浅层不均匀体大地电磁响应及约束反演研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文主要针对大地电磁在铁路长大隧道应用中遇到的实际问题,进行探讨研究,分析了静态效应和地形影响的原理,讨论了静态校正和地形校正方法,并通过模型正演研究总结了实际应用中的一些规律,并将这些规律应用到实际资料处理中,提高了资料解释的可信度;同时将钻孔、地质等先验信息转换为电性资料,进行电性参数约束反演研究,提高了大地电磁方法的分辨率。
     论文首先重点对静态效应问题及其校正方法进行了研究,分析了静态效应的产生机制,总结了静态效应的几个典型的特征:浅部的小规模的电性不均匀体在大地电磁测深过程中会产生静态效应;静态效应只影响电场数据的观测,而不影响磁场数据的观测;在双对数坐标系中,视电阻率曲线会沿视电阻率轴上下整体偏移,不改变曲线形态,而相位曲线不受影响;静态效应容易与异常混淆。考虑了多种方法进行静态校正,通过模型正演研究,主要对五点(七点)滤波、二维中值滤波和自适应汉宁滤波等数值分析方法和曲线平移进行了静校正效果分析,讨论了各种校正方法的优缺点,提出采用多种静态校正方法组合方式,并通过实例对静校正的效果进行了分析评价。
     然后对起伏地形模拟理论进行了论述,并对起伏地形视电阻率进行了定义,通过建立斜坡地形模型、不同背景电阻率的正、负地形模型和复杂地形含高阻模型进行了正演模拟研究,得出对于TE模式:在负地形处和台阶底部,视电阻率值偏小;在正地形处和台阶顶部,视电阻率值偏大;且起伏落差越大、电阻率值越小,畸变越大。对于TM模式:地形畸变主要表现在正、负地形处。在负地形处视电阻率值偏大;在正地形处视电阻率值偏小;且起伏落差越大、电阻率值越小,畸变越大。对比值法地形校正进行了介绍和模型研究。
     将地质、地球物理等前期成果资料转换为大地电磁资料处理所需要的电阻率分布先验地电模型,在OCCAM反演算法的目标函数中加入先验地电模型作用项——即迭代过程中在已知电性分布的区域不断的向先验地电模型靠拢,形成了利用先验信息的电性参数约束反演算法,详细推导了目标函数的迭代公式,并对最终形成了电性参数约束反演模块进行了介绍。通过模型对比来说明约束反演的有效性。以渝利线方斗山隧道为例,主要是利用钻孔、测井等信息转换为电性参数约束反演所需要的电性约束文件,进行约束反演对比研究,通过详细对比约束反演前后的效果,说明了电性参数约束反演可以在一定程度上提高大地电磁方法在铁路长大隧道中勘探的分辨率。
     最后,将以上讨论的方法应用到南涪线梓里隧道的实际处理中,对于梓里隧道针对该工区位于构造发育,地下情况复杂等特点,对野外原始数据进行去“飞点”和地形校正等操作,采用空间滤波和汉宁滤波等方法进行了静态效应的校正,同时加入已知的地质先验信息进行约束反演,得到的预处理结果效果明显改善,最终的梓里隧道成果解释与钻孔具有较好的对应性。
The paper paid attention to the problems which suffered from magnetotelluric (MT) application in large and long tunnels of railway and were studied. Static effects were discussed by two-dimension finite element forward. And some laws in practical application from forward research to the model whose application in data processing can enhance credibility in data interpretation. At the same time, posterior information such as borehole and geology etc was transformed to electricity data for inversion with electrical parameters restraint, and increased MT resolution.
     In the paper, Emphasis on static effects and their calibration research, analysis of their generation and their typical characters were summarized such as shallow small-scale electricity inhomogeneous body in MT sounding producing static effects; static effects having effects only on electric field data observation but not on magnetic data observation; in log-log coordinate apparent resistivity curve along apparent resistivity axis up and down offset without changing the pattern and with no effects on phase curve; easy confusion in static effects and anomaly. Curve translation and numerical analysis were considered for static calibration. By forward to models, five-point (seven times) filter, two-dimension median filtering and adaptive Hanning filtering and so on were used for static calibration. And advantages and shortcomings of various methods of calibration were discussed and effect of calibration was analyzed by practical examples.
     Then constructing various two-dimension geo-electric models was used to discuss terrain influence and vertical and horizontal resolution in MT application. To the terrain influence, the following laws were summarized. Including there no good reflection on the bottom interface of low-resistance anomaly; in the terrain of ridge they well reflected center position of anomaly and the terrain had little effects on the top interface of anomaly; in the terrain of valley, center position of anomaly can up and down offset, the greater of radian, the better reflection on low-resistance anomaly on the whole. Research of vertical and horizontal resolution found that MT method can very well determine top interface of the low-resistance anomaly in most upward side, but can not determine top interface of each low-resistance, that is, there is bad vertical resolution in the method. For horizontal resolution, in traverse, when there is some separation in low-resistance anomaly distance, the method can reflect horizontal variation of electricity structure very well. And MT application was discussed further by complex structured model.
     Geological and geophysical former data was transfromed to resistance distribution priori geo-electric model which is needed by MT data processing. Interaction item of priori geo-electric model was added into objective function in OCCAM inversion algorithm—during the iteration known electricity distribution continually closed to priori geo-electric model which came into being the inversion algorithm with the restraint of electricity parameters, iterative formula of objective function was deduced. And the final inversion module with the restraint of electricity parameters was introduced. Models comparison showed the availability of restraint inversion.
     Finally the methods which have been discussed above the paper were applied into practical processing in Zili tunnel of Nanpei line and Fandoushan tunnel of Yuli line. For Zili tunnel, according to the work area located in structural zone and its complex subsurface picture and so on, removing the“flying spot”of raw data, spatial filtering and Hanning filtering etc were used for static calibration. And obvious improved pre-processing results were obtained. Also final results interpretation of Zili tunnel corresponded to the results of borehole very well. For Fangdoushan tunnel, the information of borehole and logging etc used mainly was transformed to the electricity restraint file which was required by inversion with restraint of electricity parameters for restraint inversion comparison. And detailed comparison showed the inversion with restraint of electricity parameters can improve the resolution of MT exploration in large and long tunnel of railway in some degree.
引文
[1] Lilley F.E.M. Magnetotelluric analysis using Mohr circles. Geophysics, 1993, 58(10), 1498~1506.
    [2] Mauriello P, Patella D. Principles of Probability Tomography for Natural-source Electromagnetic Induction Fields[J]. Geophysics, 1999, 64(5), 1403-1417.
    [3] J.T. Smith and J.R. Booker. Rapid Inversion of Two-and Three-Dimensional magnetotelluric Data [J]. JGR,1991, 96( B3):3902~3922.
    [4] deGroot-Hedion C and Constable S. Occam's inversion to generate smooth two-dimensional models from magnetotelluric data. Geophysics,1990,55(12):1613~1624.
    [5] W. Rodi and R. L. Mackie. Nonlinear conjugate gradients algorithm for 2-D magnetotelluric inversion [J]. Geophysics, 2001,66(1).
    [6] Siripunvaraporn,Weerachai and Eqbert,Gary. Efficient data-subspace inversion method for 2-D magnetotelluric data. Geophysics, 2000, 65(3): 791~803.
    [7] Burchfiel B C, Chen Z, Liu Y, et al. Tectonics of the Longmen Shan and adjacent regions, Central China. International Geology Review, 1996, 37: 661–735.
    [8] Chen S F, Wilson C J L. Emplacement of the Longmen Shan Thrust-Nappe Belt along the eastern margin of the Tibetan Plateau. Journal of Structural Geology , 1996,18:413–430.
    [9] Li Y,Allen P A,Densmore A L,Qiang X.Evolution of the Longmen Shan Foreland Basin(Western Sicuan,China)during the Late Triassic Indosinian Orogeny.Basin Resewrch ,2003,15:117-138.
    [10] Zhang P Z, Shen Z K, Wang M, et al. Continuous deformation of the Tibetan Plateau from Global Positioning System data. Geology, 2004, 32:809-812.
    [11] Christensen N B. 1D imaging of central loop transient electromagnetic soundings. JEEG, 1995, 2 (1) : 53~66.
    [12] Zhdanov,Fangshen.Three-dimensional inversion of MT data collected for hydrocarbon exploration in the overthrust area in Japan[A].In:Expanded Abstracts Society of Exploration Geophysics(SEG)69TH Annual International Meeting[C].1999.
    [13] Greg J,et a1.Joint 3-D inversion of gravity, magnetic and tensor gravity fields for imaging salt formations in the deepwater gulf of Mexico. [A].In:Expanded Abstracts Society of Exploration Geophysics(SEG)70TH Annual International Meeting[C].2000.
    [14] Wannamaker. P. E., Hohmann. G. W., and Ward. S. H, Magnetotelluric responses of three-dimensional bodies in lavered earths: Geophysics: 49. 1517-1533. 1984
    [15] Wannamaker.P.E., Stodt, J. A., and Rijo, L., A stable finite-element solution for two-dimensional magnetotelluric modeling:Geophys. J. Roy. Astr. Sot., 88, 277-296. 1987
    [16] Spichak V and Popova.Artificial neural network inversion of magnetotelluric data in terms of three-deimensional earth macroparameters[J].Geophys J Int,2000,142:15-26.
    [17] Mitsuhata Y,Uchida T.3D magnetotelluric modeling using the T—n finite-element method[J].Geophysics,2004,69(1):108-119.
    [18] Zhdanov M S , Fang S , Hursan G . Electromagnetic inversion using quasi-linear approximation[J].Geophysics,2000,65(5):15O1~1513.
    [19] Newman G A,Alumbaugh D L.Three-dimensional magneto-telluric inversion using non-linear conjugate gradients[J].Geophys J Int,2000,140:410-424.
    [20] Rodi W L,Mackie R L.Nonlinear conjugate gradients algo-rithm for 2-D magnetotelluric inversion[J].Geophysics,2001,66(1):174-187.
    [21] Gómez-Trevi?o.E. A simple sensitivity analysis of time-domain and frequency-domain electromagnetic measurements[J]. Geophysics. 1987,VOL. 52:1418-1423.
    [22] Kunetz, G., Processing and interpretation of magnetotelluric soundings: Geophysics, 1972, 37, 1005-1021.
    [23] Kaufman, A. A., and Keller, G. V. 1983, Frequency and transient soundings: Elsevier Science Publ. Co., Inc.
    [24] Gómez-Trevi?o.E, 1987, Nonlinear integral equations for electromagnetic inverse problems: Geophysics. 52, September, 1297-1302.
    [25] Cagniard, L., 1953, Basic theory of the magnetotelluric method of geophysical prospecting: Geophysics, 18, 6055635.
    [26] Gaston Fischer etc. 1981, An analytic one dimensional magnetotelluric inversion scheme, Geophys. J. R. astr. Soc. V. 67, No.2, pp. 257-278.
    [27] Gaston Fischer and B.V.Le Quang, 1981, Topography and minimization of the standard deviation in one-dimensional magnetotelluric modelling, Geophys. J. R. astr. Soc, V. 67, No.2, pp. 279-292.
    [28] D. Sutarno and K. Vozoff, 1991, Phase-smoothed robust A&estimation of magnetotelluric impedance functions, Geophysics, VOL. 56, NO. 12: P. 1999-2007.
    [29] [Maxwell A. Meju, 1996, Joint inversion of TEM and distorted MT soundings: Some effective practical considerations, Geophysics, VOL. 61, NO. 1; P. 56-65.
    [30]晋光文,孙洁,江钊.大地电磁阻抗张量不变量及其Mohr圆分析[J].地震地质,1995,17(4):439~445.
    [31]肖骑彬,大别一苏鲁造山带地壳一上地慢电性结构研究,中国地震局地质研究所博士后研究工作报告.
    [32]孙洁,晋光文,白登海等.Mohr圆分析方法在川西-藏东MT剖面资料解释中的应用.地震地质,2003,25(3),385~393.
    [33]赵国泽,刘国栋,詹艳等.张北—尚义地震区及其邻区地壳上地幔结构.地震地质,1998 ,20 (2) :155~162.
    [34]邓前辉,张木生,詹艳等.邢台7. 2级地震震源区的电磁阵列剖面法测量与电性特征研究.地球物理学报,1998 ,41(2) :218~225.
    [35]邓前辉,王继军,汤吉等.三河—平谷8级大震区地壳上地幔电性结构特征研究.地震地质,2001,23(3):178~185.
    [36]詹艳,赵国泽,汤吉等.新疆玛纳斯大震区地壳深部的电性结构.地震地质,1999,21(2) :159~167.
    [37]杨晓平,顾梦林,孙振国等.1906年新疆玛纳斯大震区的多层次拟冲构造与深部结构.地震地质,2002,24(3):303~314
    [38]胡文宝,苏朱刘,陈清礼,等.倾子资料的特征及应用[J].石油地球物理勘探,1997,32(2):202-213.
    [39]于鹏,王家林,吴健生.利用大地电磁测深视倾子资料来研究断裂,GPS/SEG 2004国际地球物理会议论文集(详细摘要)[C].2004,479-482.
    [40]徐果明编著.反演理论及其应用[M].北京:地震出版社,2003.
    [41]四川省地质矿产局,四川省区域地质志,地质出版社,1991.
    [42]大地电磁阻抗张量的畸变与分解,地震出版社,2006.
    [43]王绪本.二维大地电磁测深资料处理与反演解释方法研究[学位论文].成都:成都理工大学,2002.
    [44]王家映著.大地电磁拟地震解释法[ M].北京:石油工业出版社,1995.
    [45]魏文博.我国大地电磁测深新进展及瞻望[J].地球物理学进展,2002,17(2):245~254.
    [46]戴世坤等. MT二维和三维连续介质快速反演[J].石油地球物理勘探,1997,32(3):305~317.
    [47]陈乐寿,王光锷.大地电磁测深法[M].北京:地质出版社,1990.
    [48]陈乐寿等.大地电磁测深资料处理与解释[M].北京:石油工业出版社,1989.
    [49]王绪本,李永年,高永才.大地电磁测深二维地形影响及其校正方法研究[J].物探化探计算技术, 1999, 24.
    [50]王绪本,姜彦南,毛立峰,冯思臣等.大地电磁场概率成像初步研究[J].物探化探计算技术,2002,23.
    [51]胡祖志,胡祥云等,大地电磁二维反演方法对比研究.煤田地质与勘探,2005,33(1)64-68.
    [52]王家映.我国大地电磁测深研究新进展[J].地球物理学报,1997,40.
    [53]蔡立国,刘伟新,宋立珩,等.松潘-阿坝地区盆地演化及油气远景.石油与天然气地质,2005,26(1):92-98.
    [54]蔡学林,曹家敏,刘援朝,等.青藏高原多向碰撞-楔入隆升地球动力学模式.地学前缘,1999,6(3):181-189.
    [55]陈高,吴健生,于鹏.松潘-阿坝地区深部电性特征.地球科学:中国地质大学学报,2006,31(6):857-860.
    [56]陈洪德,侯明才,刘文均,等.海西-印支期中国南方的盆地演化与层序格架.成都理工大学学报:自然科学版,2004,31(6):629-635.
    [57]杜德勋,罗建宁,等.巴颜喀拉三叠纪沉积盆地岩相与古地理-以阿坝-若尔盖盆地为例.岩相古地理,1998,18(1):1-18.
    [58]冯益民,曹宣铎,张二朋,等.西秦岭造山带结构造山过程及动力学.西安:西安地图出版社,2002.
    [59]高锐,王海燕,马永生,等.松潘地块若尔盖盆地与西秦岭造山带岩石圈尺度的构造关系-深地震反射剖面探测成果.地球学报,2006,27(5):411-418.
    [60]郭正吾,苟宗海,吴山,等.四川盆地形成与演化[M].北京:地质出版社,1996
    [61]黄汲清,任纪舜,姜春发,等.中国大地构造及其演化.北京:科学出版社,1980.
    [62]晋光文,孙洁,白登海.川西—藏东大地电磁资料的阻抗张量畸变分解[J].地球物理学报,2003,46(4):547-552
    [63]金胜,叶高峰,魏文博,等.青藏高原东南部地壳导电性结构与断裂构造特征-下察隅-昌都剖面大地电磁探测结果.地学前缘,2006,13(5):408-415.
    [64]金文正,汤良杰,杨克明等.川西龙门山褶皱冲断带分带性变形特征.地质学报,2007,81(8):1072-1080.
    [65]马晓冰,孔祥儒,刘宏兵等.青藏高原东北部地区地壳电性结构特征.地球物理学报,2005,48(3):689-697.
    [66]李景明,刘树根,李本亮,等.中国西部C-型前陆盆地形成与油气聚集.北京:石油工业出版社,2006.
    [67]李立,金国元.攀西裂谷带及龙门山断裂带地壳上地幔的大地电磁测深研究.物探与化探,1987,11(3):161-169.
    [68]李书兵,陈伟,简高明,等.龙门山前中段地震剖面的构造分析.西南石油学院学报,2006,28(2):20-24.
    [69]李勇,曾允孚.龙门山逆冲推覆作用的地层标识.成都理工学院学报,1995,22(2).
    [70]林茂炳.初论陆内造山带的造山模式-以四川龙门山为例.四川地质学报,1996,3.
    [71]林茂炳,,,等.龙门山地质[M].成都:成都科技大学出版社,1996
    [72]刘和甫,梁慧社,蔡立国.川西龙门山冲断系构造样式前陆盆地演化.地质学报,1994,68(2):101-117.
    [73]刘宏兵,孔祥儒,马晓冰等.青藏高原东南地区地壳物性结构特征.中国科学,2001,31(增刊):61-65.
    [74]刘树根,罗志立,赵锡奎,等.中国西部盆山系统的耦合关系及其动力学模式-以龙门山造山带-川西前陆盆地系统为例.地质学报,2003,77(2):177-186.
    [75]刘树根,赵锡奎,罗志立,等.龙门山造山带-川西前陆盆地系统构造事件研究.成都理工学院学报,2001,28(3):221-230.
    [76]刘增乾,徐宪,潘桂棠,等.青藏高原大地构造与形成演化.北京:地质出版社,1990,20-34.
    [77]卢占武,高锐,李秋生.中国青藏高原深部地球物理探测与地球动力学研究.地球物理学报,2006(6):753-770.
    [78]罗志立,龙学明.龙门山造山带的崛起和川西陆前盆地的沉降,见:龙门山造山带的崛起和四川盆地的形成与演化.成都:成都科技大学出版社,204-210.
    [79]马晓冰,孔祥儒,刘宏兵,等.青藏高原东北部地区地壳电性结构特征.地球物理学报,2005,48(3):689-697.
    [80]马永生,陈跃昆,苏树桉.川西北松潘-阿坝地区油气勘探进展与初步评价.地质通报,2006,25(9-10):1045-1049.
    [81]孙洁,晋光文,白登海,等.青藏高原东缘地壳上地幔电性结构探测及其构造意义.中国科学(D辑),2003,33(增刊):173-180.
    [82]谭捍东,姜枚,吴良士,等.青藏高原电性结构及其对岩石圈研究的意义.中国地质,2006,33(4):906-911.
    [83]汤吉,詹艳,赵国泽,等.青藏高原东北部玛沁-兰州-靖边剖面地壳上地幔电性结构研究.地球物理学报,2005,48(5):1206-1216.
    [84]滕吉文,熊熊.青藏高原东缘地壳运动与深部过程的研究.地球物理学报,2002,45(4):507-515.
    [85]王成善,张哨楠.青藏高原含油气盆地分析及油气资源预测.地球科学:中国地质大学学报,1996,21(2):120-129.
    [86]王椿镛,吴建平,楼海.青藏高原东部壳幔速度结构和地幔变形场的研究.地学前缘,2006,13(5):349-359.
    [87]王二七,孟庆任,陈智樑,等.龙门山断裂带印支期左旋走滑运动及其大地构造成因.地学前缘,2001,8(2):375-384.
    [88]王家林.对我国石油重磁勘探发展的几点思考.勘探地球物理进展,2006,29(2):82-86.
    [89]王家映.大地电磁拟地震解释法.北京:石油工业出版社,1995.
    [90]王立凤,晋光文,孙洁等.一种简单的大地电磁阻抗张量畸变分解方法.西北地震学报,2001,(02)
    [91]王绪本,贾进斗,等.松潘-利川-邵阳地质地球物理大剖面综合研究报告.2000.
    [92]魏文博,金胜,叶高峰,等.藏北高原地壳及上地幔导电性结构-超宽频带大地电磁测深研究结果.地球物理学报,2006,49(4):1215-1225.
    [93]魏文博.我国大地电磁测深新进展及瞻望.地球物理学进展,2002,17(2):245-254.
    [94]熊熊,傅容珊,滕吉文,等.青藏高原的地幔动力学研究.地球科学进展,2005,20(9),970-979.
    [95]许志琴,侯立玮,王宗秀,等.中国松潘-甘孜造山带的造山过程.北京:地质出版社,1992,1-190.
    [96]许志琴.“西康式”褶皱及其变形机制-一种新的造山带褶皱类型.地质论评,1991,1.
    [97]杨逢清,殷鸿福,旭龙.甘孜地块与秦岭褶皱带、扬子地台的关系及其发展史.地质学报,1994,68(3):208-218.
    [98]于鹏,王家林,吴健生,等.大地电磁场成像方法综述与新进展.地球物理学进展,2003,18(1):53-58.
    [99]袁学诚.秦岭岩石圈速度结构与蘑菇云构造模型.中国科学(D辑),1996,26(3):209-215.
    [100]詹艳,赵国泽,王继军,汤吉,等.青藏高原东北缘海原弧形构造区地壳电性结构探测研究.地震学报,2005,27(4):431-440.
    [101]张国伟,等.秦岭造山带与大陆动力学.北京:科学出版社,2001,1-855.
    [102]张国伟,郭安林,姚安平.中国大陆构造中的西秦岭-松潘大陆构造结.地学前缘,2004,11(3):23-32.
    [103]张洪荣.川西北龙门山-邛崃山地壳-上地幔的结构构造特征.四川地质学报,1990,10(2):73-84.
    [104]赵国泽,汤吉,詹艳,等.青藏高原东北缘地壳电性结构和地块变形关系的研究,中国科学(D辑),2004,34(10):908-918.
    [105]赵友年,赖祥符,俞如龙.龙门山推覆构造之初步研究.四川地质学报,1985,12-17.
    [106]陈小斌,胡文宝.应用有限元直接迭代法进行频域中的线源二维电磁场模拟[J].地球物理学报, 2002 ,42 :119-130.
    [107]陈小斌,赵国泽,汤吉,詹艳,王继军.大地电磁自适应正则化反演算法.地球物学报. Vol. 48, No. 4, July, 2005.
    [108]陈晓光,金亚秋,聂在平.轴对称有耗介质电磁问题的时域有限元方法.地球物理学报, 1999 , 42(2) :268—276.
    [109]邓晓红.定回线源瞬变电磁三维异常特征反演.物探化探计算技术,2007.29(增刊).
    [110]底青云,Martyn Unsworth,王妙月.复杂介质有限元法2.5维可控源音频大地电磁法数值模拟. Vol. 47, No. 4, July, 2004.
    [111]戴世坤,徐世浙. MT二维和三维连续介质快速反演.石油地球物理勘探. Vol.32, No.3, June, 1997.
    [112]胡祖志,胡祥云,何展翔.大地电磁非线性共轭梯度拟三维反演.地球物理学报. Vol. 49, No. 4, Jul., 2006.
    [113]金胜汶,陈必远,马在田.三维波动方程有限差分正演方法.地球物理学报,1994 , 37(6) :804—810.
    [114]鲁来玉,张碧星,鲍光淑.电阻率随位置线性变化时的三维大地电磁模拟.地球物理学报. Vol. 46, No. 4, July, 2003.
    [115]罗延钟,昌彦君. G-S变换的快速算法.地球物理学报,2000,43(5):684~690.
    [116]罗延钟,孟永良.关于用有限单元法对二维构造作电阻率模拟的几个问题[J].地球物理学报,1986,29(6):613.
    [117]吕国印.瞬变电磁法二维逆时偏移.物探与化探. Vol. 22, No. 2, Apr., 1998
    [118]毛立峰,王绪本,高永才.大地电磁概率成像及其改进方法的成像效果评价.石油物探. Vol.43, No. 6, Nov., 2004.
    [119]毛立峰,王绪本,高永才.大地电磁概率成像的效果评价.地球物理学报. Vol. 48, No. 2, Mar., 2005.
    [120]阮百尧,徐世浙,徐志锋.三维地形大地电磁场的边界元模拟方法.地球科学——中国地质大学学报. V0l.32 No.1, Jan., 2007.
    [121]师学明,王家映,张胜业等.多尺度逐次逼近遗传算法反演大地电磁资料.地球物理学报, 2000, 43 (1) :122~130.
    [122]谭捍东,余钦范,John Booker,魏文博.大地电磁法三维交错采样有限差分数值模拟.地球物理学报. Vol. 46, No.5. Sep., 2003.
    [123]汤井田,任政勇,化希瑞.任意地球物理模型的三角形和四面体有限单元剖分.地球物理学进展. Vol. 21, No. 4, Dec., 2006.
    [124]王华军,罗延钟.中心回线瞬变电磁2.5维有限单元算法.地球物理学报,2003 ,46 (6) :855~862;
    [125]王绪本,毛立峰,高永才.电磁导数场概率成像方法研究.成都理工大学学报(自然科学版). Vol. 31 No. 6, Dec. 2004.
    [126]王绪本,姜彦南,毛立峰等.大地电磁概率成像初步研究[J].物探化探计算技术, 2002, 24 (增刊) : 64 -69.
    [127]吴小平,徐果明.大地电磁数据的OCCAM反演改进.地球物理学报, 1998 , 41(4) :547~554.
    [128]熊彬.关于瞬变电磁法2.5维正演中的几个问题.物探化探计算技术. 2005年5月.
    [129]熊彬,罗延钟.电导率分块均匀的瞬变电磁2.5维有限元数值模拟.地球物理学报,2006,49(2):590~597.
    [130]徐义贤,王家映.二维MT多尺度反演中的自适应网格算法.石油物探. Vol.37, No.4.
    [131]严良俊,胡文宝.大地电磁测深资料的二次函数逼近非线性反演.地球物理学报, 2004, 47(5) :935~940.
    [132]闫述,陈明生,傅君眉.瞬变电磁场的直接时域数值分析.地球物理学报,2002,45 (2):275~284;
    [133]杨长福,林长佑,陈军营,王书明,张世中.三维瞬变电磁近似反演.地震学报,2000,Vol. 22, No.4.
    [134]殷长春,刘斌.瞬变电磁法三维问题正演及激电效应特征研究.地球物理学报,1994 ,37(增Ⅰ):486—492.
    [135]于鹏,王家林,吴健生,陈冰.大地电磁偏移成像技术的研究进展及其解决复杂地质问题的能力.地震地质. Vol. 23 No. 2, June, 2001.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700