环糊精星形聚合物稳定的纳米金银溶胶的合成研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米金属胶体由于具有许多本体所不具备的独特物理和化学性能,在光学、电学、磁学、催化剂、传感、生物医学等领域显示出了巨大的应用潜力。因此合成方法简便,粒径和形状可控的金属胶体粒子的制备一直是纳米材料科学中富有挑战性的课题。
     星形聚合物是由化学组成相同的多个线形支链通过化学键连接到同一个中心核上而形成的一类聚合物。近年来,星形聚合物引起了人们的广泛关注。因此,设计新的多臂星形聚合物,开发星形聚合物在材料科学上的应用仍是当前研究的热点问题。
     环糊精(β-Cyclodextrin,简称β-CD)是一个中空环状低聚糖化合物,具有腔内疏水、腔外亲水的两亲性特点。此外,β-环糊精有许多可以功能化的羟基基团,可以用来制备多臂星形聚合物。聚甲基丙烯酸二甲氨基乙酯(PDMAEMA)是一类具有温度敏感和pH敏感的聚合物,广泛用于环境保护、药物缓释和基因治疗等领域。
     设计以环糊精为核的甲基丙烯酸二甲氨基乙酯多臂星形聚合物(CD-PDMAEMA),则可以保留甲基丙烯酸二甲氨基乙酯和环糊精两种基本结构单元。这种多臂星形聚合物有望在功能方面尤其在纳米胶体的制备上获得更加有意义的结果。
     基于以上述考虑,本论文在简述纳米金属胶体和有关星形聚合物研究进展基础上,采用原子转移自由基聚合(ATRP)技术,制备了以环糊精为核的甲基丙烯酸二甲氨基乙酯星形聚合物。然后在CD-PDMAEMA存在下,室温下成功合成了纳米金银胶体,并对其形成机理进行了初步探讨。取得的主要研究结果如下:
     1、以环糊精溴化物(β-CD-Br)为引发剂、氯化亚铜(CuCl)为催化剂、邻菲罗啉(o-phcn)为配位剂、丙酮和水为溶剂,在25℃下用ATRP合成了以环糊精为核的甲基丙烯酸二甲氨基乙酯星形聚合物。并经FF-IR、~1H-NMR等手段对星形聚合物进行了结构表征。考察了不同反应时间对聚合反应的影响,GPC结果表明所得的CD-PDMAEMA的分子量随时间的增长而增大,所得聚合物的分子量分布都很窄(Mw/Mn<1.10)。
     2、以CD-PDMAEMA同时作为稳定剂和还原剂,水为溶剂,在室温下一步法合成了分散性很好、尺寸均匀、粒径大约为10 nm左右的纳米金胶体粒子,并通过UV-Vis、FT-IR、XRD、SAED、TEM和DLS等手段对其进行了分析表征。结果表明,初始溶液中N/Au原子摩尔比率和星形聚合物的初始pH值是影响纳米金胶体制备的重要因素。通过改变N/Au摩尔比率和溶液的初始pH值,可以对纳米金胶体粒子的粒径进行调控,其中初始溶液中N/Au原子摩尔比率为6:1,初始CD-PDMAEMA溶液在中性偏碱性(pH=7~11)条件下制备的纳米金溶胶较佳。
     3、以CD-PDMAEMA同时作为稳定剂和还原剂,水为溶剂,在室温下一步法合成了分散性较好、尺寸较均匀的纳米银胶体粒子,并用FT-IR,UV-Vis和TEM对其进行了表征。结果表明,初始溶液中N/Ag原子摩尔比率和星形聚合物的初始pH值是影响纳米银胶体制备的重要因素。通过改变N/Ag摩尔比率和溶液的初始pH值,可以对纳米银胶体粒子的粒径进行调控。初始溶液中N/Ag原子摩尔比率为6:1,初始星形聚合物溶液在中性偏碱性(pH=7~10)条件下制备的纳米银溶胶较佳。
The metal colloids have the unique physical and chemical properties that are neither those of bulk materials nor those of molecular compounds.They have been exploited for the extensive potential applicationsinoptics,electronics,magnetic,catalyst,sensing,biomedicine,etc.The development of simple and versatile methods for the preparation of nanoparticles in a size-or shape-selected and-controlled manner is an important and challenging task.
     Star polymers are characterized as structures in which all the chains of a molecule are linked together to a small-molar-mass core.More recently,star polymers see increasingly widespread application in nanotechnology.As a consequence,the design and synthesis of the multi-armed star polymers as well as their functionalities in materials are highly sought after.
     β-Cyclodextrins(β-CDs) are a series of cyclic oligosaccharides composed of glucose units linked byα-1,4 linkage.They have polar hydrophilic outer shells and hydrophobic cavities. Furthermore,becauseβ-CDs possesses many hydroxyl groups,it should be used for conforming star polymers as well.It is well known that poly(dimethylaminoethyl methacrylate)(PDMAEMA) can undergo a conformational transition due to hydrophobic or hydrophilic molecular chain interactions by varying pH value and temperature.
     So dimethylaminoethyl methacrylate star polymers with cyclodextrin core(CD-PDMAEMA) were synthesized and it can be expected to obtain better results in the synthesis of metal colloids materials with the multi-armed star polymers.
     Based on the above,the recent development of metal colloids and synthesis of star polymers were simplely introduced,and the synthesis of CD-PDMAEMA were achieved by atom transfer radical polymerization.Gold and silver colloids were also prepared successfully at ambient temperature with CD-PDMAEMA.The main results obtained in this thesis are as follows.
     1.The synthesis of CD-PDMAEMA has been achieved successfully by atom transfer radical polymerization in aqueous acetone at ambient temperature using CuCl as catalyst,o-phen as a ligand reagent andβ-CD-Br as the initiator,respectively.The influence of different reaction time on the polymerization were studied.GPC results confirmed CD-PDMAEMA have low polydispersity (Mw/Mn<1.10).The star polymer was characterized by FT-IR and ~1H-NMR.
     2.Gold colloids were prepared by reducing aqueous solutions of HAuCl_4 at ambient temperature with CD-PDMAEMA,which acted as both reducing and stabilizing agents for the formation of gold nanoparticles.The product was characterized by UV-Vis spectrum,FT-IR,XRD, SAED,TEM and DLS.It was also found that N/Au mole ratio and pH was the very important factor in preparating gold colloids.The size of gold nanoparticles could be controllable by the change of N/Au mole ratio and pH in aqueous solution.N/Au=6:1 and pH=7~11 is the best experiment condition.
     3.Silver colloids were prepared by reducing aqueous solutions of AgNO_3 at ambient temperature with CD-PDMAEMA,which acted as both reducing and stabilizing agents for the formation of silver nanoparticles.The product was characterized by UV-Vis spectrum,FT-IR and TEM.It was also found that N/Ag mole ratio and pH was the very important factor in preparating silver colloids.The size of silver nanoparticles could be controllable by the change of N/Ag mole ratio and pH in aqueous solution.N/Ag=6:1 and pH=7~10 is the best experiment condition.
引文
[1]张立德.纳米材料和结构[M].上海:北京科技出版社,2001.
    [2]A.Henglein.Small-Particle Research:Physicochemical Properties of Extremely Small Colloidal Metal and Semiconductor Particles[J].Chemical reviews.1989,89(8):1861-1873.
    [3]S.P.Apell,J.Giraldo,S.Lundqvist.Small Metal Particles:Nonlocal Optical Properties and Quantum-Size Effects[J].Phase Transitions.1990,24-26(Pt.2):577-604.
    [4]L.N.Lewis.Chemical Catalysis by Colloids and Clusters[J].Chemical reviews.1993,93(8):2693-2730.
    [5]A.Henglein.Physicochemical Properties of Small Metal Particles in Solution:"Microelectrode" Reactions,Chemisorption,Composite Metal Particles,and the Atom-to-Metal Transition[J].Journal of Physical Chemistry.1993,97(21):5457-5471.
    [6]王大志.纳米材料结构特征[J].功能材料.1993,24(4):303-305.
    [7]R.Kubo.Electronic Properties of Metallic Fine Particles Ⅰ[J].Journal of the Physical Society of Japan.1962,17:975-986.
    [8]S.Sanchez-Cortes,J.V.Garcia-Ramos,G Morcillo,A.Tinti.Morphological Study of Silver Colloids Employed in Surface-Enhanced Raman Spectroscopy:Activation When Exciting in Visible and near-Intrared Regions[J].Journal of Colloid and Interface Science.1995,175(2):358-368.
    [9]E.J.Liang,C.Engert,W.Kiefer.Surface-Enhanced Raman Scattering of Pyridine in Silver Colloids Excited in the near-Infi-ared Region[J].Journal of Raman Spectroscopy.1993,24(11):775-779.
    [10]E.J.Liang,C.Engert,W.K.iefer.Surface-Enhanced Raman Scattering of Halide Ions,Pyridine and Crystal Violet on Colloidal Silver with near-infrared Excitation:Low-Wavenumber Vibrational Modes[J].Vibrational Spectroscopy.1995,8(3):435-444.
    [11]沈钟,王果庭.胶体与界面化学[M].北京:化学工业出版社,1997.
    [12]陈宗淇,王光信,徐桂英.胶体与界面化学[M].北京:高等教育出版社,2001.
    [13]申德君,张朝平.明胶—银的胶态行为研究[J].化学物理学报.2001,14(1):100-106.
    [14]田中清一郎.贵金属科学[M].东京:田中贵金属株式会社,1985.
    [15]G.Mie.Contributions to the Optics of Turbid Media,Especially Colloidal Metal Solutions[J].Annalen der Physik.1908,25:377-445.
    [16]E.J.Zeman,K.T.Carron,G.C.Schatz,R.P.Van Duyne.A Surface Enhanced Resonance Raman Study of Cobalt Phthalocyanine on Rough Silver Films:Theory and Experiment[J].Journal of Chemical Physics.1987,87(7):4189-4200.
    [17]M.P.Cline,P.W.Barber,R.K.Chang.Surface-Enhanced Electric Intensities on Transition- and Noble-Metal Spheroids[J].Journal of the Optical Society of America B:Optical Physics.1986,3(1):15-21.
    [18]D.S.Wang,M.Kerker.Enhanced Raman Scattering by Molecules Adsorbed at the Surface of Colloidal Spheroids[J].Physical Review B:Condensed Matter and Materials Physics.1981,24(4):1777-1790.
    [19]R.Gans.The Form of Ultramicroscopic Gold Particles[J].Annalen der Physik.1912,37:881-900.
    [20]王世平,王静.现代仪器分析原理与技术[M].哈尔滨:哈尔滨工程大学出版社,1999.
    [21]杜学礼,潘子昂.现代仪器分析—扫描电子显微镜分析技术[M].北京,1986.
    [22]白春礼.扫描隧道显微术及其应用[M].上海:上海科学技术出版社,1992.
    [23]裘祖文,斐奉奎.核磁共振波普学[M].北京:科学出版社,1989.
    [24]李永希,夏元复.催化、表面科学与穆斯堡尔谱学[M].北京:科学出版社,1986.
    [25]苏克曼,潘铁英.波谱解析法[M].上海:华东理工大学出版社,2002.
    [26]D.V.Leff,P.C.Ohara,J.R.Heath,W.M.Gelbart.Thermodynamic Control of Gold Nanoerystal Size:Experiment and Theory[J].Journal of Physical Chemistry.1995,99(18):7036-7041.
    [27]T.Fujimoto,Y.Mizukoshi,Y.Nagata,Y.Maeda,R.Oshima.Sonolytical Preparation of Various Types of Metal Nanoparticles in Aqueous Solution[J].Scripta Materialia.2001,44(8/9):2183-2186.
    [28]S.A.Yeung,R.Hobson,S.Biggs,F.Grieser.Formation of Gold Sols Using Ultrasound[J]. Journal of the Chemical Society, Chemical Communications. 1993, (4): 378—379.
    [29] Y. Nagata, Y. Watananabe, S. Fujita, T. Dohmaru, S. Taniguchi. Formation of Colloidal Silver in Water by Ultrasonic Irradiation[J]. Journal of the Chemical Society, Chemical Communications. 1992, (21): 1620—1622.
    [30] F. Grieser, R. Hobson, J. Sostaric, P. Mulvaney. Sonochemical Reduction Processes in Aqueous Colloidal Systems[J]. Ultrasonics. 1996, 34(2-5): 547— 550.
    [31] R. A. Caruso, M. Ashokkumar, F. Grieser. Sonochemical Formation of Colloidal Platinum[J]. Colloids and Surfaces, A: Physicochemical and Engineering Aspects. 2000, 169(1-3): 219-225.
    [32] T. Fujimoto, S. -y. Terauchi, H. Umehara, I. Kojima, W. Henderson. Sonochemical Preparation of Single-Dispersion Metal Nanoparticles from Metal Salts[J]. Chemistry of Materials. 2001,13(3): 1057—1060.
    [33] K. Okitsu. Sonochemical Synthesis of Metal Nanoparticles[J]. Fain Kemikaru. 2007, 36(3): 26-32.
    [34] A. Roucoux, J. Schulz, H. Patin. Reduced Transition Metal Colloids: A Novel Family of Reusable Catalysts?[J]. Chemical reviews. 2002, 102(10): 3757— 3778.
    [35] M. T. Reetz, W. Helbig. Size-Selective Synthesis of Nanostructured Transition Metal Clusters[J]. Journal of the American Chemical Society. 1994, 116(16): 7401—7402.
    [36] M. T. Reetz, S. A. Quaiser. A New Method for the Preparation of Nanostructured Metal Clusters[J]. Angewandte Chemie, International Edition in English. 1995, 34(20): 2240—2241.
    [37] J. Lu, K. -S. Moon, C. P. Wong. Development of Novel Silver Nanoparticles/Polymer Composites as High K Polymer Matrix by in-Situ Photochemical Method[J]. Proc. - Electron. Compon. Technol. Conf. 2006, 56th(Vol. 4): 1841-1846.
    [38] K. Watanabe, D. Menzel, N. Nilius, H. -J. Freund. Photochemistry on Metal Nanoparticles[J]. Chemical Reviews (Washington, DC, United States). 2006, 106(10): 4301-4320.
    [39] Y. Zhou, C. Y. Wang, Y. R. Zhu, Z. Y. Chen. A Novel Ultraviolet Irradiation Technique for Shape-Controlled Synthesis of Gold Nanoparticles at Room Temperature[J]. Chemistry of Materials. 1999,11(9): 2310-2312.
    [40] H. Hirai, H. Wakabayashi, M. Komiyama. Catalytic Hydration of Unsaturated Nitriles to Unsaturated Amides Using Colloidal Copper Dispersions[J]. Bulletin of the Chemical Society of Japan. 1986, 59(2): 545—550.
    [41] H. Hirai, H. Wakabayashi, M. Komiyama. Preparation of Polymer-Protected Colloidal Dispersions of Copper[J]. Bulletin of the Chemical Society of Japan. 1986, 59(2): 367—372.
    [42] H. Hirai, H. Wakabayashi, M. Komiyama. Polymer-Protected Copper Colloids as Catalysts for Selective Hydration of Acrylonitrile[J]. Chemistry Letters. 1983, (7): 1047-1050.
    [43] A. B. R. Mayer, J. E. Mark, R. E. Morris. Palladium and Platinum Nanocatalysts Protected by Amphiphilic Block Copolymers[J]. Polymer Journal. 1998, 30(3): 197—205.
    [44] A. B. R. Mayer, J. E. Mark, S. H. Hausner. Colloidal Platinum-Polyacid Nanocatalyst Systems[J]. Angewandte Makromolekulare Chemie. 1998, 259: 45-53.
    [45] A. B. R. Mayer, J. E. Mark. Comparisons between Cationic Polyelectrolytes and Nonionic Polymers for the Protection of Palladium and Platinum Nanocatalysts[J]. Journal of Polymer Science, Part A: Polymer Chemistry. 1997, 35(15): 3151-3160.
    [46] A. B. R. Mayer, J. E. Mark. Colloidal Gold Nanoparticles Protected by Water-Soluble Homopolymers and Random Copolymers[J]. European Polymer Journal. 1998, 34(1): 103—108.
    [47] A. B. R. Mayer, S. H. Hausner, J. E. Mark. Colloidal Silver Nanoparticles Generated in the Presence of Protective Cationic Polyelectrolytes[J]. Polymer Journal. 2000, 32(1): 15—22.
    [48] A. B. R. Mayer, R. W. Johnson, S. H. Hausner, J. E. Mark. Colloidal Silver Nanoparticles Protected by Water-Soluble Nonionic Polymers And "Soft" Polyacids[J]. Journal of Macromolecular Science, Pure and Applied Chemistry. 1999,A36(10): 1427—1441.
    [49] H. Hirai, Y. Nakao, N. Toshima. Preparation of Colloidal Rhodium in Poly(Vinyl Alcohol) by Reduction with Methanol[J]. Journal of Macromolecular Science, Chemistry. 1978,A12(8): 1117-1141.
    [50] H. Hirai, Y. Nakao, N. Toshima. Preparation of Colloidal Transition Metals in Polymers by Reduction with Alcohols or Ethers[J]. Journal of Macromolecular Science, Chemistry. 1979,13(6): 727-750.
    [51] H. Hirai, Y. Nakao, N. Toshima. Colloidal Rhodium in Poly(Vinylpyrrolidone) as Hydrogenation Catalyst for Internal Olefins[J]. Chemistry Letters. 1978, (5): 545-548.
    [52] H. Hirai. Formation and Catalytic Functionality of Synthetic Polymer-Noble Metal Colloid[J]. Journal of Macromolecular Science, Chemistry. 1979, A13(5): 633-649.
    [53] H. Hirai. Polymer Effect on Fine Metal Particles and Reactive Metal Complexes[J]. Makromolekulare Chemie, Supplement. 1985,14: 55—69.
    [54] A. Borsla, A. M. Wilhelm, H. Delmas. Hydrogenation of Olefins in Aqueous Phase, Catalyzed by Polymer-Protected Rhodium Colloids: Kinetic Study[J]. Catalysis Today. 2001, 66(2-4): 389-395.
    [55] C. K. Tan, V. Newberry, T. R. Webb, C. A. McAuliffe. Water Photolysis. Part 2. An Investigation of the Relative Advantages of Various Components of the Sensitiser-Electron Relay-Metal Colloid System for the Photoproduction of Hydrogen from Water, and the Use of These Systems in the Photohydrogenation of Unsaturated Organic Substrates[J]. Journal of the Chemical Society, DaltonTransactions: Inorganic Chemistry (1972-1999). 1987, (6): 1299—1303.
    [56] M. Boutonnet, J. Kizling, P. Stenius, G. Maire. The Preparation of Monodisperse Colloidal Metal Particles from Microemulsions[J]. Colloids and Surfaces. 1982, 5(3): 209-225.
    [57] M. Boutonnet, J. Kizling, R. Touroude, G. Maire, P. Stenius. Monodispersed Colloidal Metal Particles from Non-Aqueous Solutions: Catalytic Behavior for the Hydrogenation of but-1-Ene of Platinum Particles in Solution[J]. Applied Catalysis. 1986,20(1-2): 163—177.
    [58] W. Yu, H. Liu. Quantity Synthesis of Nanosized Metal Clusters[J]. Chemistry of Materials. 1998,10(5): 1205—1207.
    [59] H. H. Huang, F. Q. Yan, Y. M. Kek, C. H. Chew, G. Q. Xu, W. Ji, P. S. Oh, S. H. Tang. Synthesis, Characterization, and Nonlinear Optical Properties of Copper Nanoparticles[J]. Langmuir. 1997,13(2): 172—175.
    [60]C.C.Wang,D.H.Chen,T.C.Huang.Synthesis of Palladium Nanoparticles in Water-in-Oil Microemulsions[J].Colloids and Surfaces,A:Physicochemical and Engineering Aspects.2001,189(1-3):145-154.
    [61]C.Petit,P.Lixon,M.P.Pileni.In Situ Synthesis of Silver Nanocluster in Aot Reverse Micelles[J].Journal of Physical Chemistry.1993,97(49):12974-12983.
    [62]I.Sondi,D.V.Goia,E.Matijevic.Preparation of Highly Concentrated Stable Dispersions of Uniform Silver Nanoparticles[J].Journal of Colloid and Interface Science.2003,260(1):75-81.
    [63]A.Kameo,T.Yoshimura,K.Esumi.Preparation of Noble Metal Nanoparticles in Supercritical Carbon Dioxide[J].Colloids and Surfaces,A:Physicochemical and Engineering Aspects.2003,215(1-3):181-189.
    [64]J.R.Schaefgen,P.J.Flory.Synthesis of Multichain Polymers and Investigation of Their Viscosities[J].Journal of the American Chemical Society.1948,70:2709-2718.
    [65]K.Hong,D.Uhrig,J.W.Mays.Living Anionic Polymerization[J].Current Opinion in Solid State & Materials Science.2000,4(6):531-538.
    [66]P.Moschogianni,S.Pispas,N.Hadjichristidis.Multifunctional Atrp Initiators:Synthesis of Four-Arm Star Homopolymers of Methyl Methacrylate and Graft Copolymers of Polystyrene and Poly(T-Butyl Methacrylate)[J].Journal of Polymer Science,Part A:Polymer Chemistry.2001,39(5):650-655.
    [67]A.Hirao,K.Kawasaki,T.Higashihara.Precise Synthesis of Asymmetric Star-Shaped Polymers by Coupling Reactions of New Specially Designed Polymer Anions with Chain-End-Functionalized Polystyrenes with Benzyl Bromide Moieties[J].Science and Technology of Advanced Materials.2004,5(4):469-477.
    [68]N.Hadjichristidis.Synthesis of Miktoarm Star(Micro -Star) Polymers[J].Journal of Polymer Science,Part A:Polymer Chemistry.1999,37(7):857-871.
    [69]黎宝恩,卢江.活性自由基聚合在高分子合成中的应用[J].中山大学学报.2001,9(4):68-71.
    [70]X.Zhang,J.Xia,K.Matyjaszewski.End-Functional Poly(Tert-Butyl Acrylate)Star Polymers by Controlled Radical Polymerization[J].Macromolecules.2000,33(7):2340-2345.
    [71]D.Boschmann,P.Vana.Poly(Vinyl Acetate) and Poly(Vinyl Propionate) Star Polymers Via Reversible Addition Fragmentation Chain Transfer (Raft) Polymerization[J]. Polymer Bulletin. 2005, 53(4): 231-242.
    [72] B. Ray, Y. Isobe, K. Matsumoto, S. Habaue, Y. Okamoto, M. Kamigaito, M. Sawamoto. Raft Polymerization of N-Isopropylacrylamide in the Absence and Presence of Y(Otf)3: Simultaneous Control of Molecular Weight and Tacticity[J]. Macromolecules. 2004, 37(5): 1702-1710.
    [73] A. M. Kasko, A. M. Heintz, C. Pugh. The Effect of Molecular Architecture on the Thermotropic Behavior of Poly[11-(4'-Cyanophenyl-4"-Phenoxy)Undecyl Acrylate] and Its Relation to Polydispersity[J]. Macromolecules. 1998, 31(2): 256-271.
    [74] K. Matyjaszewski, P. J. Miller, J. Pyun, G. Kickelbick, S. Diamanti. Synthesis and Characterization of Star Polymers with Varying Arm Number, Length, and Composition from Organic and Hybrid Inorganic/Organic Multifunctional Initiators[J]. Macromolecules. 1999, 32(20): 6526—6535.
    [75] K. Matyjaszewski, P. J. Miller, E. Fossum, Y. Nakagawa. Synthesis of Block, Graft and Star Polymers from Inorganic Macroinitiators[J]. Applied Organometallic Chemistry. 1998,12(10/11): 667—673.
    [76] K. Matyjaszewski, S. Qin, J. R. Boyce, D. Shirvanyants, S. S. Sheiko. Effect of Initiation Conditions on the Uniformity of Three-Arm Star Molecular Brushes[J]. Macromolecules. 2003, 36(6): 1843—1849.
    [77] X. Wang, H. Zhang, G. Zhong, X. Wang. Synthesis and Characterization of Four-Armed Star Mesogen-Jacketed Liquid Crystal Polymer[J]. Polymer. 2004, 45(11): 3637-3642.
    [78] J. Ueda, M. Kamigaito, M. Sawamoto. Calixarene-Core Multifunctional Initiators for the Ruthenium-Mediated Living Radical Polymerization of Methacrylates[J]. Macromolecules. 1998, 31(20): 6762—6768.
    [79] S. Angot, K. S. Murthy, D. Taton, Y. Gnanou. Atom Transfer Radical Polymerization of Styrene Using a Novel Octafunctional Initiator: Synthesis of Weil-Defined Polystyrene Stars[J]. Macromolecules. 1998, 31(21): 7218—7225.
    [80] V. Percec, B. Barboiu, T. K. Bera, M. Van der Sluis, R. B. Grubbs, J. M. J. Frechet. Designing Functional Aromatic Multisulfonyl Chloride Initiators for Complex Organic Synthesis by Living Radical Polymerization[J]. Journal of Polymer Science, Part A: Polymer Chemistry. 2000, 38(Suppl. ): 4776—4791.
    [81]D.M.Haddleton,R.Edmonds,A.M.Heming,E.J.Kelly,D.Kukulj.Atom Transfer Polymerization with Glucose and Cholesterol Derived Initiators[J].New Journal of Chemistry.1999,23(5):477-479.
    [82]K.Ohno,B.Wong,D.M.Haddleton.Synthesis of Well-Defined Cyclodextrin-Core Star Polymers[J].Journal of Polymer Science,Part A:Polymer Chemistry.2001,39(13):2206-2214.
    [83]A.Heise,J.L.Hedrick,M.Trollss,R.D.Miller,C.W.Frank.Novel Starlike Poly(Methyl Methacrylate)S by Controlled Dendritic Free Radical Initiation[J].Macromolecules.1999,32(1):231-235.
    [84]A.Heise,J.L.Hedrick,C.W.Frank,R.D.Miller.Starlike Block Copolymers with Amphiphilic Arms as Models for Unimolecular Micelles[J].Journal of the American Chemical Society.1999,121(37):8647-8648.
    [85]A.Heise,C.Nguyen,R.Malek,J.L.Hedrick,C.W.Frank,R.D.Miller.Starlike Polymeric Architectures by Atom Transfer Radical Polymerization:Templates for the Production of Low Dielectric Constant Thin Films[J].Macromolecules.2000,33(7):2346-2354.
    [86]K.-Y.Baek,M.Kamigaito,M.Sawamoto.Synthesis of Star-Shaped Copolymers with Methyl Methacrylate and N-Butyl Methacrylate by Metal-Catalyzed Living Radical Polymerization:Block and Random Copolymer Arms and Microgel Cores[J].Journal of Polymer Science,Part A:Polymer Chemistry.2002,40(5):633-641.
    [87]L.Szente,J.Szejtli.Highly Soluble Cyclodextrin Derivatives:Chemistry,Properties,and Trends in Development[J].Advanced Drug Delivery Reviews.1999,36(1):17-28.
    [88]D.Duchene,G.Ponchel,D.Wouessidjewe.Cyclodextrins in Targeting.Application to Nanoparticles[J].Advanced Drug Delivery Reviews.1999,36(1):29-40.
    [89]E.Sclmeiderman,A.M.Stalcup.Cyclodextrins:A Versatile Tool in Separation Science[J].Journal of Chromatography,B:Biomedical Sciences and Applications.2000,745(1):83-102.
    [90]M.Singh,R.Sharma,U.C.Banerjee.Biotechnological Applications of Cyclodextrins[J].Biotechnology Advances.2002,20(5-6):341-359.
    [91]陈龙然,袁唐培,王雅芬,冯明光.环糊精的性能、生产及其在食品工业中 的应用[J].食品科学.2003,24:268-271.
    [92]陈丽娟,杨明星,林深.主-客体化学研究进展[J].合成化学.2002,10:205-210.
    [93]T.Nozaki,Y.Maeda,K.Ito,H.Kitano.Cyclodextrins Modified with Polymer Chains Which Are Responsive to External Stimuli[J].Macromolecules.1995,28(2):522-524.
    [94]R.Breslow,S.D.Dong.Biomimetie Reactions Catalyzed by Cyelodextrins and Their Derivatives[J].Chemical reviews.1998,98(5):1997-2011.
    [95]F.Hirayama,K.Uekama.Cyelodextrin-Based Controlled Drug Release System[J].Advanced Drug Delivery Reviews.1999,36(1):125-141.
    [96]K.M.Huh,H.Tomita,W.K.Lee,T.Ooya,N.Yui.Synthesis of Alpha -Cyelodextrin-Conjugated Poly(E-Lysine)S and Their Inclusion Complexation Behavior[J].Maeromoleeular Rapid Communications.2002,23(3):179-182.
    [97]Y.-Y.Liu,X.-D.Fan.Synthesis and Characterization of Ph- and Temperature-Sensitive Hydrogel of N-Isopropylaerylamide/Cyelodextrin Based Copolymer[J].Polymer.2002,43(18):4997-5003.
    [98]A.Ruebner,G.L.Statton,M.R.James.Synthesis of a Linear Polymer with Pendent Gamma -Cyelodextrins[J].Maeromoleeular Chemistry and Physics.2000,201(11):1185-1188.
    [99]胡晖,范晓东,黄怡.以环糊精为核的星形高分子合成及其温度、pH敏感性研究[J].高分子学报.2004,(6):805-811.
    [100]C.Yanfeng,Y.Min.Swelling Kinetics and Stimuli-Responsiveness of Poly(Dmaema) Hydrogels Prepared by Uv-Irradiation[J].Radiation Physics and Chemistry.2001,61(1):65-68.
    [101]K.Sutani,I.Kaetsu,K.Uchida,Y.Matsubara.Stimulus Responsive Drug Release from Polymer Gel.Controlled Release of Ionic Drug from Polyampholyte Gel[J].Radiation Physics and Chemistry.2002,64(4):331-336.
    [102]T.Teranishi,I.Kiyokawa,M.Miyake.Synthesis of Monodisperse Gold Nanoparticles Using Linear Polymers as Protective Agents[J].Advanced Materials(Weinheim,Germany).1998,10(8):596-599.
    [103]I.Hussain,M.Brust,A.J.Papworth,A.I.Cooper.Preparation of Acrylate-Stabilized Gold and Silver Hydrosols and Gold-Polymer Composite Films[J].Langmuir.2003,19(11):4831-4835.
    [104]L.K.Yeung,R.M.Crooks.Heck Heterocoupling within a Dendritic Nanoreactor[J].Nano Letters.2001,1(1):14-17.
    [105]Y.-G.Kim,S.-K.Oh,R.M.Crooks.Preparation and Characterization of 1-2 Nm Dendrimer-Encapsulated Gold Nanoparticles Having Very Narrow Size Distributions[J].Chemistry of Materials.2004,16(1):167-172.
    [106]M.Zhao,R.M.Crooks.Dendrimer-Encapsulated Pt Nanoparticles.Synthesis,Characterization,and Applications to Catalysis[J].Advanced Materials (Weinheim,Germany).1999,11(3):217-220.
    [107]S.N.Sidorov,L.M.Bronstein,V.A.Davankov,M.P.Tsyurupa,S.P.Solodovnikov,P.M.Valetsky,E.A.Wilder,R.J.Spontak.Cobalt Nanoparticle Formation in the Pores of Hyper-Cross-Linked Polystyrene:Control of Nanoparticle Growth and Morphology[J].Chemistry of Materials.1999,11(11):3210-3215.
    [108]K.Matyjaszewski,J.Xia.Atom Transfer Radical Polymerization[J].Chemical reviews.2001,101(9):2921-2990.
    [109]T.von Werne,T.E.Patten.Atom Transfer Radical Polymerization from Nanoparticles:A Tool for the Preparation of Well-Defined Hybrid Nanostructures and for Understanding the Chemistry of Controlled/"Living"Radical Polymerizations from Surfaces[J].Journal of the American Chemical Society.2001,123(31):7497-7505.
    [110]B.A.Bolto.Soluble Polymers in Water Purification[J].Progress in Polymer Science.1995,20(6):987-1041.
    [111]R.A.Stobbe,P.C.Haegele.Calculation of the Temperature Dependence of the Negative Thermal Expansion of Polyethylene Chains by Means of the Self-Consistent Harmonic Approximation[J].Journal of Polymer Science,Part B:Polymer Physics.1996,34(5):975-980.
    [112]P.Van de Wetering,E.E.Moret,N.M.E.Schuurmans-Nieuwenbroek,M.J.Van Steenbergen,W.E.Hennink.Structure-Activity Relationships of Water-Soluble Cationic Methacrylate/Methacrylamide Polymers for Nonviral Gene Delivery[J].Bioconjugate Chemistry.1999,10(4):589-597.
    [113]L.Huang,Y.Wang,Y.Wang.Colloidal Precious Metals and Their Application[J].Guijinshu.1997,18(3):58-62.
    [114]张磊,邵晨,邵中军,张景霞,门可,闫永平,徐德忠,许文娟.Hbsag Mab 胶体金探针制备与鉴定的实验研究[J].现代生物医学进展.2007,7(1):22-24.
    [115]崔福斋.生物芯片相关研究[J].材料导报.1999,14(4):13-14.
    [116]唐芳琼,韦正,陈东,孟宪伟,苟立,冉均国.亲水金和憎水二氧化硅纳米颗粒对葡萄糖生物传感器响应灵敏度的增强作用[J].高等学校化学学报.2000,21(1):91-94.
    [117]T.Sakai,P.Alexandridis.Single-Step Synthesis and Stabilization of Metal Nanoparticles in Aqueous Pluronic Block Copolymer Solutions at Ambient Temperature[J].Langrnuir.2004,20(20):8426-8430.
    [118]M.M.Alvarez,J.T.Khoury,T.G.Schaaff,M.N.Shafigullin,I.Vezmar,R.L.Whetten.Optical Absorption Spectra of Nanocrystal Gold Molecules[J].Journal of Physical Chemistry B.1997,101(19):3706-3712.
    [119]T.Fukushima,A.Kosaka,Y.Ishimura,T.Yamamoto,T.Takigawa,N.Ishii,T.Aida.Molecular Ordering of Organic Molten Salts Triggered by Single-Walled Carbon Nanotubes[J].Science.2003,300(5628):2072-2075.
    [120]X.Sun,S.Dong,E.Wang.High-Yield Synthesis of Large Single-Crystalline Gold Nanoplates through a Polyamine Process[J].Langrnuir.2005,21(10):4710-4712.
    [121]P.R.Selvakannan,S.Mandal,S.Phadtare,A.Gole,R.Pasricha,S.D.Adyanthaya,M.Sastry.Water-Dispersible Tryptophan-Protected Gold Nanoparticles Prepared by the Spontaneous Reduction of Aqueous Chloroaurate Ions by the Amino Acid[J].Journal of Colloid and Interface Science.2004,269(1):97-102.
    [122]S.K.Bhargava,J.M.Booth,S.Agrawal,P.Coloe,G.Kar.Gold Nanoparticle Formation During Bromoaurate Reduction by Amino Acids[J].Langmuir.2005,21(13):5949-5956.
    [123]M.Aslam,L.Fu,M.Su,K.Vijayamohanan,V.P.Dravid.Novel One-Step Synthesis of Amine-Stabilized Aqueous Colloidal Gold Nanoparticles[J].Journal of Materials Chemistry.2004,14(12):1795-1797.
    [124]M.Iwamoto,K.Kuroda,V.Zaporojtchenko,S.Hayashi,F.Faupel.Production of Gold Nanoparticles-Polymer Composite by Quite Simple Method[J].European Physical Journal D:Atomic,Molecular and Optical Physics.2003,24(1-3):365-367.
    [125] D. V. Leff, L. Brandt, J. R. Heath. Synthesis and Characterization of Hydrophobic, Organically Soluble Gold Nanocrystal Functionalized with Primary Amines[J]. Langmuir. 1996,12(20): 4723-4730.
    [126] C. Subramaniam, R. T. Tom, T. Pradeep. On the Formation of Protected Gold Nanoparticles from Aucl-4 by the Reduction Using Aromatic Amines[J]. Journal of Nanoparticle Research. 2005, 7(2-3): 209-217.
    [127] J. D. S. Newman, G. J. Blanchard. Formation of Gold Nanoparticles Using Amine Reducing Agents[J]. Langmuir. 2006,22(13): 5882-5887.
    [128] T. Sakai, P. Alexandridis. Mechanism of Gold Metal Ion Reduction, Nanoparticle Growth and Size Control in Aqueous Amphiphilic Block Copolymer Solutions at Ambient Conditions[J]. Journal of Physical Chemistry B. 2005,109(16): 7766—7777.
    [129] Y. Shiraishi, N. Toshima. Colloidal Silver Catalysts for Oxidation of Ethylene[J]. Journal of Molecular Catalysis A: Chemical. 1999,141(1-3): 187-192.
    [130] G. Schmid. Large Clusters and Colloids. Metals in the Embryonic State[J]. Chemical Reviews (Washington, DC, United States). 1992,92(8): 1709-1727.
    [131] P. Mulvaney, T. Linnert, A. Henglein. Surface Chemistry of Colloidal Silver in Aqueous Solution: Observations on Chemisorption and Reactivity [J]. Journal of Physical Chemistry. 1991,95(20): 7843-7846.
    [132] B. Yin, H. Ma, S. Wang, S. Chen. Electrochemical Synthesis of Silver Nanoparticles under Protection of Poly(N-Vinylpyrrolidone)[J]. Journal of Physical Chemistry B. 2003,107(34): 8898-8904.
    [133] Y. Zhou, S. H. Yu, C. Y. Wang, X. G. Li, Y. R. Zhu, Z. Y. Chen. A Novel Ultraviolet Irradiation Photoreduction Technique for the Preparation of Single-Crystal Ag Nanorods and Ag Dendrites[J]. Advanced Materials. 1999, 11(10): 850-852.
    [134] W. Wang, S. A. Asher. Photochemical Incorporation of Silver Quantum Dots in Monodisperse Silica Colloids for Photonic Crystal Applications[J]. Journal of the American Chemical Society. 2001,123(50): 12528-12535.
    [135] J. Zhu, S. Liu, O. Palchik, Y. Koltypin, A. Gedanken. Shape-Controlled Synthesis of Silver Nanoparticles by Pulse Sonoelectrochemical Methods[J]. Langmuir. 2000,16(16): 6396-6399.
    [136] L. M. Liz-Marzan, I. Lado-Tourino. Reduction and Stabilization of Silver Nanoparticles in Ethanol by Nonionic Surfactants[J]. Langmuir. 1996, 12(15): 3585-3589.
    [137] P. -L. Kuo, W. -F. Chen. Formation of Silver Nanoparticles under Structured Amino Groups in Pseudo-Dendritic Poly(Allylamine) Derivatives[J]. Journal of Physical Chemistry B. 2003,107(41): 11267-11272.
    [138] A. Filankembo, M. P. Pileni. Shape Control of Copper Nanocrystals[J]. Applied Surface Science. 2000,164: 260-267.
    [139] C. E. Hoppe, M. Lazzari, I. Pardinas-Blanco, M. A. Lopez-Quintela. One-Step Synthesis of Gold and Silver Hydrosols Using Poly(N-Vinyl-2-Pyrrolidone) as a Reducing Agent[J]. Langmuir. 2006,22(16): 7027-7034.
    [140] P. -L. Kuo, W. -F. Chen. Formation of Silver Nanoparticles under Structured Amino Groups in Pseudo-Dendritic Poly(Allylamine) Derivatives[J]. Journal of Physical Chemistry B. 2003,107(41): 11267—11272.
    [141] S. Li, Y. Shen, A. Xie, X. Yu, L. Qiu, L. Zhang, Q. Zhang. Green Synthesis of Silver Nanoparticles Using Capsicum Annuum L. Extract[J]. Green Chemistry. 2007, 9(8): 852-858.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700