地下热水钙华沉积的水化学影响因素和热水钙华微层的气候环境指示意义
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
热水钙华沉积的水化学条件是钙华沉积的基础。为了更好地理解影响钙华(尤其是热水钙华)沉积的控制因素,选择我国广西、云南、天津、西藏等水热活动区的23个温泉水样,其中18个温泉沉积钙华,其余则不沉积钙华,对它们进行了水化学指标包括温度、pH值、总溶解性固体(TDS)、Ca~(2+)、Mg~(2+)、Na~+、K~+、HCO_3~-、SO_4~(2-)等含量, Ca~(2+)及HCO_3~-当量和百分含量、Mg/Ca比值等的分析。结果显示,研究区沉积钙华的温泉的水温变化较大;二氧化碳分压(PC O2
     )高,平均值10-1.29atm; TDS大多在1–3g/L左右;且方解石饱和指数(SIc)和文石饱和指数(SI_a)都达到了饱和状态。其HCO_3~-含量较高,绝大部分大于470mg/L,HCO_3百分含量接近或大于30%。当泉水Ca~(2+)与HCO3的当量接近或很好匹配时,最易发生钙华沉积。
     对天津王四井一个沉积近30年(1978-2006年)的层状钙华剖面的高分辨率微量元素(Mg, Sr, Ba等)和稳定同位素(δ~(13)C、δ~(18)O)的研究发现,Sr、Ba显示非常高的正相关性,它们与Mg有很好的负相关关系。钙华微层的δ~(13)C和δ~(18)O的变化具有同步性。钙华δ~(13)C及Mg/Ca与微层物理特征(厚度、颜色、结晶程度)有一定关联,且与气温变化有关。当钙华微层为厚的褐色疏松层,且其具有低的Mg/Ca值和高的δ~(13)C,δ~(18)O值时,反映冷干的气候条件;反之,当钙华微层为薄的乳白色致密层,且其具有高的Mg/Ca值和低的δ~(13)C、δ~(18)O值时,反映了暖湿的气候条件。
     对西藏绒玛温泉区的9个钙华样品进行了铀系法测年,样品铀含量较高,达到0.298-1.363ppm,~(234)U/~(238)U比值为1.475-1.700。铀系法测得的钙华锥年龄11500-4600a落在了海相氧稳定同位素的最暖湿的第1阶段(MIS1)及葫芦洞石笋、古里亚冰芯高分辨率δ~(18)O记录的高峰值阶段,结合同一时期高的湖水位、轮藻类植物的繁荣及青藏高原受到强烈夏季季风的影响,暗示了钙华沉积与温暖、湿润的气候有关。绒玛温泉高精度热水钙华年龄数据建立了研究区连续、可靠的时间标尺,提供了热水钙华测年研究的年龄资料,对其重建陆地古环境和古水文的研究具有重要意义。
Hydrochemical control factors of travetine precipitation is the basic condition forthe deposition of travertine. In order to better understand the impact of travertinedeposition control factors, water samples of23hot spring collecting from thehydrothermal activities areaes of Guangxi, Yunnan, Tianjin and Tibet of China.Around18hot springs have travertine deposition, and the rest have no travertinedeposition. We analized temperature, pH, TDS, contents of Ca~(2+), HCO_3~-, Mg~(2+), Na~+,K~+and SO2-4, percentage content of Ca~(2+)and HCO_3~-, and Mg/Ca ratios of these springs.Hot springs with deposition of travertines have a wide temperature range and higherP1.29C O2
     , the average was10-atm, variation range of TDS in most springs are from1to3g/L, and calcite saturation indices (SIc) and aragonite saturation indices (SIa) aresaturated. At the same time, contents of HCO_3~-are very high, of which the vastmajority are greater than470mg/L. when percentage content of the HCO_3~-close toor greater than30%of the anions total, and equivalent of Ca~(2+)and HCO_3~-have a verygood match with each other, springs are most probably proned to deposite travertines.
     We present a continuous about30-year-long (1978to2006) high-resolutionrecord of trace element (Mg, Sr, Ba) and stable isotope (δ~(13)C, δ~(18)O) variations in amodern laminated travertine from Wangsi Well, Tianjing. Sr and Ba along thetravertine section show high-positive correlation, which have a good negativecorrelation with Mg. Sympathetic variations in δ~(13)C and δ~(18)O of travertine werediscovered. Variations of δ~(13)C and Mg/Ca are involved in physical characteristics(thickness, color, crystallinity) of the laminated travertine, and they relate to climatechanges. When travertine micro-layer is a thick, brown, loose layer, and which have alow Mg/Ca ratios and high values of the δ~(13)C and δ~(18)O, reflecting the cold and dryclimate conditions; Conversely, when the travertine micro-layer is a thin milky denselayer, and have a high Mg/Ca ratios and low values of the δ~(13)C and δ~(18)O, reflectingthe warm and humid climatic conditions.
     U-series dating of9travertine samples depositing near Rongma hot springs inthe northern Tibet was used. The results show that the U contents of the travertinesamples are as high as0.298-1.363ppm, and variation range of the234U/238U are from1.475to1.700. The uranium-series ages of the travertine samples range from11,500to4,600a, falling within the first stage of the warmest period of the marine oxygenstable isotope (MIS1), high-resolution δ~(18)O values record of the speleothems in Hulu Cave and Guliya Ice core, respectively, reflecting a warm and wet period duringthe deposition of the travertines in the study area. Combination of the high water levelof the lake and the prosperous Charophyta flora at the Taicuo ancient lake of Tibetand strong summer monsoon influence imply a warm and wet climate during the sameperiod. High-resolution hot spring travertine dating establishs a continuous, reliabletime scale of the study area. It is significance for the reconstruction of paleoclimateand palaeohydrology in the study area.
引文
Aitken, M.J. Optical Dating. Quaternary Seience Reviews,1992,11:127-131.
    Auler, A.S., Smart, P.L. Late Quaternary paleoclimate in semiarid northeastern Brazil fromU-series dating of travertine and water-table speleothems. Quaternary Research,2001,55:159-167.
    Avouac, J.P., Dobrernez, J.F., Bourjot, L. Palaeoclimatic interpretation of a topographic profileacross middle Holocene regressive shorelines of Longmu Co (Western Tibet).Palaeogeography, Palaeoclimatology, Palaeoecology,1996,120:93-104.
    Barefoot, R.R. Determination of platinum group elements and gold in geological materials: areview of recent magnetic sector and laser ablation applications. Analytica Chimica Acta,2004,509:119-125.
    Bayari, C.S. Arare landform: Yerk prü travertine bridges in the Taurids karst range, Turkey. EarthSurface Processes and Landforms,2002,27:577-590.
    Bertini, A., Minissale, A., Ricci, M. Use of Quaternary travertines of central-southern Italy asarchives of paleoclimate, paleohydrology and neotectonics-Il Quternario,2008,21(1B):99-112.
    Bischoff, J.L., Julia, R., Mora, R. Uranium-series dating of the Mousterian occupation atAbric-Romani, Spain. Nature,1988,332:68-70.
    Bischoff, J.L., Fitzpatrick, J.A. U-Series dating of impure carbonates: an isochron technique usingtotal-sample dissolution. Geochimica et Cosmochimica Acta,1991,55:543-554.
    Bischoff, J., Ludwig, K., Garcia, J.F., et al. Dating of the Basal Aurignacian Sandwich at AbricRomaní (Catalunya, Spain) by radiocarbon and uranium-series. Journal of ArchaeologicalScience,1994,21:541-551.
    Breeker, W.S.. Radiocarbon measurement and annual rings in cave formations. Nazure,1960,185:93-94.
    Brogi, A., Capezzuoli, E. Travertine deposition and faulting: the fault-related travertinefissure-ridge at Terme S. Giovanni, Rapolano Terme (Italy). International Journal of EarthSciences,2009,98:931-947.
    Caran, S.C., Winsborough, B.M., Valastro Jr., S., et al. Radiocarbon chronology of carbonatedeposits-reliable dating using organic residues. Abstracts with Programs. Geological Societyof America,2001,33(6):254.
    Chafetz, H.S., Folk, R.L. Travertines: depositional morphology and the bacterially constructedconstituents. Journal of Sedimentary Petrology,1984,54:289-316.
    Chafetz H. S., Utech N. M., Fitzmaurice S. P. Differences in the δ18O andδ13C signatures ofseasonal laminae comprising travertine stromatolites. Journal of Sedimentary Petrology,1991,61:1015-1028.
    Chen, J.H., Edwards, R.L., Wasserburg, G.J. Earth and Planetary Science Letters,1986,80:241-251.
    Clark, I.D. and Fontes, J.-Ch.. Palaeoclimatic reconstruction in northern Oman based oncarbonates from hypersaline groundwaters. Quaternary Research,1990,33:320-336.
    Dilsiz, C., Marques, J.M., Carreira, P.M.M. The impact of hydrological changes on travertinedeposits related to thermal springs in the Pamukkale area (SW Turkey). EnvironmentalGeology,2004,45(6):808-817.
    Dilsiz, C. Conceptual hydrodynamic model of the Pamukkale hydrothermal field, southwesternTurkey, based on hydrochemical and isotopic data. Hydrogeology Journal,2006,14(4):562-572.
    Dramis, F., Materazzi, M., Cilla, G. Influence of climatic changes on freshwater travertinedeposition: a new hypothesis. Physics and Chemistry of the Earth (A),1999,24:893-897.
    Edwards, R.L., Chen, J.H., Wasserburg, G.J. Earth Planet Sci Lett,1986/87,81:175-192.
    Engin, B., Güven, O., K ksal F. Electron spin resonance age determination of a travertine samplefrom the southwestern part of Turkey. Applied Radiation and Isotopes,1999,51:689-699.
    Engin, B., Güven, O. Thermoluminescence dating of Denizli travertines from the southwesternpart of Turkey. Applied Radiation and Isotopes,1997,48(9):1257-1264.
    Faccenna, C., Soligo, M., Billi, A., et al. Late Pleistocene depositional cycles of the LapisTiburtinus travertine (Tivoli, Central Italy): possible influence of climate and fault activity.Global and Planetary Change,2008,63:299-308.
    Fairchild, I.J., Smith, C.L., Baker, A., et al. Modification and preservation of environmentalsignals in speleothems. Earth Science Reviews,2006,75:105-153.
    Ford, T. D., Pedley, H. M. A review of tufa and travertine deposits of the world. Earth ScienceReview,1996,41:117-175.
    Fouke, B.W., Farmer, J.D., Des Marais, D.J., et al. Depositional facies and aqueous-solidgeochemistry of travertine depositing hot springs (Angel Terrace, Mammoth Hot Springs,Yellowstone National Park, U.S.A). Journal of Sedimentary Research,2000,70:565-585.
    Fontes, J.C., Gasse, F., Gibert, E. Holocene environmental changes in Lake Bangong basin(Western Tibet). Part1: chronology and stable isotopes of carbonates of a Holocene lacustrinecore. Palaeogeography, Palaeoclimatology, Palaeoecology,1996,120:25-47.
    Friedman, I. Some investigations on the deposition of travertine from Hot Springs-I. The isotopicchemistry of a travertine-depositing spring. Geochimica et Cosmochimica Acta,1970,34:1303-1315.
    Gabler, H.E. Applications of magnetic sector ICP-MS in geochemistry. Journal of Geochemical.Exploration,2002,75:1-15.
    Garnetta, E.R., Gilmour, M.A., Rowe, P.J., et al.230Th/234U dating of Holocene tufas possibilitiesand problems. Quaternary Science Reviews,2004,23.
    Gasse, F., Arnold, M., Fontes, J.C., et al. A13,000-year climate record from western Tibet. Nature,1991,353:742-745.
    Goudie, A.S., Viles, H.A., Pentecost, A. The late-Holocene tufa decline in Europe. The Holocene,1993,3:181-186.
    Grün, R., Schwarcz, H.P., Zymela, S. Electron-spin-resonance dating of tooth enamel. CanadianJournal of Earth Sciences,1987,24(5):1022-1037.
    Grün, R., Schwarcz, H.P., Ford, D.C., Hentzsch, B. ESR dating of spring deposited travertines.Quaternary Science Reviews,1988,7:429-432.
    Grün, R., Stringer, C.B. Electron spin resonance dating and the evolution of modern humans.Archaeometry,1991,33(2):153-199.
    Hancock, P.L., Chalmers, R.M.L., Altunel, E., et al. Travitonics: using travertines in active faultstudies, Journal of Structural Geology,1999,21:903-916.
    Hall, B.L., Henderson, G.M. Use of uranium-thorium dating to determine past14C reservoireffects in lakes: examples from Antarctica. Earth and Planetary Science Letters,2001,193:565-577.
    Harmon, R.S., Azek, G.J., Nowak, K.230Th/234U dating of travertine from the Bilzingslebenarchaeological site. Nature,1980,284:132-135.
    Hearty, P.J., Miller, G.H., Stearns, C.E., et al. Aminostratigraphy of Quaternary shorelines in theMediterranean Basin. Bulletin of the Geological Society ofAmerica,1986,97:850-858.
    Herman, J.S., Lorah,M.M. CO2outgassing and calcite precipitation in Falling Spring Creek,Virginia. U.S.A. Chemical Geology,1987,62:251-262.
    Herczeg, A.L., Chapman, A. Uranium-series dating of lake and dune deposits in southeasternAustralia: a reconnaissance. Palaeogeography, Palaeoclimatology, Palaeoecology,1991,84:285-298.
    Hinrichs, J., Schnetger, B. A fast method for the simultaneous determination of230Th,234U and235U with isotope dilution sector field ICP-MS. Analyst,1999,124:927-932.
    Huntley, D.J., Godfreysmith, D. I., Thewalt, M.L.W. Optical Dating of Sediments. Nature,1985,313:105-107.
    Huang, Y.-M., Fairchild, I.J. Partitioning of Sr2+and Mg2+into calcite under karst-analogueexperimental conditions. Geochimica et Cosmochimica Acta,2001,65:47-62.
    Ihlenfeld, C., Norman, M.D., Gagan, M.K., et al. Climatic significance of seasonal trace elementand stable isotope variations in a modern freshwater tufa. Geochimica et Cosmochimica Acta,2003,67:2341-2357.
    Irion, G., Muller, G. Mineralogy, petrology and chemical composition of some calcareous tufafrom the schnabische Alb, Germany. In: Muller G. Friedman G M. eds. Recent developmentsof carbonate sedimentology in central Europe. New Yoek: Springer Verlag,1968:157-71.
    Ivanovich, M., Warchal, R.M. Report on the second uranium-series intercomparison projectworkshop, Harwell23to24June1980-81, AERE-R10044.
    Ivanovich, M., Latham, A.G., Ku, T.L. Uranium-Series disequilibrium applications ingeocheonology. In: Uranium-Series Disequilibrium: Application to Earth, Marine andEnvironmental Sciences (Second Edition). Oxford: Calrendon Press,1992,63-94.
    Libby, W.F. Radiocarbon Datin. Chicago: The University of Chicago Press,1952.
    Linares, R., Rosell, J., Roque, C., et al. Origin and evolution of tufa mounds related to artesiankarstic springs in Isona area (Pyrenees, NE Spain). Geodynamica Acta,2010,23(1-3):129-150.
    Luo, S.D., Ku, T.L. U-series isochron dating: A generalized method employing total-sampledissolution. Geochimica et Cosmochimica Acta,1991,55:555-564.
    Luo, X., Rehkamper, M., Lee, D.C., et al. High precision230Th/232Th and234U/238U measurementsusing energy-filtered ICP magnetic sector multiple collector mass spectrometry. Int. J. MassSpectrom. Ion Processess,1997,171:105-117.
    Jones, B., Renaut, R.W. Noncrystallographic dendrites from hot-spring deposits at Lake Bogoria,Kenya. Journal of Sedimentary Research,1995,65:154-216.
    .Kano, A., Matsuoka, J., Kojo, T., et al. Origin of annual laminations in tufa deposits, southwestJapan. Palaeogeography, Palaeoclimatology, Palaeoecology,2003,191:243-262.
    Kano, A., Kawai, T., Matsuoka, J., et al. High-resolution records of rainfall events from clay bandsin tufa. Geology,2004,32:793-796.
    Kaufman, A., Broecker, W.S. Comparison of230Th and14C ages for carbonate materials from lateLahontan and Bonneville. Journal of Geophysical Research,1965,70:4039-4054.
    Kaufman, A. An evaluation of several methods for determining230Th/U ages in impure carbonates.Geochimica et Cosmochimica Acta,1993,57:2303-2317.
    Lao, Y., Benson, L.V. Uranium-series age estimates and paleoclimatic significance of Pleistocenetufas from the Lahontan Basin, California and Nevada. Quaternary Research (New York),1988,30(2):165-176.
    Li, Y., Wang, Y., Deng, A. Paleoclimate record and paleohydrogeological analysis of travertineform the Niangziguan Karst Springs, northern China. Science in China (series E),2001,44.
    Liu, Z., Zhang, M., Li, Q., et al. Hydrochemical and isotope characteristics of spring water andtravertine in the Baishuitai area (SW China) and their meaning for paleoenvironmentalreconstruction. Environmental Geology,2003,44(6):698-704.
    Liu, Z., Sun, H., Lu, B., et al. Wet-dry seasonal variations of hydrochemistry and carbonateprecipitation rates in a travertine-depositing canal at Baishuitai, Yunnan, SW China:Implications for the formation of biannual laminae in travertine and for climaticreconstruction. Chemical Geology,2010,273:258-266.
    Mallick, R., Frank, N. A new technique for precise uranium-series dating of travertinemicro-samples. Geochimica et Cosmochimica Acta,2002,66:4261-4272.
    Martina, M., Robert, R. Cynobaterial tufa calcificationg in two freshwater streams: ambientenvironment, chemical thresholds and biological processes. Sedimentary Geology,1999,126:103-124.
    Matuoska, J., Kano, A., Oba, T., et al. Seasonal variation of stable isotopic compositions recordedin a laminated tufa, SW Japan. Earth and Planetary Science Letters,2001,192:31-44.
    Martinson, D.G., Pisias, N.G., Hays, J.D., et al. Age dating and the orbital theory of the ice ages:development of a high-resolution0to300,000-year chronostratigraphy. Quaternary Research,1987,27:1-29.
    Mercier, N., Valladas, H., Valladas, G., et al. TL dates of burnt flints from Jelinek’s excavations atTabun and their implications. Journal ofArchaeological Science,1995,22:495-509.
    Mucci, A., Morse, J.W. The incorporation of Mg2+and Sr2+into calcite overgrowths: Influences ofgrowth rate and solution composition. Geochimica et Cosmochimica Acta,1983,47:217-233.
    Nishikawa, O., Furuhashi, K., Masuyama, M., et al. Radiocarbon dating of residual organic matterin travertine formed along the Yumoto Fault in Oga Peninsula, northeast Japan: Implicationsfor long-term hot spring activity under the influence of earthquakes. Sedimentary Geology,2012,243-244:181-190.
    Ortiz, J.E., Torres, T., Delgado, A., et al. A review of the Tagus river tufa deposits (central Spain):age and palaeoenvironmental record. Quaternary Science Reviews,2009,28:947-963.
    Pazdur, A., Pazdur, M.F., Szulc, J. Radiocarbon dating of Holocene calcareous tufa in SouthernPoland. Radiocarbon,1988,30:133-151.
    Pedley, H.M. Classification and environmental models of cool freshwater tufas. SedimentaryGeology,1990,68:143-154.
    Pentecost, A. British travertines: a review. Proceedings of the Geologists' Association,1993,104:23-39.
    Pentecost, A., Viles, H. A Review and Reassessment of Travertine Classification. Géographiephysique et Quaternaire,1994,48:305-314.
    Pentecost, A. The quaternary travertine deposits of Europe and Asia minor. Quaternary ScienceReviews,1995,14:1005-1028.
    Pentecost, A.. Travertine. Heidelberg: Springer-Verlag Berlin.2005.
    Peng, Z.C., Liu,W.G., Zhang, P.X., et al. Precise timing of lacustrine gypsum in Luobubo, Xinjiangusing the thermal ionizationmass spectrometry U-series method. Chinese Science Bulletin,2001,46(18):1538-1541.
    Petit, J. R., Jouzel, J., Raynaud D., et al. Climate and atmospheric history of the past420,000years from the Vostok ice core, Antarctica. Nature,1999,399:429-436.
    Pingitore, N.E., Eastman, M.P. The coprecipitation of Sr2+with calcite at25°C and1atm.Geochimica et Cosmochimica Acta,1986,50:2195-2203.
    Rainey, D.K., Jones, B. Preferential soft-tissue preservation in the Hot Creek carbonate springdeposit, British Columbia, Canada. Sedimentary Geology,2010,227:20-36.
    Rihs, S., Condomines, M. Long-term behaviour of continental hydrothermal systems: U-seriesstudy of hydrothermal carbonates from the French Massif Central (Allier Valley).Geochimica et Cosmochimica Acta,2000,64(18):3189-3199.
    Rink, W.J. Electron spin resonance (ESR) dating and ESR applications in Quaternary science andarchaeometry. Radiation Measurements,1997,27:975-1025.
    Rink, W.J. Beyond the range of14C dating: A practical user’s guide. In Goldberg, P., Ferring, R.,Haynes, V.,(Eds.), Earth sciences and archaeology. New York: Plenum Press.2000.
    Schwarcz, H.P. Absolute age determination of archaeological sites by uranium series dating oftravertines. Archaeometry,1980,22:3-24.
    Schwarcz, H.P., Latham, A.G.. Dirty Calcites,1. Uranium series dating of contaminated calcitesusing leachates alone. Isotope Geoscience,1989,80:35-43.
    Schwarcz, H.P., Buhay, W., Grün, R., et al. Absolute dating of sites in coastal Lazio. QuaternariaNuova,1991,1:51-67.
    Schwarcz, H.P., Rink, W.J. Skinflint dating. Quaternary Geochronology.2001.
    Schwarcz, H.P., Rink, W.J. Dating Methods for Sediments of Caves and Rockshelters withExamples from the Mediterranean Region. Geoarchaeology: An International Journal,2001,16(4):355-371.
    Sierralta, M., Kele, S., Melcher, F., et al. Uranium-series dating of travertine from Süttó:Implications for reconstruction of environmental change in Hungary. QuaternaryInternational,2010,222:178-193.
    Sirocko, F., Sarnthein, M., Erlenkeuser, H., et al. Century-scale events in monsoonal climate overthe past24,000years. Nature,1993,364:322-324.
    Soligo, M., Tuccimei, P., Barberi, R., et al. U/Th dating of freshwater travertine from MiddleVelino Valley (Central Italy): paleoclimatic and geological implications. Palaeogeography,Palaeoclimatology, Palaeoecology,2002,184:147-161.
    Sorey, M.L., Colvard, E.M. Hydrologic investigations in the mammoth corridor, yellowstonenational park and vicinity, U.S.A. Geothermics,1997,26(2):221-249.
    Srdo, D., Horvatin i, N., Obeli, B., Sliep evi, A. Radiocarbon dating of tufa in palaeoclimaticstudies. Radiocarbon,1983,25:421-428.
    Srdo, D., Horvatin i, N., Obeli, B., et al. The effects of contamination of calcareous sedimentson their radiocarbon ages. Radiocarbon,1986,28:510-514.
    Srdo, D., Osmond, J., Horvatin i, N., et al. Radiocarbon and uranium-series dating of thePlitvice Lakes travertines. Radiocarbon,1994,36:203-219.
    Sturchio, N.C., Pierce, K.L., Murrell, M.T., et al. Uranium-series ages of travertines and timing ofthe last glaciation in the northern Yellowstone area, Wyoming-Montana. Quaternary Research,1994,41:265-277.
    Stirling, C.H., Lee, D-C, Christensen, J.N., et al. High-precision in situ238U-234U-230Th isotopicanalysis using laser ablation multiple-collector ICPMS. Geochimica et Cosmochimica Acta,2000,64(21):3737-3750.
    Sun, H., Liu. Z. Wet-dry seasonal and spatial variations in the δ13C andδ18O values of themodern endogenic travertine at Baishuitai, Yunnan, SW China and their paleoclimatic andpaleoenvironmental implications. Geochimica et Cosmochimica Acta,2010,74:1016-1029.
    Torres, T., Ortiz, J.E., García, M.A., et al. Ostracode-based aminostratigraphy andaminochronology of a tufa system in central Spain. Quaternary International,2005,135:21-33.
    Tesoriero, A.J., Pankow, J.F. Solid solution partitioning of Sr2+, Ba2+and Cd2+into calcite.Geochimica et Cosmochimica Acta,1996,60:1053-1063.
    Uysal, I.T., Feng, Y., Zhao, J., et al. U-Series dating and geochemical tracing of late Quaternarytravertine in co-seismic fissures. Earth and Planetary Science Letters,2007,257:450-462.
    Uysal, I.T., Feng, Y.X., Zhao J.X., et al. Hydrothermal CO2degassing in seismically active zonesduring the late Quaternary. Chemical Geology,2009,265:442-454.
    Vancampo, E., Gasse, F. Pollen-inferred and diatom-inferred climatic and hydrological changes inSumxi Co Basin (western Tibet) since13,000yr BP. Quaternary Research,1993,39:300-313.
    Wang, Y.J., Cheng, H., Edwards, R.L., et al. High-resolution absolute-dated Late Pleistocenemonsoon record from Hulu Cave. China. Science,2001,294:2345-2348.
    Wang, Y. J., Cheng, H., Edwards, R. L., et al. Millennial-and orbital-scale changes in the EastAsian monsoon over the past224,000years. Nature,2008,48:1090-1093.
    Wagner, G.A.. Age Determination of Young Rocks and Artifacts: Physical and Chemical Clocks inQuaternary Geology and Archaeology. Springer.-Verlag, Berlin.1998.
    Wintle, A.G.. Recent Developments in Optical Dating of Sediments. Radiation ProtectionDosimetry,1993,47:627-635.
    Zak, K., Lozek, V., Kadlec, J., et al. Climate-induced changes in Holocene calcareous tufaformations, Bohemian Karst, Czech Republic. Quaternary International,2002,91:137-152.
    Zentmyer, R., Myrow, P.M., Newell, D.L. Travertine deposits from along the South Tibetan FaultSystem near Nyalam, Tibet. Geological Magazine,2008,145(6):753-765.
    Zhang, D.D., Li, S.H. Optical dating of Tibetan human hand-and footprints: An implication forthe palaeoenvironment of the last glaciation of the Tibetan Plateau. Geophysical ResearchLetters,2002,29(5):1072.
    蔡演军, Cheng H.,安芷生,等.洞穴碳酸盐230Th-234U-238U测年初始钍校正的等时线研究.地球科学进展,2005,20(4):414-420.
    陈以健,高钧成,冯锦江,等.藏南的水热活动历史初探.水文地质工程地质,1992,19(5):18-21.
    程海.铀系年代学新进展ICP-MS230Th测年.第四纪研究,2002,22(3):292.
    樊启顺,赖忠平,刘向军,等.晚第四纪柴达木盆地东部古湖泊高湖面光释光年代学.地质学报,2010,84(11):1652-1660.
    方斌,杨运军,王根厚,等.藏北羌塘中部吉瓦地热田的特征及其资源评价.地质通报,2009,28(9):1335-1341.
    方斌.西藏羌塘高原绒玛地区水热活动及其演化研究[博士学位论文].北京:中国地质大学(北京),2012.
    冯金良,崔之久,张威,等.云贵高原碳酸盐岩风化壳的古地磁定年探讨.中国岩溶,2003,22(3):178-190.
    高宝珠,黎雪梅,等.天津市宝坻区附近地热资源普查报告.2008.
    高润祥,司鹏,等.近50年天津地区局地气侯变化特征分析.气候与环境研究,2011,16(2):159-168.
    郭小娟.钙华沉积的水化学控制因素分析及天津王四井钙华形成的模拟研究[硕士学位论文].北京:中国地质大学(北京),2011.
    李红春,顾德隆, Lowel D.S.,等.高分辨率洞穴石笋稳定同位素应用之一:京津地区500a来的气候变化.中国科学(D辑),1998,28(2):181-186.
    李振清,西藏高原碰撞造山过程中的现代热水活动[博士学位论文].北京:中国地质科学院,2002,19-20.
    李华举,廖长君,姜殿强,等.钙华沉积机制的研究现状及展望.中国岩溶,2006,25(1):57-62.
    李华举.钙华年层的形成及气候环境因素控制研究[硕士学位论文].广西师范大学,2006.
    廖长君.钙华沉积的生物效应[硕士学位论文].广西师范大学,2006.
    刘德义,傅宁,等.近20年天津地区植被变化及其对气候变化的响应.生态环境,2008,17(2):479-486.
    刘海生,侯胜利,方念乔,等.东北印度洋沉积岩芯热释光与古气候变化.气候与环境研究.2008,13(1):45-52.
    刘俊英,王海雷.西藏台错古湖晚第四纪轮藻类及其生态环境–气候变化探讨微体古生物学报,2011,28:261-283.
    刘星.云南石林地区钙华的ESR测年及其地质意义.中国岩溶,1998,17(1):9-14.
    刘再华,袁道先,何师意,等.地热CO2–水–碳酸盐岩系统的地球化学特征及其CO2来源.中国科学(D辑),2000,30(2):209-214.
    刘再华,游省易,李强,等.云南白水台钙华景区的水化学和碳氧同位素特征及其在古环境重建研究中的意义.第四纪研究,2002a,22(5):459-467.
    刘再华, Dreybrodt, W.方解石沉积速率控制的物理化学机制及其古环境重建意义.中国岩溶,2002b,21(4):252-257.
    刘再华,林玉石,戴亚男,等.水化学和钙华碳氧稳定同位素在古环境重建中的应用-以贵州荔波小七孔景区响水河为例第四纪研究,2004,24(4):447-454.
    刘再华,李强,孙海龙,等.云南白水台钙华水池中水化学日变化及其生物控制的发现.水文地质工程地质,2005,6:10-15.
    刘再华,李红春,游镇锋,等.云南白水台现代内生钙华微层的特征及其古气候重建意义.地球学报,2006,27(5):479-486.
    刘再华, Dreybrodt, W.岩溶作用动力学与环境.北京:地质出版社.2007.
    刘再华,孙海龙,张金流.山西娘子关泉钙华记录的MIS12/11以来的气候和植被历史.地学前缘,2009,16(5):99-106.
    刘东生,谭明,秦小光,等.洞穴碳酸钙微层理在中国的首次发现及其对全球变化研究的意义.第四纪研究,1997,1:41-51.
    刘亚平.云南省昌宁县鸡飞温泉成因及钙华形成浅析[硕士学位论文].北京:中国地质大学(北京),2009.
    梁任又,彭子成.石笋样品的电子自旋共振特性研究.核技术,1999,22(10):599-603.
    施雅风,李吉均,李炳元,等.晚新生代青藏高原的隆升与东亚环境变化.地理学报,1999,54(1):10-20.
    孙海龙.现代钙华沉积的环境替代指标及其气候环境因子控制的研究–以云南白水台为例[博士学位论文].北京:中国地质科学院,2008.
    谭明,侯居峙,程海.定量重建气候历史的石笋年层方法.第四纪研究,2002,22(3):209-219.
    覃昌龙,周再勇,张家诚.西藏自治区地热资源区划.西藏地矿局地热地质大队.1986-1990:32-37.
    唐仲兴,李一兵,王小鸿,等.宝低王四井水氡高值变化的原因探讨.华北地震科学,1995,13(2):74-80.
    佟伟,张铭陶,张之非,等.西藏地热.北京:科学出版社.1981.
    佟伟,廖志杰,刘时彬,等.《西藏温泉志》北京:科学出版社.2000.
    马志邦,刘嘉麒.巴里坤湖晚第四纪沉积物铀系年龄研究.科学通报1997,42(22):2368-2375.
    马志邦,郑绵平,吴中海,等.不纯碳酸盐U-Th等时线定年及同位素分馏对年龄的影响.地质学报2010,84(8):1146-1154.
    王兆荣,黄培华,彭子成,等.石笋的ESR和U系年龄及古气候研究.地球科学—中国地质大学学报1995,20(6):677-681.
    王昌盛,陈杰,张克旗.西南天山明尧勒背斜河流阶地沉积物的光释光测年.地震地质.2005,27(4):586-598.
    吴中海,赵希涛.谷露-桑雄盆地西边界活动断裂系.见:吴珍汉,胡道功,吴中海等.青藏高原中段活动断裂及诱发地质灾害.北京:地质出版社.2005,145-161.
    邢如连,呼俊致,原思训,等. ESR法测定石笋类碳酸盐年代的研究.中国岩溶,1989,8:89-99.
    薛传东,刘星,杨浩.滇中路南石林地区钙华特征与更新世气候变迁.矿业岩石,2003,23(3):61-68.
    姚檀栋,施雅风,秦大河,等.古里雅冰芯中末次间冰期以来气候变化记录研究.中国科学(D),1997,27(5):447-452.
    闫佳贤.天津市宝坻区王四井地下热水钙华微层的成分及成因研究[硕士学位论文].北京:中国地质大学(北京),2012.
    杨妍妍.广西博白温罗温泉形成演化与钙华沉积机制研究[硕士学位论文].北京:中国地质大学(北京),2006.
    杨永江,庞海,等.天津周良庄地质构造背景和地热成因探讨.世界地质,2010,29(4):646-657.
    杨琰,袁道先,程海.高精度ICP-MS230Th测年新技术及其在贵州衙门洞Y1石笋测年研究中的应用.中国岩溶,2006,25(2):89-94.
    袁道先,覃嘉铭,林玉石,等.桂林20万年石笋高分辨率古环境重建.桂林:广西师范大学出版社,1999,1-69.
    张英俊,莫仲达.黄果树瀑布成因初探.地理学报,1982,37(3).
    张英骏,程星,祝安石.灰华沉积机制的实验研究.中国岩溶,1994,13(3):197-205.
    赵元艺,聂凤军,侯增谦,等.西藏搭格架热泉型铯矿床地质特征及形成时代.矿床地质,2006,25(3):281-291.
    赵元艺,崔玉斌,赵希涛.西藏扎布耶盐湖钙华岛钙华的地质地球化学特征及意义.地质通报,2010,124-141.
    郑绵平,王秋霞,多吉,等.水热成矿新类型-西藏铯硅华矿床.北京:地质出版社.1995.
    郑绵平,刘喜方,赵文.西藏高原盐湖的构造地球化学和生物学研究.地质学报,2007,81:1698-1708.
    周训,金晓媚,梁四海,等.地下水科学专论.北京:地质出版社.2010.
    周绪伦,李振伦.钙华洞穴的形成与保护.中国岩溶,2004,23(2):107-112.
    朱学稳,周绪伦.岷山岩溶区的灰华沉积.中国岩溶,1990,9(3):250-264.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700