip nor leaf tissue. Al treatment induced the expression only in the root segment0-1cm from the root tip, while still no expression could be detected in the1-2cm region and nor in leaf tissue. Al-induction of VuMATE expression was both Al-concentration and time dependent, increasing at higher Al levels and durations of Al exposure, which was consistent with citrate secretion pattern. To determine the Al-specificity of VuMATE induction of expression, the effect of the other metals was tested. While cadmium (Cd) and copper (Cu) alone didn't induce VuMATE expression, lanthanum (La) induced VuMATE expression in an additive manner, in that VuMATE expression in response to La+Al was higher than in response to La alone.
     The transient expression assays with a VuMATE::GFP translational fusion in onion epidermal cell showed that VuMATE localized at plasma membrane.
     Electrophysiological analysis of Xenopus oocytes expressing VuMATE indicated this transporter could mediate significant anion efflux across the plasma membrane. VuMATE-mediated inward currents were pH dependent (and possibily Na+dependent). After injecting14C-labeled citrate, VuMATE-expressing cells showed enhanced14C efflux, indicating that VuMATE could mediate citrate efflux directly. Moreover,14C efflux from cells expressing VuMATE was also pH dependent.
     Overexpression of VuMATE in transgenic tomato conferred citrate efflux in root and consequently Al resistance increase.
     All these indicated that VuMATE was the citrate transporter responsible for citrate efflux in the root apex of rice bean. By comparing the citrate transporter in rice bean with the other known citrate transporters, we summarized some specific characteristics possessed by the citrate transporter in rice bean.
     2. Association of specific pectin methylesterase genes with Al-induced root elongation inhibition in rice
     Rice (Oryza sativa L.) is the most Al resistance species among small-grain cereal crops. The secretion of organic acid anion cannot explain its Al resistance. It has been reported that the negative charges of cell wall pectin molecules determined by pectin methylesterase (PME, EC3.1.1.11) contribute to Al binding. Therefore, this study focused on the relationship between PME gene family with Al-induced root elongation inhibition in rice.
     Thirty-five putative Oryza sativa L. PME gene sequences were retrieved from DFCI (http://compbio.dfci.harvard.edu/tgi/plant.html. The GC%of PME genes in rice is very high. Each member has different gene structure. Their deduced proteins were classified as group1(only having a PME domain) or group2[having a PMEI (PME Inhibitor) domain preceding the PME domain]. The phylogenetic tree analysis showed that there were five distinct clades (Clade I to V) in rice.
     After treatment Al-sensitive rice sp. indica'Zhefu802'with25μM Al for3h, root elongation was inhibited by40%, and CW PME activity was increased by20%. Meanwhile, the expression pattern of PME could be divided into4classes. Nine of PME genes had no expression signals (Class A), eight genes were up-regulated by Al (Class B), two genes were down-regulated (Class C), and the remainder exhibited constitutive expression pattern which was not affected by Al treatment (Class D). As the result of the consistency between8up-regulated genes with PME activity increase, it could be speculated that the eight up-regulated PMEs might be associated with Al-induced root elongation inhibition in rice.
     We further investigated the eight genes'expression pattern in an Al-resistant rice cultivar sp. japonica'Nipponbare'. While root elongation of rice'Nipponbare'was not significantly affected by25μM Al treatment for3h, the expression of these eight genes was not affected. However, when Al concentration was increased to50μM, by which the root elongation was also inhibited by40%, the expression of the eight PME genes was up-regulated except two no signal genes. These results suggested that the eight PME genes were likely related to the Al-induced inhibition of root elongation both in Al-sensitive and Al-resistant rice cultivars.
     The eight PME genes behaved differently under CdCl2and LaCl3treatment, implying the specificity of different PME genes in response to different metal toxicities.
     Altogether, we chose the eight members from PME gene family to be associated with Al-induced inhibition of root elongation in rice. Our results provided a breakthrough point to study the effect of Al stress on cell wall.
引文
1. Ahn SJ, Sivaguru M, Osawa H, Chung GC, Matsumoto H. Aluminum inhibits the H+-ATPase activity by permanently altering the plasma membrane surface potentials in squash roots. Plant Physiol,2001,126:1381-1390
    2. Anoop VM, Basu U, McCammon MT, McAlister-Henn L, Taylor GJ. Modulation of citrate metabolism alters aluminum tolerance in yeast and transgenic canola overexpressing a mitochondrial citrate synthase. Plant Physiol,2003,132:2205-2217
    3. Ciamporova M. Morphological and structural responses of plant roots to aluminum at organ, tissue and cellular levels. Biol Plant,2002,45:161-171
    4. de la Fuente JM, Ramirez-Rodriguez V, Cabrera-Ponce JL, Herrera-Estrella L. Aluminum tolerance in transgenic plants by alteration of citrate synthesis. Science,1997,276: 1566-1568
    5. Delhaize E, Craig S, Beaton CD, Bennet RJ, Jaqadish VC, Randall PJ. Aluminium tolerance in wheat (Triticum aestivum L.):I. Uptake and distribution of aluminium in root apices. Plant Physiol,1993a,103:685-693
    6. Delhaize E, Hebb DM, Ryan PR. Expression of a Pseudomonas aeruginosa citrate synthase gene in tobacco is not associated with either enhanced citrate accumulation or efflux. Plant Physiol,2001,125:2059-2067
    7. Delhaize E, Ryan PR, Hebb DM, Yamamoto Y, Sasaki T, Matsumoto H. Engineering high-level aluminum tolerance in barley with the ALMT1 gene. Proc Natl Acad Sci USA, 2004,101:15249-15254
    8. Delhaize E, Ryan PR, Randall PJ. Aluminum tolerance in wheat(Triticum aestivum L.):II. Aluminum-stimulated excretion of malic acid from root apices. Plant Physiol,1993b,103: 695-702
    9. Delhaize E, Ryan PR. Aluminum toxicity and tolerance in plants. Plant Physiol,1995,107: 315-321
    10. Dong XY, Shen RF, Chen RF, Zhu ZL, Ma JF. Secretion of malate and citrate from roots is related to high Al-resistance in Lespedeza bicolor. Plant Soil,2008,306:139-147
    11. Foy CD. Plant adaptation to acid, aluminum-toxic soils. Commun Soil Sci Plant Anal,1988, 19:959-987
    12. Franceschi VR, Nakata PA. Calcium oxalate in plants:formation and function. Annu Rev Plant Biol,2005,56:41-71
    13. Fujii M, Yamaji N, Sato K, Ma JF. Mechanism regulating HvAACT1 expression in barley. In: Liao H, Yan XL, Kochian ed. Proceedings of 7th international symposium on Plant-Soil interaction at low pH. South China University of Technology Press,2009,165-166
    14. Furuichi T, Sasaki T, Tsuchiya Y, Ryan PR, Delhaize E, Yamamoto Y. An extracellular hydrophilic carboxy-terminal domain regulates the activity of TaALMT1, the aluminum-activated malate transport protein of wheat. Plant J,2010,64:47-55
    15. Furukawa J, Yamaji N, Wang H, Mitani N, Murata Y, Sato K, Katsuhara M, Takeda K, Ma JF. An aluminum-activated citrate transporter in barley. Plant Cell Physiol,2007,48:1081-1091
    16. Hayes JE, Ma JF. Al-induced efflux of organic acid anions is poorly associated with internal organic acid metabolism in triticale roots. J Exp Bot,2003,54:1753-1759
    17. Hoekenga OA, Maron LG, Pineros MA, Cancado GM, Shaff J, Kobayashi Y, Ryan PR, Dong B, Delhaize E, Sasaki T, Matsumoto H, Yamamoto Y, Koyama H, Kochian LV. AtALMT1, which encodes a malate transporter, is identified as one of several genes critical for aluminum tolerance in Arabidopsis. Proc Natl Acad Sci USA,2006,103:9738-9743
    18. Hoekenga OA, Vision TJ, Shaff JE, Monforte AJ, Lee GP, Howell SH, Kochian LV. Identification and characterization of aluminum tolerance loci in Arabidopsis (Landsberg erectax Columbia) by quantitative trait locus mapping. A physiologically simple but genetically complex trait. Plant Physiol,2003,132:936-948
    19. Huang JW, Pellet DM, Papernik LA, Kochian LV. Aluminum interactions with voltage-dependent calcium transport in plasma membrane vesicles isolated from roots of aluminum-sensitive and-resistant wheat cultivars. Plant Physiol,1996,110:561-569
    20. Huang PM, Wang MK, Kampf N, Schulze DG. Aluminum hydroxides. In:Dixon JB and Schulze DG ed. Soil mineralogy with environmental applications. Madison, Wisconsin, Soil Sci Soc Am,2002,261-289
    21. Ishikawa S, Wagatsuma T, Sasaki R, Ofei-Manu P. Comparison of the amount of citric and malic acids in Al media of seven plant species and two cultivars each in five plant species. Soil Sci Plant Nutr,2000,46:751-758
    22. Iuchi S, Koyama H, Iuchi A, Kobayashi Y, Kitabayashi S, Kobayashi Y, Ikka T, Hirayama T, Shinozaki K, Kobayashi M. Zinc finger protein STOP1 is critical for proton tolerance in Arabidopsis and coregulates a key gene in aluminum tolerance. Proc Natl Acad Sci USA, 2007,104:9900-9905
    23. Ji XM, Peng XX. Oxalate accumulation as regulated by nitrogen forms and its relationship to photosynthesis in rice (Oryza sativa L.). J Integr Plant Biol,2005,47:831-838
    24. Jorge RA, Arruda P. Aluminum-induced organic acids exudation by roots of an aluminum-tolerant tropical maize. Phytochemistry,1997,45:675-681
    25. Kidd PS, Llugany M, Poschenrieder C, Gunse B, Barcelo J. The role of root exudates in aluminium resistance and silicon-induced amelioration of aluminium toxicity in three varieties of maize (Zea mays L.). J Exp Bot,2001,52:1339-1352
    26. Kinraide TB, Parker DR. Apparent phytotoxicity of mononuclear hydroxy-aluminum to four dicotyledonous species. Physiol Plant,1990,79:283-288
    27. Kinraide TB, Parker DR. Assessing the phytotoxicity of mononuclear hydroxy-aluminum. Plant Cell Environ,1989,12:479-487
    28. Kinraide TB. Identity of the rhizotoxic aluminum species. Plant Soil,1991,134:167-178
    29. Kitagawa T, Morishita T, Tachibana Y, Namai H, Ohta Y. Differential aluminum resistance of wheat varieties and organic acid secretion. Jap J Soil Sci Plant Nutr,1986,57:352-358
    30. Klug B, Horst WJ. Oxalate exudation into the root-tip water free space confers protection from aluminum toxicity and allows aluminum accumulation in the symplast in buckwheat (Fagopyrum esculentum). New Phytol,2010,187:380-391
    31. Kochian LV, Hoekenga OA, Pineros MA. How do crop plants tolerate acid soils? Mechanisms of aluminum tolerance and phosphorus efficiency. Annu Rev Plant Biol,2004, 55:459-493
    32. Kochian LV, Pineros MA, Hoekenga OA. The physiology, genetics and molecular biology of plant aluminum resistance and toxicity. Plant Soil,2005,274:175-195
    33. Kochian LV. Cellular mechanisms of aluminum toxicity and resistance in plants. Annu Rev Plant Physiol Plant Mol Biol,1995,46:238-260
    34. Kollmeier M, Dietrich P, Bauer CS, Horst WJ, Hedrich R. Aluminum activates a citrate-permeable anion channel in the aluminum-sensitive zone of the maize root apex. A comparison between an aluminum-sensitive and an aluminum-resistant cultivar. Plant Physiol, 2001,126:397-410
    35. Li XF, Ma JF, Matsumoto H. Pattern of aluminum-induced secretion of organic acids differs between rye and wheat. Plant Physiol,2000,123:1537-1544
    36. Li YY, Zhang YJ, Zhou Y, Yang JL, Zheng SJ. Protecting cell walls from binding aluminum by organic acids contributes to aluminum resistance. J Integr Plant Biol,2009,51:574-580
    37. Ligaba A, Katsuhara M, Ryan PR, Shibasaka M, Matsumoto H. The BnALMT1 and BnALMT2 genes from rape encode aluminum-activated malate transporters that enhance the aluminum resistance of plant cells. Plant Physiol,2006,142:1294-1303
    38. Ligaba A, Kochian L, Pineros M. Phosphorylation at S384 regulates the activity of the TaALMTl malate transporter that underlies aluminum resistance in wheat. Plant J,2009,60: 411-423
    39. Ligaba A, Shen H, Shibata K, Yamamoto Y, Tanakamaru S, Matsumoto H. The role of phosphorus in aluminum-induced citrate and malate exudation from rape (Brassica napus). Physiol Plant,2004,120:575-584
    40. Liu J, Magalhaes JV, Shaff J, Kochian LV. Aluminum-activated citrate and malate transporters from the MATE and ALMT families function independently to confer Arabidopsis aluminum tolerance. Plant J,2009,57:389-399
    41. Llugany M, Massot N, Wissemeier H, Poschenrieder C, Horst WJ, Barcelo J. Aluminum tolerance of maize cultivars as assessed by callose production and root elongation. Z Pflanzenernahr Bodenk,1994,157:447-451
    42. Ma J F, Ryan P R, Delhaize E. Aluminum tolerance in plants and the complexing role of organic acids. Trends Plant Science,2001,6:273-278
    43. Ma JF, Taketa S, Yang ZM. Aluminum tolerance genes on the short arm of chromosome 3R are linked to organic acid release in triticale. Plant Physiol,2000,122:687-694
    44. Ma JF, Zheng SJ, Masumoto H, Hiradate S. Detoxifying aluminum with buckwheat. Nature, 1997a,390:569-570
    45. Ma JF, Zheng SJ, Matsumoto H. Specific secretion of citric acid induced by Al stress in Cassia tora L.. Plant Cell Physiol,1997b,38:1019-1025
    46. Ma JF. Role of organic acids in detoxification of aluminum in higher plants. Plant Cell Physiol,2000,41:383-390
    47. Ma JF. Syndrome of aluminum toxicity and diversity of aluminum resistance in higher plants. Int Rev Cytol,2007,264:225-252
    48. Ma Z, Miyasaka SC. Oxalate exudation by taro in response to Al. Plant Physiol,1998,118: 861-865
    49. Macdonald TL, Martin RB. Aluminum ion in biological systems. Trends Biochem Sci,1988, 13:15-19
    50. MacKinnon N, Ridgway J, Crowell KJ, Macdonald PM. Aluminum binding to phosphatidylcholine lipid bilayer membranes:aluminum exchange lifetimes from 31P NMR
    51. Magalhaes JV, Liu J, Guimaraes CT, Lana UG, Alves VM, Wang YH, Schaffert RE, Hoekenga OA, Pineros MA, Shaff JE, Klein PE, Carneiro NP, Coelho CM, Trick HN, Kochian LV. A gene in the multidrug and toxic compound extrusion (MATE) family confers aluminum tolerance in sorghum. Nat Genet,2007,39:1156-1161
    52. Magalhaes JV. How a microbial drug transporter became essential for crop cultivation on acid soils:aluminum tolerance conferred by the multidrug and toxic compound extrusion (MATE) family. Ann Bot,2010,106:199-203
    53. Magalhaes JV. Molecular genetic and physiological investigations of aluminum tolerance in sorghum (Sorghum bicolor L. Moench). PhD thesis, Cornell Univ,2002,192
    54. Maron LG, Kirst M, Mao C, Milner MJ, Menossi M, Kochian LV. Transcriptional profiling of aluminum toxicity and tolerance responses in maize roots. New Phytol,2008,179:116-128
    55. Maron LG, Pineros MA, Guimaraes CT, Magalhaes JV, Pleiman JK, Mao C, Shaff J, Belicuas SN, Kochain LV. Two functionally distinct members of the MATE (multi-drug and toxic compound extrusion) family of transporters potentially underlie two major aluminum tolerance QTLs in maize. Plant J,2010,61:728-740
    56. Miyasaka SC, Buta JG, Howell RK, Foy CD. Mechanism of aluminum tolerance in snapbeans:Root exudation of citric acid. Plant Physiol,1991,96:727-743
    57. Morita Y, Kataoka A, Shiota S, Mizushima T, Tsuchiya T. NorM of Vibrio parahaemolyticus is an Na+-driven multidrug efflux pump. J Bacteriol,2000,182:6694-6697
    58. Morita Y, Kodama K, Shiota S, Mine T, Kataoka A, Mizushima T, Tsuchiya T. NorM, a putative multidrug efflux protein, of Vibrio parahaemolyticus and its homolog in Escherichia coli. Antimicrob Agents Chemother,1998,42:1778-1782
    59. Moriyama Y, Hiasa M, Matsumoto T, Omote H. Multidrug and toxic compound extrusion (MATE)-type proteins as anchor transporters for the excretion of metabolic waste products and xenobiotics. Xenobiotica,2008,38:1107-1118
    60. Mugai EN, Agong SG, Matsumoto H. Aluminum tolerance mechanisms in Phaseolus vulgaris L.:Citrate synthase activity and TTC reduction are well correlated with citrate secretion. Soil Sci Plant Nutr,2000,46:939-950
    61. Naik D, Smith E, Cumming JR. Rhizosphere carbon deposition, oxidative stress and nutritional changes in two poplar species exposed to aluminum. Tree Physiol,2009,29: 423-436
    62. Papernik LA, Bethea AS, Singleton TE, Magalhaes JV, Garvin DF, Kochian LV. Physiological basis of reduced AL tolerance in ditelosomic lines of Chinese Spring wheat. Planta,2001,212:829-834
    63. Pellet DM, Grunes DL, KochianLV. Organic acid exudation as an aluminum tolerance mechanism in maize (Zea mays L.). Planta,1995,196:788-795
    64. Pereira JF, Zhou G, Delhaize E, Richardson T, Zhou M, Ryan PR. Engineering greater aluminum resistance in wheat by over-expressing TaALMTl. Ann Bot,2010,106:205-214
    65. Pineros MA, Magalhaes JV, Carvalho Alves VM, Kochian LV. The physiology and biophysics of an aluminum tolerance mechanism based on root citrate exudation in maize. Plant Physiol,2002,129:1194-1206
    66. Qifu MA, Rengel Z, Kuo J. Aluminum toxicity in rye (Secale cereale):root growth and dynamics of cytoplasmic Ca2+ in intact root tips. Ann Bot,2002,89:241-244
    67. Raman H, Zhang K, Cakir M, Apples R, Garvin DF, Maron LG, Kochian LV, Moroni JS, Raman R, Imtiaz M, Drake-Brockman F, Waters I, Martin P, Sasaki T, Yamamoto Y, Matsumoto H, Hebb DM, Delhaize E, Ryan PR. Molecular characterization and mapping of ALMT1, the aluminum-tolerance gene of bread wheat(Triticum aestivum L.). Genome,2005, 48:781-791
    68. Rangel AF, Rao IM, Braun HP, Horst WJ. Aluminum resistance in common bean(Phaseolus vulgaris) involves induction and maintenance of citrate exudation from root apices. Physiol Plant,2010,138:176-190
    69. Rengel Z. Uptake of aluminum by plant cells. New Phytol,1996,134:389-406
    70. Ryan PR, Delhaize E, Randall PJ. Characterisation of Al-stimulated efflux of malate from the apices of Al-tolerant wheat roots. Planta,1995,196:103-110
    71. Ryan PR, Ditomaso JM, Kochian LV. Aluminum toxicity in roots:an investigation of spatial sensitivity and the role of the root cap. J Exp Bot,1993,44:437-446
    72. Ryan PR, Raman H, Gupta S, Horst WJ, Delhaize E. A second mechanism for aluminum resistance in wheat relies on the constitutive efflux of citrate from roots. Plant Physiol,2009, 149:340-351
    73. Ryan PR, Raman H, Gupta S, Sasaki T, Yamamoto Y, Delhaize E. The multiple origins of aluminum resistance in hexaploid wheat include Aegilops tauschii and more recent cis mutations to TaALMT1. Plant J,2010,64:446-455
    74. Saber NE, Abdel-Moneim AM, Barakat SY. Role of organic acids in sunflower tolerance to heavy metals. Biol Plant,1999,42:65-73
    75. Sasaki T, Ryan PR, Delhaize E, Hebb DM, Ogihara Y, Kawaura K, Noda K, Kojima T, Toyoda A, Matsumoto H, Yamamoto Y. Sequence upstream of the wheat(Triticum aestivum L.) ALMT1 gene and its relationship to aluminum resistance. Plant Cell Physiol,2006,47: 1343-1354
    76. Sasaki T, Yamamoto Y, Ezaki B, Katsuhara M, Ahn SJ, Ryan PR, Delhaize E, Matsumoto H. A wheat gene encoding an aluminum-activated malate transporter. Plant J,2004,37:645-653
    77. Sawaki Y, Iuchi S, Kobayashi Y, Kobayashi Y, Ikka T, Sakurai N, Fujita M, Shinozaki K, Shibata D, Kobayashi M, Koyama H. STOP1 regulates multiple genes that protect arabidopsis from proton and aluminum toxicities. Plant Physiol,2009,150:281-294
    78. Shen H, He LF, Sasaki T, Yamamoto Y, Zheng SJ, Ligaba A, Yan XL, Ahn SJ, Yamaquchi M, Sasakawa H, Matsumoto H. Citrate secretion coupled with the modulation of soybean root tip under aluminum stress. Up-regulation of transcription, translation, and threonine-oriented phosphorylation of plasma membrane H+-ATPase. Plant Physiol,2005,138:287-296
    79. Shen H, Ligaba A, Yamaguchi M, Osawa H, Shibata K, Yan X, Matsumoto H. Effect of K-252a and abscisic acid on the efflux of citrate from soybean roots. J Exp Bot,2004,55: 663-671
    80. Silva IR, Smyth TJ, Raper CD, Carter TE, Rufty TW. Differential aluminum tolerance in soybean:An evaluation of the role of organic acids. Physiol Plant,2001,112:200-210
    81. Taylor GJ, McDonald-Stephens JL, Hunter DB, Bertsh PM, Elmore D, Rengel Z, Reid RJ. Direct measurement of aluminum uptake and distribution in single cells of Chara corallina. Plant Physiol,2000,123:987-996
    82. Taylor GJ. Current views of the aluminum stress response:the physiological basis of tolerance. Curr Top Plant Biochem Physiol,1991,10:57-93
    83. Taylor GJ. Overcoming barriers to understanding the cellular basis of aluminum resistance. Plant Soil,1995,171:89-103
    84. Taylor GJ. The physiology of aluminum tolerance in higher plants. Commun Soil Sci Plant Anal,1988,19:1179-1194
    85. Tice KR, Parker DR, Demason DA. Operationally defined apoplastic and symplastic aluminum fractions in root tips of aluminum-intoxicated wheat. Plant Physiol,1992,100: 309-318
    86. Uexkull HR, Mutert E. Global extent, development and economic impact of acid soils. Plant Soil,1995,171:1-15
    87. Xu HW, Ji XM, He ZH, Shi WP, Zhu GH, Niu JK, Li BS, Peng XX. Oxalate accumulation and regulation is independent of glycolate oxidase in rice leaves. J Exp Bot,2006,57: 1899-1908
    88. Yamaji N, Huang CF, Nagao S, Yano M, Sato Y, Nagamura Y, Ma JF. A zinc finger transcription factor ART1 regulates multiple genes implicated in aluminum tolerance in rice. Plant Cell,2009,21:3339-3349
    89. Yang JL, You JF, Li YY, Wu P, Zheng SJ. Magnesium enhances aluminum-induced citrate secretion in rice bean roots (Vigna umbellata) by restoring plasma membrane H+-ATPase activity. Plant Cell Physiol,2007,48:66-73
    90. Yang JL, Zhang L, Li YY, You JF, Wu P, Zheng SJ. Citrate transporters play a critical role in aluminium-stimulated citrate efflux in rice bean(Vigna umbellata) roots. Ann Bot,2006a,97: 579-584
    91. Yang JL, Zhang L, Zheng SJ. Aluminum-activated oxalate secretion does not associated with internal content among some oxalate accumulators. J Integr Plant Biol,2008,50:1103-1107
    92. Yang JL, Zheng SJ, He YF, Matsumoto H. Aluminum resistance requires resistance to acid stress:a case study with spinach that exudes oxalate rapidly when exposed to Al stress. J Exp Bot,2005,56:1197-1203
    93. Yang JL, Zheng SJ, He YF, You JF, Zhang L, Yu XH. Comparative studies on the effect of a protein-synthesis inhibitor on aluminum-induced secretion of organic acids from Fagopyrum esculentum Moench and Cassia tora L. roots. Plant Cell Environ,2006b,29:240-246
    94. Yang JL, Zhu XF, Peng YX, Zheng C, Ming F, Zheng SJ. Aluminum regulates oxalate secretion and plasma membrane H+-ATPase activity independently in tomato roots. Planta, 2011a, accepted
    95. Yang LT, Jiang HX, Tang N, Chen LS. Mechanisms of aluminum-tolerance in two species of citrus:Secretion of organic acid anions and immobilization of aluminum by phosphorus in roots. Plant Sci,2011b,180:521-530
    96. Yang ZM, Nian H, Sivaguru M, Tanakamaru S, Matsumoto H. Characterization of aluminum-induced citrate secretion in aluminum-tolerant soybean (Glycin max) plants. Physiol Plant,2001,113:64-71
    97. Yang ZM, Sivaguru M, Horst WJ, Matsumoto H. Aluminium tolerance is achieved by exudation of citric acid from roots of soybean (Glycine max). Physiol Plant,2000,110:72-77
    98. Yang ZM, Wang J, Wang SH, Xu LL. Salicylic acid-induced aluminum tolerance by modulation of citrate efflux from roots of Cassia tora L. Planta,2003,217:168-174
    99. Yokosho K, Yamaji N, Ma JF. Isolation and characterization of two MATE genes in rye. Funct Plant Biol,2010,37:296-303
    100. You JF, He YF, Yang JL, Zheng SJ. A comparison of aluminum resistance among Polygonum species originating on strongly acidic and neutral soil. Plant Soil,2005,276:143-151
    101. Zhang WH, Ryan PR, Tyerman SD. Malate-permeable channels and cation channels activated by aluminum in the apical cells of wheat roots. Plant Physiol,2001,125:1459-1472
    102. Zhao Z, Ma JF, Sato K, Takeda K. Differential Al resistance and citrate secretion in barley (Hordeum vulgare L.). Planta,2003,217:794-800
    103. Zheng SJ, Ma JF, Matsumoto H. High aluminum resistance in buckwheat. I. Al-induced specific secretion of oxalic acid from root tips. Plant Physiol,1998,117:745-751
    104. Zheng SJ, Yang JL, He YF, Yu XH, Zhang L, You JF, Shen RF, Matsumoto H. Immobilization of aluminum with phosphorous in roots is associated with high aluminum resistance in buckwheat. Plant Physiol,2005,138:297-303
    105. Zheng SJ, Yang JL. Target sites of aluminum phytotoxicity. Biol Plantarum,2005,49: 321-331
    106.冯英明,喻敏,王昌全,刘家友.铝毒诱导植物细胞反应研究进展.华中农业大学学报,2005,24:320-324
    107.沈仁芳主编.《铝在土壤-植物中的行为及植物的适应机制》.科学出版社,2008
    1. Al-Qsous S, Carpentier E, Klein-Eude D, Burel C, Mareck A, Dauchel H, Gomord V, Balange AP. Identification and isolation of a pectin methylesterase isoform that could be involved in flax cell wall stiffening. Planta,2004,219:369-378
    2. Blarney FPC, Asher CJ, Kerven GL, Edwards DG. Factors affecting aluminum sorption by calcium pectate. Plant Soil,1993,149:87-94
    3. Blarney FPC, Edmeades DC, Wheeler DM. Role of root cation-exchange capacity in differential aluminum tolerance of lotus species. J Plant Nutr,1990,13:729-744
    4. Bosch M, Cheung AY, Hepler PK. Pectin methylesterase, a regulator of pollen tube growth. Plant Physiol,2005,138:1334-1346
    5. Brummell DA, Dal Cin V, Crisosto CH, Labavitch JM. Cell wall metabolism during maturation, ripening and senescence of peach fruit. J Exp Bot,2004,55:2029-2039
    6. Caffall KH, Mohnen D. The structure, function, and biosynthesis of plant cell wall pectic polysaccharides. Carbohydr Res,2009,344:1879-1900
    7. Carpita NC, Gibeaut DM. Structural models of primary cell walls in flowering plants: consistency of molecular structure with the physical properties of the walls during growth. Plant J,1993,3:1-30
    8. Carpita NC. Cell wall development in maize coleoptiles. Plant Physiol,1984,76:205-212
    9. Carpita NC. Structure and biogenesis of the cell walls of grasses. Annu Rev Plant Physiol Plant Mol Biol,1996,47:445-476
    10. Catoire L, Pierron M, Morvan C, du Penhoat CH, Goldberg R. Investigation of the action patterns of pectinmethylesterase isoforms through kinetic analyses and NMR spectroscopy. Implications in cell wall expansion. J Biol Chem,1998,273:33150-33156
    11. Chang YC, Yamamoto Y, Matsumoto H. Accumulation of aluminium in the cell wall pectin in cultured tobacco (Nicotiana tabacum L.) cells treated with a combination of aluminium and iron. Plant Cell Environ,1999,22:1009-1017
    12. Cosgrove DJ. Growth of the plant cell wall. Nat Rev Mol Cell Biol,2005,6:850-861
    13. Coutinho PM, Stam M, Blanc E, Henrissat B. Why are there so many carbohydrate-active enzyme-related genes in plants? Trends Plant Sci,2003,8:563-565
    14. Denes JM, Baron A, Renard CM, Pean C, Drilleau JF. Different action patterns for apple pectin methylesterase at pH 7.0 and 4.5. Carbohydr Res,2000,327:385-393
    15. Di Matteo A, Giovane A, Raiola A, Camardella L, Bonivento D, De Lorenzo G, Cervone F, Bellincampi D, Tsernoglou D. Structural basis for the interaction between pectin methylesterase and a specific inhibitor protein. Plant Cell,2005,17:849-858
    16. Dorokhov YL, Skurat EV, Frolova OY, Gasanova TV, Ivanov PA, Ravin NV, Skryabin KG, Makinen KM, Klimyuk VI, Gleba YY, Atabekov JG. Role of the leader sequence in tobacco pectin methylesterase secretion. FEBS Lett,2006,580:3329-3334
    17. Dumville JC, Fry SC. Uronic acid-containing oligosaccharins:Their biosynthesis, degradation and signalling roles in non-diseased plant tissues. Plant Physiol Biochem,2000, 38:125-140
    18. Eriksson EM, Bovy A, Manning K, Harrison L, Andrews J, De Silva J, Tucker GA, Seymour GB. Effect of the Colorless non-ripening mutation on cell wall biochemistry and gene expression during tomato fruit development and ripening. Plant Physiol,2004,136: 4184-4197
    19. Eticha D, Stass A, Horst WJ. Cell-wall pectin and its degree of methylation in the maize root-apex:significance for genotypic differences in aluminium resistance. Plant Cell Environ, 2005,28:1410-1420
    20. Fincher GB. Revolutionary times in our understanding of cell wall biosynthesis and remodeling in the grasses. Plant Physiol,2009,149:27-37
    21. Foy CD, Fleming AL, Burns GR, Arimiger WH. Characterization of differential aluminum tolerance among varieties of wheat and barley. Soil Sci Soc Am Proc,1967,31:513-521
    22. Francis KE, Lam SY, Copenhaver GP. Separation of Arabidopsis pollen tetrads is regulated by QUARTET1, a pectin methylesterase gene. Plant Physiol,2006,142:1004-1013
    23. Goldberg R, Morvan C, Jauneau A, Jarvis MC. Methyl-esterification, de-esterification and gelation of pectins in the primary cell wall. In:Visser J and Voragen AGJ ed. Pectins and Pectinases (Progress in Biotechnology), vol 14, Elsevier Science,1996,151-172
    24. Hasunuma T, Fukusaki E, Kobayashi A. Expression of fungal pectin methylesterase in transgenic tobacco leads to alteration in cell wall metabolism and a dwarf phenotype. J Biotechnol,2004,111:241-251
    25. Hayashi T. Xyloglucans in the primary cell wall. Annu Rev Plant Physiol Plant Mol Biol, 1989,40:139-168
    26. Horst WJ, Kollmeier M, Schmohl N, Sivaguru M, Wang Y, Felle HH, Hedrich R, Schroder W, Sta? A. Significance of the root apoplast for aluminium toxicity and resistance of maize. In: Sattelmacher B, Horst WJ ed. The apoplast of higher plants:compartment of storage, transport and reactions, Kluwer Academic Publishers, Dordrecht,2007,49-66
    27. Horst WJ, Wang Y, Eticha D. The role of the root apoplast in aluminum-induced inhibition of root elongation and in aluminium resistance of plants:a review. Ann Bot,2010,106:185-197
    28. Horst WJ. The role of the apoplast in aluminum toxicity and resistance of higher plants:a review. Z Pflanzenernahr Bodenk,1995,158:419-428
    29. Jenkins J, Mayans O, Smith D, Worboys K, Pickersgill RW. Three-dimensional structure of Erwinia chrysanthemi pectin methylesterase reveals a novel esterase active site. J Mol Biol, 2001,305:951-960
    30. Jiang L, Yang SL, Xie LF, Puah CS, Zhang XQ, Yang WC, Sundaresan V, Ye D. VANGUARD1 encodes a pectin methylesterase that enhances pollen tube growth in the Arabidopsis style and transmitting tract. Plant Cell,2005,17:584-596
    31. Johansson K, El-Ahmad M, Friemann R, Jornvall H, Markovic O, Eklund H. Crystal structure of plant pectin methylesterase. FEBS Lett,2002,514:243-249
    32. Li YY, Yang JL, Zhang YJ, Zheng SJ. Disorganized distribution of homogalacturonan epitopes in cell walls as one possible mechanism for aluminium-induced root growth inhibition in maize. Ann Bot,2009,104:235-241
    33. Liu Q, Yang JL, He LS, Li YY, Zheng SJ. Effect of aluminum on cell wall, plasma membrane, antioxidants and root elongation in triticale. Biol Plantarum,2008,52:87-92
    34. Ma JF, Shen R, Nagao S, Tanimoto E. Aluminum targets elongating cells by reducing cell wall extensibility in wheat roots. Plant Cell Physiol,2004,45:583-589
    35. Ma JF, Shen R, Zhao Z, Wissuwa M, Takeuchi Y, Ebitani T, Yano M. Response of rice to Al stress and identification of quantitative trait Loci for Al tolerance. Plant Cell Physiol,2002, 43:652-659
    36. McNeil M, Darvill AG, Fry SC, Albersheim P. Structure and function of the primary cell walls of plants. Annu Rev Biochem,1984,53:625-663
    37. Micheli F. Pectin methylesterases:cell wall enzymes with important roles in plant physiology. Trends Plant Sci,2001,6:414-419
    38. Moustacas AM, Nari J, Borel M, Noat G, Ricard J. Pectin methylesterase, metal ions and plant cell-wall extension. The role of metal ions in plant cell-wall extension. Biochem J,1991, 279:351-354
    39. O'Neill MA, Albersheim P, Darvill A. The pectic polysaccharides of primary cell walls. In: Dey PM ed. Methods in Plant Biochemistry, vol 2, Academic Press, London,1990,415-441
    40. Pelloux J, Rusterucci C, Mellerowicz EJ. New insights into pectin methylesterase structure and function. Trends Plant Sci,2007,12:267-277
    41. Pilling J, Willmitzer L, Bucking H, Fisahn J. Inhibition of a ubiquitously expressed pectin methyl esterase in Solanum tuberosum L. affects plant growth, leaf growth polarity, and ion partitioning. Planta,2004,219:32-40
    42. Pineros MA, Shaff JE, Manslank HS, Alves VM, Kochian LV. Aluminum resistance in maize cannot be solely explained by root organic acid exudation. A comparative physiological study. Plant Physiol,2005,137:231-241
    43. Rangel AF, Rao IM, Braun HP, Horst WJ. Aluminum resistance in common bean (Phaseolus vulgaris) involves induction and maintenance of citrate exudation from root apices. Physiol Plant,2010,138:176-190
    44. Rangel AF, Rao IM, Horst WJ. Intracellular distribution and binding state of aluminum in root apices of two common bean (Phaseolus vulgaris) genotypes in relation to Al toxicity. Physiol Plant,2009,135:162-173
    45. Ren C, Kermode AR. An increase in pectin methyl esterase activity accompanies dormancy breakage and germination of yellow cedar seeds. Plant Physiol,2000,124:231-242
    46. Schmoh1 N, Horst WJ. Cell wall pectin content modulates aluminum sensitivity of Zea mays (L.) cell grown in suspension culture. Plant Cell Environ,2000,23:735-742
    47. Schmohl N, Pilling J, Fisahn J, Horst WJ. Pectin methylesterase modulates aluminium sensitivity in Zea mays and Solanum tuberosum. Physiol Plant,2000,109:419-427
    48. Sivaguru M, Ezaki B, He ZH, Tong HY, Osawa H, Baluska F, Volkmann D, Matsumoto H. Aluminum-induced gene expression and protein localization of a cell wall-associated receptor kinase in Arabidopsis.Plant Physiol,2003,132:2256-2266
    49. Tabuchi A, Matsumoto H. Changes in cell-wall properties of wheat (Triticum aestivum) roots during aluminum-induced growth inhibition. Physiol Plant,2001,112:353-358
    50. Taylor GJ. Current views of the aluminum stress response:the physiological basis of tolerance. Curr Top Plant Biochem Physiol,1991,10:57-93
    51. Tian GW, Chen MH, Zaltsman A, Citovsky V. Pollen-specific pectin methylesterase involved in pollen tube growth. Dev Biol,2006,294:83-91
    52. Van HL, Kuraishi S, Sakurai N. Aluminum-induced rapid root inhibition and changes in cell-wall components of squash seedlings. Plant Physiol,1994,106:971-976
    53. Wen F, Zhu Y, Hawes MC. Effect of pectin methylesterase gene expression on pea root development. Plant Cell,1999,11:1129-1140
    54. Wenzl P, Patino GM, Chaves AL, Mayer JE, Rao IM. The high level of aluminum resistance in signalgrass is not associated with known mechanisms of external aluminum detoxification in root apices. Plant Physiol,2001,125:1473-1484
    55. Willats WG, McCartney L, Mackie W, Knox JP. Pectin:cell biology and prospects for functional analysis. Plant Mol Biol,2001,47:9-27
    56. Yang JL, Li YY, Zhang YJ, Zhang SS, Wu YR, Wu P, Zheng SJ. Cell wall polysaccharides are specifically involved in the exclusion of aluminum from the rice root apex. Plant Physiol, 2008,146:602-611
    57. Yang JL, Zhu XF, Peng YX, Zheng C, Li GX, Liu Y, Shi YZ, Zheng SJ. Cell wall hemicellulose contributes significantly to aluminum adsorption and root growth in Arabidopsis. Plant Physiol,2011,155:1885-1892
    58. Zakir Hossain AK, Koyama H, Hara T. Growth and cell wall properties of two wheat cultivars differing in their sensitivity to aluminum stress. J Plant Physiol,2006,163:39-47
    1. Furukawa J, Yamaji N, Wang H, Mitani N, Murata Y, Sato Y, Katsuhara M, Takeda K, Ma JF. An aluminum-activated citrate transporter in barley. Plant Cell Physiol,2007,48:1081-1091
    2. Liu J, Magalhaes JV, Shaff J, Kochian LV. Aluminum-activated citrate and malate transporters from the MATE and ALMT families function independently to confer Arabidopsis aluminum tolerance. Plant J,2009,57:389-399
    3. Ma JF. Role of organic acids in detoxification of aluminum in higher plants. Plant Cell Physiol,2000,41:383-390
    4. Magalhaes JV, Liu J, Guimaraes CT, Lana UG, Alves VM, Wang YH, Schaffert RE, Hoekenga OA, Pineros MA, Shaff JE, Klein PE, Carneiro NP, Coelho CM, Trick HN, Kochian LV. A gene in the multidrug and toxic compound extrusion (MATE) family confers aluminum tolerance in sorghum. Nat Genet,2007,39:1156-1161
    5. Uhde-Stone C, Liu J, Zinn KE, Allan DL, Vance CP. Transgenic proteoid roots of white lupin: a vehicle for characterizing and silencing root genes involved in adaptation to P tress. Plant J, 2005,44:840-853
    6. Yang JL, Zhang L, Li YY, You JF, Wu P, Zheng SJ. Citrate transporters play a critical role in aluminium-stimulated citrate efflux in rice bean (Vigna umbellata) roots. Ann Bot,2006,97: 579-584
    1. Famoso AN, Clark RT, Shaff JE, Craft E, McCouch SR, Kochian LV. Development of a novel aluminum tolerance phenotyping platform used for comparisons of cereal aluminum tolerance and investigations into rice aluminum tolerance mechanisms. Plant Physiol,2010, 153:1678-1691
    2. Grisel N, Zoller S, Kunzli-Gontarczyk M, Lampart T, Munsterkotter M, Brunner I, Bovet L, Metraux JP, Sperisen C. Transcriptome responses to aluminum stress in roots of aspen (Populus tremula). BMC Plant Biol,2010,10:185-200
    3. Ligaba A, Katsuhara M, Ryan PR, Shibasaka M, Matsumoto H. The BnALMT1 and BnALMT2 genes from rape encode aluminum-activated malate transporters that enhance the aluminum resistance of plant cells. Plant Physiol,2006,142:1294-1303
    4. Liu J, Magalhaes JV, Shaff J, Kochian LV. Aluminum-activated citrate and malate transporters from the MATE and ALMT families function independently to confer Arabidopsis aluminum tolerance. Plant J,2009,57:389-399
    5. Ryan PR, Delhaize E, Randall PJ. Characterisation of Al-stimulated efflux of malate from the apices of Al-tolerant wheat roots. Planta,1995,196:103-110
    6. Ryan PR, Delhaize E. Function and mechanism of organic anion exudation from plant roots. Annu Rev Plant Physiol Plant Mol Biol,2001,52:527-560
    7. Sasaki T, Yamamoto Y, Ezaki B, Katsuhara M, Ahn SJ, Ryan PR, Delhaize E, Matsumoto H. A wheat gene encoding an aluminum-activated malate transporter. Plant J,2004,37:645-653
    8. Yamaji N, Huang CF, Nagao S, Yano M, Sato Y, Nagamura Y, Ma JF. A zinc finger transcription factor ART1 regulates multiple genes implicated in aluminum tolerance in rice. Plant Cell,2009,21:3339-3349
    9. Yang JL, Zhang L, Li YY, You JF, Wu P, Zheng SJ. Citrate transporters play a critical role in aluminium-stimulated citrate efflux in rice bean(Vigna umbellata) roots. Ann Bot,2006,97: 579-584
    10. Yang JL, Zhang L, Zheng SJ. Aluminum-activated oxalate secretion does not associate with internal content among some oxalate accumulators. J Integr Plant Biol,2008,50:1103-1107
    11. Zhang WH, Ryan PR, Tyerman S. Malate-permeable channels and cation channels activated by aluminum in the apical cells of wheat roots. Plant Physiol,2001,125:1459-1472
    12. Zheng SJ, Ma JF, Matsumoto H. High aluminum resistance in buckwheat. I. Al-induced specific secretion of oxalic acid from root tips. Plant Physiol,1998,117:745-751
    1. Delhaize E, Ryan PR, Randall PJ. Aluminum tolerance in wheat (Triticum aestivum L.):II. Aluminum-stimulated excretion of malic acid from root apices. Plant Physiol,1993,103: 695-702
    2. Furukawa J, Yamaji N, Wang H, Mitani N, Murata Y, Sato K, Katsuhara M, Takeda K, Ma JF. An aluminum-activated citrate transporter in barley. Plant Cell Physiol,2007,48:1081-1091
    3. Liu J, Magalhaes JV, Shaff J, Kochian LV. Aluminum-activated citrate and malate transporters from the MATE and ALMT families function independently to confer Arabidopsis aluminum tolerance. Plant J,2009,57:389-399
    4. Ma JF. Role of organic acids in detoxification of aluminum in higher plants. Plant Cell Physiol,2000,41:383-390
    5. Magalhaes JV, Liu J, Guimaraes CT, Lana UG, Alves VM, Wang YH, Schaffert RE, Hoekenga OA, Pineros MA, Shaff JE, Klein PE, Carneiro NP, Coelho CM, Trick HN, Kochian LV. A gene in the multidrug and toxic compound extrusion (MATE) family confers aluminum tolerance in sorghum. Nat Genet,2007,39:1156-1161
    6. Maron LG, Pineros MA, Guimaraes CT, Magalhaes JV, Pleiman JK, Mao C, Shaff J, Belicuas SN, Kochain LV. Two functionally distinct members of the MATE (multi-drug and toxic compound extrusion) family of transporters potentially underlie two major aluminum tolerance QTLs in maize. Plant J,2010,61:728-740
    7. Morita Y, Kataoka A, Shiota S, Mizushima T, Tsuchiya T. NorM of Vibrio parahaemolyticus is an Na+-driven multidrug efflux pump. J Bacteriol,2000,182:6694-6697
    8. Morita Y, Kodama K, Shiota S, Mine T, Kataoka A, Mizushima T, Tsuchiya T. NorM, a putative multidrug efflux protein, of Vibrio parahaemolyticus and its homolog in Escherichia coli. Antimicrob Agents Chemother,1998,42:1778-1782
    9. Pineros MA, Cancado GM, Kochian LV. Novel properties of the wheat aluminum tolerance organic acid transporter (TaALMT1) revealed by electrophysiological characterization in Xenopus oocytes:functional and structural implications. Plant Physiol,2008,147:2131-2146
    10. Sun HJ, Uchii S, Watanabe S, Ezura H. A highly efficient transformation protocol for Micro-Tom, a model cultivar for tomato functional genomics. Plant Cell Physiol,2006,47: 426-431
    11. Yang JL, Zhang L, Li YY, You JF, Wu P, Zheng SJ. Citrate transporters play a critical role in aluminium-stimulated citrate efflux in rice bean (Vigna umbellata) roots. Ann Bot,2006,97: 579-584
    1. Al-Qsous S, Carpentier E, Klein-Eude D, Burel C, Mareck A, Dauchel H, Gomord V, Balange AP. Identification and isolation of a pectin methylesterase isoform that could be involved in flax cell wall stiffening. Planta,2004,219:369-378
    2. Anthon GE, Barrett DM. Comparison of three colorimetric reagents in the determination of methanol with alcohol oxidase. Application to the assay of pectin methylesterase. J Agric Food Chem,2004,52:3749-3753
    3. Blarney FPC, Asher CJ, Kerven GL, Edwards DG. Factors affecting aluminum sorption by calcium pectate. Plant Soil,1993,149:87-94
    4. Blarney FPC, Edmeades DC, Wheeler DM. Role of root cation-exchange capacity in differential aluminum resistance of lotus species. J Plant Nutr,1990,13:729-744
    5. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem,1976,72:248-254
    6. Chang YC, Yamamoto Y, Matsumoto H. Accumulation of aluminium in the cell wall pectin in cultured tobacco (Nicotiana tabacum L.) cells treated with a combination of aluminium and iron. Plant Cell Environ,1999,22:1009-1017
    7. Derbyshire P, McCann MC, Roberts K. Restricted cell elongation in Arabidopsis hypocotyls is associated with a reduced average pectin esterification level. BMC Plant Biol,2007,7: 31-42
    8. Foy CD, Fleming AL, Burns GR, Armiger WH. Characterization of differential aluminum tolerance among varieties of wheat and barley. Soil Sci Soc Am Proc,1967,31:513-521
    9. Foy CD. Plant adaptation to acid, aluminum-toxic soils. Commun Soil Sci Plan,1988,19: 959-987
    10. Guo AY, Zhu QH, Chen X, Luo JC. GSDS:a gene structure display server. Yi Chuan,2007, 29:1023-1026
    11. Horst WJ, Schmohl N, Kollmeier M, ek Balu ka F, Sivaguru M. Does aluminum affect root growth of maize through interaction with the cell wall-plasmamembrane-cytoskeleton continnum? Plant Soil,1999,215:163-174
    12. Horst WJ, Wang Y, Eticha D. The role of the root apoplast in aluminium-induced inhibition of root elongation and in aluminium resistance of plants:a review. Ann Bot,2010,106: 185-197
    13. Horst WJ. The role of the apoplast in aluminum toxicity and resistance of higher plants:a review. Z Pflanzenernahr Bodenk,1995,158:419-428
    14. Huang CF, Yamaji N, Mitani N, Yano M, Nagamura Y, Ma JF. A bacterial-type ABC transporter is involved in aluminum tolerance in rice. Plant Cell,2009,21:655-667
    15. Kumar S, Tamura K, Jakobsen IB, Nei M. MEGA2:molecular evolutionary genetics analysis software. Bioinformatics,2001,17:1244-1245
    16. Laemmli UK. Cleavage of structural proteins during the assembly of the head of the bacteriophage T4. Nature,1970,227:680-685
    17. Ma JF, Furukawa J. Recent progress in the research of external Al detoxification in higher plants:a minireview. J Inorg Biochem,2003,97:46-51
    18. Ma JF, Shen R, Zhao Z, Wissuwa M, Takeuchi Y, Ebitani T, Yano M. Response of rice to Al stress and identification of quantitative trait Loci for Al tolerance. Plant Cell Physiol,2002, 43:652-659
    19. Micheli F. Pectin methylesterases:cell wall enzymes with important roles in plant physiology. Trends Plant Sci,2001,6:414-419
    20. Moustacas AM, Nari J, Borel M, Noat G, Ricard J. Pectin methylesterase, metal ions and plant cell-wall extension. The role of metal ions in plant cell-wall extension. Biochem J,1991, 279:351-354
    21. Pelloux J, Rusterucci C, Mellerowicz EJ. New insights into pectin methylesterase structure and function. Trends Plant Sci,2007,12:267-277
    22. Pilling J, Willmitzer L, Bucking H, Fisahn J. Inhibition of a ubiquitously expressed pectin methyl esterase in Solanum tuberosum L. affects plant growth, leaf growth polarity, and ion partitioning. Planta,2004,219:32-40
    23. Pilling J, Willmitzer L, Fisahn J. Expression of a Petunia inflata pectin methyl esterase in Solanum tuberosum L. enhances stem elongation and modifies cation distribution. Planta, 2000,210:391-399
    24. Schildknecht P, Vidal BC. A role for the cell wall in Al3+resistance and toxicity:crystallinity and availability of negative charges. Int Arch Biosci,2002,1087-1095
    25. Schmohl N, Pilling J, Fisahn J, Horst WJ. Pectin methylesterase modulates aluminium sensitivity in Zea mays and Solanum tuberosum. Physiol Plant,2000,109:419-427
    26. Wen F, Zhu Y, Hawes MC. Effect of pectin methylesterase gene expression on pea root development. Plant Cell,1999,11:1129-1140
    27. Yang JL, Li YY, Zhang YJ, Zhang SS, Wu YR, Wu P, Zheng SJ. Cell wall polysaccharides are specifically involved in the exclusion of aluminum from the rice root apex. Plant Physiol, 2008,146:602-611
    28. Zheng SJ, Lin XY, Yang JL, Liu Q, Tang CX. The kinetics of aluminum adsorption and desorption by root cell walls of an aluminum resistance wheat (Triticum aestivum L.) cultivar. Plant Soil,2004,261:85-90
    29. Zhong HL, Lauchli A. Changes of cell wall composition and polymer size in primary roots of cotton seedlings under high salinity. J Exp Bot,1993,44:773-778

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700